
2. Practice - An Introduction to NetLogo

👤 Tamás Takács, PhD student, Department of Artificial Intelligence

🕓 90 min read

📅 January 22, 2025

📚 Collective Intelligence

NetLogo is a programmable modeling environment for simulating natural and social phenomena, based on Logo by Seymour
Papert. It is designed to model complex system development over time.

Why NetLogo?
Are there any other programmable modeling environments out there? Yes, there are.

Many competing modeling environments use programming languages inspired by or similar to Logo. Most of these platforms integrate
another high-level programming language, such as Java, to enhance the user experience. However, much of the Java code in these
systems has become outdated.

Close Competitors:

Feature GAMA NetLogo Repast

License Open-source (GPL v3.0) Open-source (GPL) Open-source (BSD)

Programming
Language

GAML (Gama Modeling Language)
for simulations; Java for extensions

NetLogo language Java (RepastS, RepastJ); Python
(Repast4Py); .NET languages
(Repast.NET)

Operating
Systems

Cross-platform: Windows, Linux,
macOS

Cross-platform: Windows, Linux,
macOS

Cross-platform: Windows, Linux,
macOS

Primary Domain Spatially explicit agent-based
simulations

Social and natural sciences;
educational purposes

Social sciences; complex adaptive
systems

User Support Tutorials, manual, FAQ, forums,
documentation, selected publications,
examples

Documentation, FAQ, selected
references, tutorials, third-party
extensions, mailing lists

Documentation, mailing list, defect
list, reference papers, external
tools, tutorials, FAQ, examples

GIS Capabilities Advanced GIS support, allowing
integration and manipulation of
spatial data

Basic GIS support; can handle
simple spatial data

Extensive GIS capabilities;
supports integration with various
spatial data formats

3D Capabilities Supports 3D simulations and
visualizations

Basic 3D capabilities; primarily 2D Supports 3D simulations and
visualizations

Learning Curve Moderate; requires understanding of
GAML and modeling concepts

Beginner-friendly; designed for
ease of use and learning

Steeper; requires proficiency in
Java or other supported languages

Performance Suitable for large-scale simulations;
performance depends on model
complexity

Best suited for small to medium-
scale models; performance may
degrade with very large models

Designed for high-performance
simulations; suitable for large-
scale and complex models

Debugging Reports syntactic and semantic
errors and gives semantic warnings
that indicate “flaws in the logic of the
model”

Limited amount of debugging
functionalities

Many syntax errors are only
identified at runtime

Simulation
Speed

Slowest (tested on Game of Life) Fastest (tested on Game of Life) Fast (tested on Game of Life)

1. Complex System a system made up of many interacting components or agents, where the interactions give rise to emergent
behaviors that cannot be easily predicted from the behavior of individual components (congested road network).

2. Social Phenomena: behaviors, patterns, or events that arise within societies due to the interactions and relationships among
individuals or groups (voting patterns, Romania 2024).

3. Logo: high-level, interpreted, dynamically-typed programming language designed for educational purposes. Comes with functional
paradigms, symbolic processing and turtle graphics.

4. Programmable Modeling Environment: a software tool that allows users to create, simulate, and analyze computational models
of complex systems. It provides a framework for defining agents, their behaviors, and interactions within an environment (NetLogo).

Feature GAMA NetLogo Repast

Multi-Threading Yes No Yes with Repast HPC

Latest Version 2.11 (as of January 20, 2025) 6.4.0 (as of January 20, 2025) 1.9.3 (as of January 20, 2025)

Reference: Raab, R., Lenger, K., Stickler, D., Granigg, W., & Lichtenegger, K. (2022). An Initial Comparison of Selected Agent-Based
Simulation Tools in the Context of Industrial Health and Safety Management. Proceedings of the 2022 8th International Conference on
Computer Technology Applications, 106–112. Presented at the Vienna, Austria. doi:10.1145/3543712.3543745

Code Comparison:

New Competitors:

New competitor modeling environments aim to leverage multi-threading and more efficient, faster programming languages as their
backbone to outperform traditional Java-based platforms. The market remains highly competitive, with ongoing efforts to develop the
most comprehensive and versatile programmable modeling software.

