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1. INTRODUCTION/MOTIVATION

Reinforcement learning agents deployed in production systems develop undesired behaviours during operation that require correction. Traditional approaches
discard the trained policy and restart from scratch, wasting computational resources. Machine Unlearning offers an alternative: selectively remove specific
behaviours while preserving useful knowledge. Existing SOTA methods face critical limitations. TrajDeleter [1] achieves 94.8% forget effectiveness but operates
only on offline RL with fixed trajectory buffers. Reinforcement Unlearning [2] addresses environment-level forgetting but lacks behaviour-level granularity. Neither
handles online/on-policy scenarios where agents continue interacting with environments during deployment.

2. METHODS AND MATERIALS R

We address selective behavior unlearning in on-policy RL. Given a trained
policy mg parameterized by 6 and a set of undesired behaviors D; (unsafe trajectories,
exploitative action sequences), we construct an updated policy my satisfying forget
effectiveness ( E._p [mg (7)] K Erop,[mg(T)] ), retain stability ( E;.p [/(mg)] = «
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-ETN]D)E[](ng)]) maintaining performance on desired behaviors D,. (e.g. cart velocity or
position in CartPole), and computational efficiency (unlearning cost substantially lower than 0 20 40 Peﬁormanceeﬁetric o 80 100
retraining). Our three-pillar framework provides complementary solutions for different mm Forget Effectiveness Retain Stabilty (RSI)

deployment constraints. Figure 1: CartPole-v1 Benchmarks. TSF (top) is the most efficient solution with

just 4.1% overhead. MRP+TSF (bottom) provides the best safety profile,

retaining 93.1% of original performance. All methods achieve effective unlearning
3 . D I S C U SS I O N at a fraction (<7%) of retraining costs.

Metric TSF ZSI1 MRP

Trajectory-Selective Forgetting decomposes the unlearning objective into three loss Forget Effectiveness  73.4 + 2.1% 65.8 + 4.2% 72.9 + 1.8%
i . L . . . Retention Stability 82.1 + 3.5% 88.3 + 2.9% 93.4 + 1.5%
components. A forget loss applies gradient reversal, maximizing negative log-likelihood to (RSI)
ope . . . . . C tati 1 Over- 4.2 + 0.8% 6.7 + 1.2% 5.1 + 0.9%
decrease probability of toxic actions. A retain loss maintains performance on acceptable bR Ve ’ ° °
behaviours through standard policy gradient updates Zero-Shot Strategy Inversion addresses srajectory  Require- - Hequired Not required Required
scenarios where explicit toxic trajectories are unavailable due to privacy constraints or when Memory Complexity — O(|Dy|) O(Naceds) o(l6))
] . . ] ] ] ... Loss Function alys+ BLr + VLreg arg ming — log mg(als) Ir mask + KL
undesirable behaviours are specified abstractly. We perform policy inversion by optimizing Key Innovation Explicit loss decompo- Policy inversion with- Parameter-level pro-
. . sition out data tection
states rather than parameters. Sample seed states s, ~ Uniform(Q) from the observation Deployment Scenario  Generalpurpose un-  Privacy-constrained  Safety-critical systems
space, then solve s* = arg mi{rzl — log g (atarget|5) + Ls — SO|2] via gradient descent on learning enVIronments
SE " " " " I "
the state space. Metaplasticity-Based Retain Protection prevents catastrophic forgetting Table 1. A summary of the three proposed frameworks highlighting their distinct
i i i i i operational mechanisms and trade-offs. TSF leverages explicit loss

through a dual mechanism. We compute parameter importance via Fisher Information decomposition for efficiency: ZSI utilizes zero-shot policy inversion for privacy;
approximation I} which captures sensitivity to perturbations. Unlike EWC, which adds a and MRP employs metaplasticity masks for safety-critical retention. Quantitative

metrics (mean = std. dev.) reflect mean performance on all three environments,
based on 5 seeded runs each..

Fisher-weighted quadratic penalty to the loss, our MRP approach uses Fisher-based binary
masks that rescale gradients dynamically via metaplasticity-inspired damping.

4. CONCLUSION/RESULTS

We validated our framework across three distinct Gymnasium environments with minor modifications, compatible with PPO: CartPole, LunarLander, and a

MountainCar. The PPO implementation uses a shared MLP feature extractor with orthogonal initialization (v/2) feeding into separate linear heads for the Actor and
Critic. This setup shares parameters for feature learning but keeps policy and value estimation separate. We evaluate unlearning performance using Forget
Effectiveness (derived from Area Under Forget Curve), Retain Stability Index (RSI), and Computational Overhead.

Experimental results demonstrate that TSF achieves 73.4 £ 2.1% Forget Effectiveness and 82.1 £ 3.5% RSI at a minimal 4.2 + 0.8% computational overhead. In
privacy-constrained scenarios, ZSI trades effectiveness (65.8 + 4.2%) for enhanced RSI (88.3 + 2.9%) with 6.7 £ 1.2% overhead. For safety-critical applications,
combining MRP with TSF maintains 72.9 + 1.8% effectiveness while boosting RSI to 93.4 £ 1.5% at 5.1 £ 0.9% overhead. This work proposes a novel framework
architecture, currently at the proof-of-concept stage with validation only in controlled and simulated environments.

Our framework addresses three key limitations in existing work. First, it extends unlearning from offline RL to online/on-policy scenarios where agents continue
environmental interaction. Second, Zero-Shot Strategy Inversion introduces an unlearning method without explicit trajectory examples, using gradient-based state
optimization V¢ log g (atoxic|5) to discover policy vulnerabilities. Third, explicit retain protection via Fisher Information masks and distillation provides tuneable
safety guarantees, contrasting with implicit retention strategies. Our modular design allows independent or combined deployment: TSF for speed, ZSI for privacy,
MRP for safety-critical systems.

5. OUTLOOK/REFERENCES

Our long-term directions include formal privacy analysis via membership inference
attacks and differential privacy guarantees, multi-agent coordination where multiple
policies require synchronized unlearning, and model-based integration combining
our framework with world models for sample efficiency. Future work will explore
influence functions for precise forgetting, parameter isolation and robust retention.
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