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Reinforcement learning agents deployed in production systems develop undesired behaviours during operation that require correction. Traditional approaches
discard the trained policy and restart from scratch, wasting computational resources. Machine Unlearning offers an alternative: selectively remove specific
behaviours while preserving useful knowledge. Existing SOTA methods face critical limitations. TrajDeleter [1] achieves 94.8% forget effectiveness but operates
only on offline RL with fixed trajectory buffers. Reinforcement Unlearning [2] addresses environment-level forgetting but lacks behaviour-level granularity. Neither
handles online/on-policy scenarios where agents continue interacting with environments during deployment.

1. INTRODUCTION/MOTIVATION 

2. METHODS AND MATERIALS

We address selective behavior unlearning in on-policy RL. Given a trained
policy 𝜋𝜃 parameterized by 𝜃 and a set of undesired behaviors 𝒟𝒻 (unsafe trajectories,

exploitative action sequences), we construct an updated policy 𝜋𝜃′ satisfying forget
effectiveness ( 𝐸𝜏∼𝔻𝕗

𝜋𝜃′ 𝜏 ≪ 𝐸𝜏∼𝔻𝕗
𝜋𝜃 𝜏 ), retain stability ( 𝐸𝜏∼𝔻𝕣

𝐽 𝜋𝜃′ ≥ 𝛼

⋅ 𝐸𝜏∼𝔻𝕣
𝐽 𝜋𝜃 ) maintaining performance on desired behaviors 𝒟𝓇 (e.g. cart velocity or

position in CartPole), and computational efficiency (unlearning cost substantially lower than
retraining). Our three-pillar framework provides complementary solutions for different
deployment constraints.

3. DISCUSSION

Trajectory-Selective Forgetting decomposes the unlearning objective into three loss
components. A forget loss applies gradient reversal, maximizing negative log-likelihood to
decrease probability of toxic actions. A retain loss maintains performance on acceptable
behaviours through standard policy gradient updates Zero-Shot Strategy Inversion addresses
scenarios where explicit toxic trajectories are unavailable due to privacy constraints or when
undesirable behaviours are specified abstractly. We perform policy inversion by optimizing
states rather than parameters. Sample seed states 𝑠0 ∼ Uniform Ω from the observation

space, then solve 𝑠∗ = argmin
𝑠∈Ω

− log 𝜋𝜃 𝑎target 𝑠 + 𝛽|𝑠 − 𝑠0|
2 via gradient descent on

the state space. Metaplasticity-Based Retain Protection prevents catastrophic forgetting
through a dual mechanism. We compute parameter importance via Fisher Information
approximation 𝐼𝐹

𝐼 which captures sensitivity to perturbations. Unlike EWC, which adds a
Fisher-weighted quadratic penalty to the loss, our MRP approach uses Fisher-based binary
masks that rescale gradients dynamically via metaplasticity-inspired damping.

5. OUTLOOK/REFERENCES

Our long-term directions include formal privacy analysis via membership inference 
attacks and differential privacy guarantees, multi-agent coordination where multiple 
policies require synchronized unlearning, and model-based integration combining 
our framework with world models for sample efficiency. Future work will explore 
influence functions for precise forgetting, parameter isolation and robust retention.
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4. CONCLUSION/RESULTS
We validated our framework across three distinct Gymnasium environments with minor modifications, compatible with PPO: CartPole, LunarLander, and a 

MountainCar. The PPO implementation uses a shared MLP feature extractor with orthogonal initialization ( 2) feeding into separate linear heads for the Actor and 
Critic. This setup shares parameters for feature learning but keeps policy and value estimation separate. We evaluate unlearning performance using Forget 
Effectiveness (derived from Area Under Forget Curve), Retain Stability Index (RSI), and Computational Overhead.

Experimental results demonstrate that TSF achieves 73.4 ± 2.1% Forget Effectiveness and 82.1 ± 3.5% RSI at a minimal 4.2 ± 0.8% computational overhead. In 
privacy-constrained scenarios, ZSI trades effectiveness (65.8 ± 4.2%) for enhanced RSI (88.3 ± 2.9%) with 6.7 ± 1.2% overhead. For safety-critical applications, 
combining MRP with TSF maintains 72.9 ± 1.8% effectiveness while boosting RSI to 93.4 ± 1.5% at 5.1 ± 0.9% overhead. This work proposes a novel framework 
architecture, currently at the proof-of-concept stage with validation only in controlled and simulated environments.

Our framework addresses three key limitations in existing work. First, it extends unlearning from offline RL to online/on-policy scenarios where agents continue 
environmental interaction. Second, Zero-Shot Strategy Inversion introduces an unlearning method without explicit trajectory examples, using gradient-based state 

optimization ∇𝑠 log 𝜋𝜃 𝑎toxic 𝑠 to discover policy vulnerabilities. Third, explicit retain protection via Fisher Information masks and distillation provides tuneable 
safety guarantees, contrasting with implicit retention strategies. Our modular design allows independent or combined deployment: TSF for speed, ZSI for privacy, 
MRP for safety-critical systems.

Figure 1: CartPole-v1 Benchmarks. TSF (top) is the most efficient solution with

just 4.1% overhead. MRP+TSF (bottom) provides the best safety profile, 

retaining 93.1% of original performance. All methods achieve effective unlearning 

at a fraction (<7%) of retraining costs.
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Table 1: A summary of the three proposed frameworks highlighting their distinct 

operational mechanisms and trade-offs. TSF leverages explicit loss 

decomposition for efficiency; ZSI utilizes zero-shot policy inversion for privacy; 

and MRP employs metaplasticity masks for safety-critical retention. Quantitative 

metrics (mean ± std. dev.) reflect mean performance on all three environments, 

based on 5 seeded runs each..
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