Reference: Datseris, G., Vahdati, A. R., & DuBois, T. C. (2022). Agents.jl: a performant and feature-full agent-based modeling software
of minimal code complexity. SIMULATION, 100(10), 1019–1031. doi:10.1177/00375497211068820

Other notable advantages of NetLogo:

Building Blocks
The Environment
The whole world is a discrete grid. Each basic region is called a patch.

Extensive documentation (literally contains everything a good documentation needs)
Huge collections of pre-written simulations on Biology, Medicine, Physics, Chemistry and more
Very easy to get into

The Agents

The environment is composed of agents called turtles that can independently move. Each turtle has a position, coordinates, and a
heading, expressed in degrees. 0° is north.

Agents possess descriptive features as well such as their size, color and shape. (Mostly used for visualization purposes)

Just like space, time in simulations is also discrete, progressing in units called ticks. A tick represents a moment in simulation time
during which agents perform their actions. By default, a scheduler ensures agents act in a random order each tick, though this behavior
can be customized as needed.

Each agent is equipped with a set of properties:

The Observer

The observer in NetLogo acts as an overseer, responsible for managing and modifying the environment and agents without being an
agent itself. It can execute commands to create, move, or modify turtles, patches, and links, as well as control the simulation by
adjusting global settings, running procedures, and monitoring overall behavior.

Starting Up NetLogo (6.4.0)

who: A unique identifier assigned to each agent, distinguishing it from others in the simulation.
heading: The direction the agent is facing, typically measured in degrees.
xcor and ycor: The agent's coordinates on the grid, defining its position in the simulation environment.
shape, size, color: Visual attributes of the agent, determining how it appears in the simulation.
hidden: A boolean property indicating whether the agent is visible or hidden in the simulation.

Opening NetLogo presents a minimalist interface with a blank project, including an empty grid window by default. The easiest way to
begin interacting with this environment is through the Command Center.

By default, you are acting as the observer, which grants full control over the entire environment with a global perspective. In observer
mode, commands are executed at the global level and can directly manipulate the environment, agents, and simulation settings.

Appetizer Commands

This code may appear simple, but it performs multiple actions behind the scenes:

create-turtles 1

Action: It creates 1 new turtle in the simulation.
Default Properties: The newly created turtle is assigned default values for its properties, such as:

A unique identifier (who number, in this case it will be 0).
Randomly chosen initial heading (direction).
A random xcor and ycor (position) within the world's boundaries.
Default visual properties like shape , color , size , and hidden status (not hidden by default).

Scope: This command is executed from the observer context, meaning the observer initiates the creation of the turtle(s) in the
environment.

The command inspect turtle is used to inspect all properties of a turtle.

In this window, you can observe additional properties of the turtle that were not mentioned previously:

inpsect turtle 0

label: A text string displayed next to the turtle. By default, it is empty, but it can be customized to display numbers, words, or other
information.
label-color: The color of the text in the turtle’s label, displayed as a numerical color code.
breed: The classification of the turtle, used to group turtles into subcategories for specific behaviors or roles. By default, turtles
belong to the turtles breed.

There is also an input field at the bottom of the Inspect window, which allows you to directly modify properties or execute commands for
the selected agent or object (such as a turtle, patch, or link) in the simulation.

For example, to change the label of a turtle, you can use the following command:

The set command modifies the properties of the agent selected in the Inspect window. However, if you want to do this from the
observer level, you need to use the ask command to specify which agent you are targeting:

This observer-level command is slightly modified from the original, with the inclusion of the ask keyword, along with the breed (turtle)
and the unique identifier (who) of the agent in question. The ask command in NetLogo allows the observer to direct specific agents (or
groups of agents) to perform actions.

NOTE:

Exercise:

The Color Property

You might have noticed that the color of Turtle 0 is set to 55 , which might seem unusual. This is a greenish color in NetLogo's color
scheme. Additionally, the label-color is set to 9.9 , which corresponds to white.

