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Goal

"Right to be Forgotten” Applicability & Adaptability

Privacy compliance _ « Model "forgets” knowledge
without retraining from scratch

« Right to request the deletion of their
personal data « Data deletion without harming
the model's performance
« Article17 of the EU General Data
Protection Regulation (GDPR [1] ) «  Provide measurable evidence
that unlearning has occurred
» Data was processed unlawfully
« Prevent attackers from
» The person objects to data recovering deleted information
processing
« Apply unlearning to various
« Data was collected from a child domains (CV, NLP, RL, etc.)
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Unlearning in Robotics
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Industrial/Autonomous
Systems [3]

Social/Service Robots [2]
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Zero-Shot Unlearning [4]

: Maximize Teacher

(trained model)

g ___*[ 713')
« Zero-shot machine unlearning, \:

introduced by Chundawat et al., which % ]
aims to erase data classes from a 5 i
trained model without needing the

{ KL-Divergence-~5

original training samples. i
Attention
. The GKT (Gated Knowledge Transfer) | &%) Difference [ '@
framework that trains a student cenerator T §
network to retain allowed knowledge .
while forgetting the target class. pand pass miver % o
oYy, minimie |
Student
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TrajDeleter:
Enabling Trajectory
Forgetting in Offline

Reinforcement
Learning Agents

[7]
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Problem Statement

“Zero-shot machine unlearning seeks to remove specific data classes
Original from a trained model without any access to the original training data.”

Ours
~0 accuracy on forget set — White-box access to student and
continued training (retain) — generator — model inversion can recover
forget set performance synthetic samples of the forgotten class.
recovers
Generator-Filter Pipeline Leakage Attack Vector
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Prerequisites

The training set is typically split into two distinct datasets:
Dtyqin = Dy U D,
The goal is to transform a model
MG¢) — MG @)

Such that its outputs on Dy are indistinguishable from those of a model trained only on D,,
while maintaining performance on D,.

Exact matching of parameters ¢’ is usually infeasible.
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Methods

Datasets
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Evaluation Metrics

1. Accuracy on D; and D, after 2000 pseudo-batches.

Each pseudo-batch consists of filtered synthetic samples

2. The earliest pseudo-batch index at which forget-set accuracy begins to consistently
increase (tipping point).

Tipping point is computed by tracking Accyorget

Scenarios:
- Increasing forget set (D) size (forget class count)

+ Logging every 50 pseudo-batches
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Results

Stability and
Limitations of Single-
Class GKT-Based
Unlearning

Assessing how effectively GKT erases the
influence of a single forget class while

preserving performance on the retained classes.

2.

Robustness of Multi-
Class GKT-Based
Unlearning

Assessing how effectively GKT erases the
influence of multiple (1, 3, 5) forget classes while
preserving performance on the retained classes.

Results
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Stability and Limitations of Single-Class

GKT-Based Unlearning
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Stability and Limitations of Single-Class

GKT-Based Unlearning

Table 1: Zero-shot unlearning results across five datasets and two architectures. All values are 10-run means.

Dataset Acc. Before GKT  Acc. After GKT (Retain) Acc. After GKT (Forget) Tipping Point A Retain Acc.
(mean %) (mean %) (mean %) (mean pb.) (mean %)
AlICNN
CIFAR-10 82.34 49.94 17.0 200 -32.4
CIFAR-100 57.60 49.95 17.01 200 -7.65
MNIST 99.40 40.65 86.61 150 -58.75
Fashion-MNIST 92.47 24.80 0.11 500 -67.67
SVHN 93.83 88.98 87.65 200 -4.85
ResNet-18
CIFAR-10 83.49 43.82 0 - -39.67
CIFAR-100 57.37 14.68 0 - -42.69
MNIST 99.52 15.76 1.19 100 -83.76
Fashion-MNIST 93.24 24.47 0 - -68.77
SVHN 93.94 81.70 26.09 350 -12.24
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Robustness of Multi-Class GKT-Based

Unlearning

Retain and Forget Set Accuracy for Varying Number of
Forgotten Classes (MNIST)
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Conclusion

Current zero-shot unlearning methods, such as GKT, are prone to instability over time and
susceptible to adversarial exploitation.
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To prove the method
is vulnerable to
white-box attacks.
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Propose a zero-shot
unlearning method
that prevents
degradation and
avoids resurfacing of

information.
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