Let’s try changing the label-color of Turtle 0 to a different value, such as 19.9 :

Surprisingly, nothing seems to happen. So, let’s explore what’s going on behind the scenes and understand how colors are coded in
NetLogo.

pen-size: The width of the pen used by the turtle when drawing on the grid, measured in pixels.
pen-mode: Determines the drawing behavior of the turtle's pen. Possible values include up (not drawing), down (drawing as it
moves), or erase (erasing lines as it moves).

set label "Shrek"

ask turtle 0 [set label "Donkey"]

1. The set command works within the context of the selected agent and can modify its own properties directly.
2. Using the ask command, an agent can modify the properties of another agent. When an agent uses ask , it essentially "steps

into" the context of the target agent(s).

1. Use the create-turtles command in the Command Center to add a new turtle.
2. Right-click on the newly created turtle (Turtle 1) and select "Inspect" to open its Inspect window.
3. In the input field of Turtle 1’s Inspect window, try changing Turtle 0's label to "Shrek" again.

set label-color 19.9

Reference: https://ccl.northwestern.edu/netlogo/bind/article/shapes-and-colors-in-netlogo.html

NetLogo uses a continuous color scale based on numbers ranging from 0 to 140 . These numbers represent specific colors on the
NetLogo color wheel:

Let’s try changing the label-color of Turtle 0 to a value that is outside the bounds of NetLogo’s color system:

Interestingly, the label-color turns red. This happens because NetLogo handles out-of-bounds color values by applying the following
formula: color = set_color % 140 (graceful handling).

Shapes

For some phenomena, modeling how agents look can be just as important as modeling their behavior. In other cases, creating visually
appealing and creative visualizations can enhance our understanding and enjoyment of the modeling process.

NetLogo uses vectorized shapes for turtles, which are built from basic geometric components. By default, turtles use the default
shape, but NetLogo also provides a library of pre-defined shapes that can be assigned to turtles to represent different roles or states
visually. These shapes can be customized to suit the needs of your model.

Whole Numbers: Each whole number corresponds to a base color (e.g., 0 is black, 15 is red, 65 is green, etc.).
Decimal Points: Decimal values (e.g., 19.9) create shades or variations of the base color. For example: 9.9 : The lightest shade
of a color, often close to white and 19.9 : A lighter variation of red.

set label-color 155

https://ccl.northwestern.edu/netlogo/bind/article/shapes-and-colors-in-netlogo.html

Other notable shapes include the following: airplane , bug , butterfly , person , house , car .

NetLogo has way more turtle shapes than the default ones for us to choose from. All we need to do is to click the Import From
Library button, which will bring up a long list of shapes to choose from.

Reference: https://ccl.northwestern.edu/netlogo/bind/article/shapes-and-colors-in-netlogo.html

The Breed Property

The breed property defines a classification of agents, specifying their roles within the system. NetLogo provides a fallback breed called
turtles , which is the default class for all agents unless explicitly assigned to another breed. This ensures that agents always have a
default classification, even if no additional breeds are defined.

You can define additional breeds to represent different roles or behaviors in the system. For example, in a simulation of hunters and
prey, you could create two separate breeds:

The Pen Mode Property

The pen-mode property enables agents to leave a visual trail, following their trajectory as they move around the environment. The
property can take the following values:

Hunters: Agents that have specific goals and actions, such as chasing prey.
Prey: Agents with different behaviors, like avoiding hunters or foraging for resources.

up : The pen is lifted, and no trail is drawn as the agent moves.
down : The pen is lowered, drawing a trail along the agent's path.
erase : The pen erases any previously drawn trails as the agent moves.

https://ccl.northwestern.edu/netlogo/bind/article/shapes-and-colors-in-netlogo.html

This feature allows for the creation of intricate visual patterns, showing emergent behaviors in multi-agent systems through simple
movement rules. Let's set the pen-mode of Turtle 0 to down .

Moving the Agents

Basic movement in NetLogo involves the following commands:

The left command subtracts the specified angle from the current heading , while right adds the specified angle to it. It's important to
note that in NetLogo, the heading value is measured in degrees, with 0 degrees representing north. For example:

Exercise: Use Turtle 0 to draw a perfect equilateral triangle (a triangle with three equal sides and 60-degree angles) on the
simulation grid.

You will use the pen-mode property and the basic movement commands (forward and right) to accomplish this.

Patches

In NetLogo, there are four types of agents: turtles, patches, links, and the observer. Commands can be directed to any of these
agents, including patches.

Patches are arranged in a grid with each patch having specific coordinates. The patch at coordinates (0, 0) is called the origin, and
the coordinates of other patches are determined by their horizontal and vertical distances from this origin.

These coordinates work similarly to the standard mathematical coordinate plane.

Commands in NetLogo can target a specific turtle or specific patch or the entire set of turtles or patches.

Turtles Patches

One ask turtle 0 [set color red] ask patch 2 3 [set pcolor red]

All ask turtles [set color red] ask patches [set pcolor red]

See https://ccl.northwestern.edu/netlogo/docs/dictionary.html for additional commands.

set pen-mode "down"

forward : Moves the agent in the direction specified by its current heading property.
right and left : Adjust the heading value of the agent, changing its direction of movement.

If an agent's heading is 180 (facing south) and you execute right 180 , the agent will turn to face north (back to a heading of 0).

pxcor : The horizontal coordinate (increases as you move to the right).
pycor : The vertical coordinate (increases as you move upward).

https://ccl.northwestern.edu/netlogo/docs/dictionary.html

Patches also have a set of properties that can be manipulated, such as their color or label. For example, you can change the color of a
patch to standard white by setting its color property to 9.9 . Here's how you can do it:

So what would be needed to create, for example, a chessboard pattern on the grid? Is there anything beyond the Inspect Window and
the Command Center to write more complex code, such as loops, creating breeds, handling complex data structures, and manipulating
multiple elements at once? Of course, there is: The Code Tab.

Programming in NetLogo
Instructions to agents can be classified according to three criteria:

NOTE:

Commands

Commands are procedures that don't have any output, but only side effects on the environment.

This code defines a procedure called go , which performs the following actions:

ask patch 9 4 [set pcolor 9.9]

whether they are built into NetLogo (primitive) or user implemented (procedure)
whether the instruction produces an output (report) or not (command)
whether an instruction takes inputs or not

NetLogo is case insensitive, so case conventions are purely for reader convenience.

to go

clear-all

create-turtles 10

ask turtles [forward 1]

end

1. clear-all : Resets the environment by clearing all agents, patches, and any previously drawn elements on the grid.
2. create-turtles 10 : Creates 10 new turtles, each with default properties like random positions and headings.
3. ask turtles [forward 1] : Asks all turtles to move forward by 1 step in the direction they are currently facing.

This command can then be called in the Command Center with the following line:

Interface Elements

Is there another way to interact with the Code Pane from the Interface Tab? Yes, through Interface Elements, which allow users to
modify and interact with the simulation without directly changing the code. The most notable elements include:

Exercise: Figure out which Interface Element would be appropriate to call this command once without interacting with the
Command Center.

Can you also determine how to call this function continuously within a loop?

Reporters

Reporters are procedures that compute a value and report it.

The above code defines a reporter named double that performs the following actions:

This reporter can be called in the Command Center or within other procedures to compute the double of a given number. For example:

In the code above, num acts as an input parameter to the command.

Exercise: Figure out which Interface Element would be most appropriate to monitor the value of the double reporter.

Styling

There isn't an official NetLogo style guide. Nonetheless the official documentation is fairly consistent and follows some good habits:

go

Button: Executes a specific procedure or command when clicked.
Slider: Adjusts numeric values dynamically to control variables.
Switch: Toggles between true and false for boolean variables.
Chooser: Allows selection from a predefined list of options.
Input: Accepts user-provided text or numeric input.
Monitor: Displays the current value of a variable in real time.
Plot: Visualizes data over time or for specific conditions.
Output: Prints text or data to a log-like area in the interface.
Note: Displays descriptive text or instructions for the user.

to-report double [num]

report 2 * num

end

1. Input Parameter: It takes a single input, num , which is the value to be processed.
2. Computation: It multiplies the input (num) by 2.
3. Reporting the Result: The report keyword is used to return the computed value (i.e., 2 * num).

show double 5

use camel case beginning with a lower-case letter for procedure (e.g. myProcedure , Java style)
do not use underscores in names
name command procedure with nouns and reporters with verbs

Variables

Variables in NetLogo can be divided into three main groups:

Exercise: Create a global variable named radius and set its value to 5 in a command named setup . Subsequently, create a
reporter called calculate-area that calculates the area of a circle.

In this function, create a local variable named area that computes the area of the circle using the formula area = π × radius² ,
where radius is the global variable. The reporter should then return the computed area of the circle.

Use a Button interface element to run the setup command once, then utilize a Monitor interface element to show the result with
3 decimal places!

Hints:

Solution:
Click to show/hide solution

NOTE:

Agentsets

When asking to update an agent variables a subset of all the agents, called agentset , can be used. An agentset contains one or
more agents, all of the same type, and it's always randomly ordered.

The one-of primitive in NetLogo randomly selects one agent from a given set of agents, such as turtles, patches, or links. For example,
one-of turtles randomly selects one turtle from the current set of turtles. Additionally, you can create subsets of agents using
conditions (e.g., turtles with [color = red]) and then instruct these specific subsets with targeted commands.

Local variables, defined as part of a procedure: let <name> <value>
Agent variables, defined as part of each agent: <agent*>-own [<name(s)>]
Global variables, accessible by every agent and procedure: globals [<name(s)>]

Use the globals keyword to define the global variable radius .
Use the set command to assign the value 5 to radius .
pi is already a predefined constant in NetLogo, so you don’t need to define it manually.

NetLogo variables are dynamically typed.
Primitive types are numbers, booleans, lists, strings, along with the usual operations: + , -, * , /, ^ , > , >= , = , != , < , <= ,
and, or, not, xor.
All numbers are floating points, be aware of approximations.
When performing arithmetic operations be aware of spaces: the lack of parenthesis might bring ambiguity in parsing the
operation and result in something different.

ask one-of turtles [<command>]

let some-patches patches with [pxcor < 3]

Conditionals

Conditionals in NetLogo allow agents to make decisions based on specific criteria using commands like if , ifelse , and ifelse-
value . For example, if pcolor = black [set pcolor white] changes a patch's color to white only if its current color is black.

Conditions are logical expressions (=, <, >, and, or, etc.) that evaluate to true or false .

NOTE:

Loops

Loops in NetLogo allow repeated execution of commands, enabling dynamic and iterative behaviors. Common looping constructs
include repeat , which runs a block of commands a fixed number of times, and while , which runs as long as a specified condition is
true.

ask some-patches [set pcolor red]

if (<condition>) [<command(s)>]

ifelse (<condition>)

[<command(s) if true]

[<command(s) if false]

ifelse-value (<condition)

[<reporter(s) if true]

[<reporter(s) if false]

if (random-float 1 < 0.5)

[show "heads"]

ifelse (random-float 1 < 0.5)

[show "heads"]

[show "tails"]

ask turtles [

set color ifelse-value (energy < 0)

[red]

[green]

]

When using if or ifelse in an ask block, the condition is evaluated for each agent individually.

ask turtles [if xcor > 0 [set color red]]

loop [<command(s)>]

repeat <num> [<command(s)>]

foreach <list> [[<item>] -> <command(s)>]

loop [ifelse (counter > 100)

[stop]

[set counter counter + 1]

]

repeat 5 [

ask one-of turtles [set color red]

]

NOTE:

Lists

Lists in NetLogo are ordered collections of items, which can include numbers, strings, agents, or other lists. They are data structures
that support operations like adding, removing, or accessing elements.

NOTE:

Some examples:

The output will the firsts element or item in the list, which is blue .

my-list will contain the values of [1, 99, 3] after using replace-item .

The lput primitive command adds an element to the end of a list, while fput adds an element to the beginning.

Program Structure

The flexibility of NetLogo and its agent-centered way of building models quickly escalates to complex models that are difficult to work
with.

Try to keep your structure as close as possible to:

Higher-Order Procedure

Even though NetLogo is not a higher-order language we can simulate this behavior using anonymous procedures/reporters.

foreach [1 2 3] [[num] -> show num * 2]

Loops inside an ask block are executed independently for each agent.

ask turtles [repeat 5 [forward 1]]

(list <element(s)>)

[element(s)]

(list 1 "two" true)

[1 "two" true]

In NetLogo lists are immutable, ordered and potentially heterogeneous.

let colors ["red" "blue" "green"]

show item 1 colors

let my-list [1 2 3]

set my-list replace-item 1 my-list 99

global variable declaration;
agent variable declaration;
setup procedure, in which global variables are initialized, agents are created and the environment is initialized;
go procedure, which implements one cycle of the simulation.

Anonymous procedures assigned to variables (tasks):

Higher-order reporter:

Unlike traditional procedures or reporters, anonymous ones are not stored in the Code Tab and cannot be reused unless redefined.
While NetLogo doesn’t directly support higher-order functions, anonymous procedures allow for similar behavior in many cases.

NOTE:

Breeds:

In NetLogo breeds are a way to "subclass" the turtle type.

After a breed has been created, the ask command can be used with the breed name (e.g., ask hunters) to execute actions for agents
of that specific breed. All commands and properties applicable to turtles can also be used with the newly defined breed.

[[<var(s)>] -> <body>]

[] : Encloses the entire anonymous procedure or reporter.
[<var(s)>] : Specifies input variables (like function parameters) in a nested bracket. These variables can be used within the
body.
-> : Indicates the start of the body of the procedure or reporter.
<body> : The actual commands or expressions to execute. If it’s a reporter, the result of this expression is returned.
Higher-order procedure:

[[x y] -> setxy y x]

globals [stack push]

to setup

set stack [] ; Initializes the stack as an empty list.

set push [el -> set stack lput el stack] ; Defines the push task.

run push 10

end

foreach [1 2 3] [[x] -> show x * x]

Map, filter and reduce are basic constructors that allows efficient and elegant operations on lists.
Map applies an anonymous-reporter to every element in a list.
Filter applied a predicate (in the form of anonymous-reporter) to a list and returns only those items that entails the predicate.
Reduce applies an anonymous-reporter from left to right, resulting in a single value.

map [a -> a * a] [1 2 3]

filter [a -> a > 5] [1 9 2]

reduce [[a b] -> a + b] [1 9 2]

breed [<single name> <agentset name>]

breed [hunter hunters]

breed [prey preys]

Exercise: Now that we’ve learned how to interact with the Code Pane, call functions from the Interface Tab, and use loops through
interface elements, your task is to create a custom command called setup-chessboard . This command will clear the simulation
environment and create a classic chessboard pattern on the grid using black and white patch colors.

Optional:

Solution:
Click to show/hide solution

Exercise: Design a garden pattern on the NetLogo grid using patches and turtles. The garden will consist of alternating
flowerbeds (colored patches) and turtles (acting as flowers) placed in specific areas.

Tasks:

Hints:

Modify the grid size to fit different chessboard sizes (e.g., 8x8, 16x16).
Use custom patch colors instead of black and white.
Add another Button to clear the chessboard or overlay agents on specific patches.

1. Write a procedure called setup-garden to:
Clear the environment.
Color the patches in a checkerboard pattern to represent flowerbeds.
Place turtles (flowers) only on the green patches.

2. Customize the turtles:
Set their shape to a flower (use circle if flower is unavailable in your version).
Randomize their size and color to make the garden more realistic.

3. Use ticks to control the simulation. On each tick, make the turtles grow slightly (increase their size).

Use the ask patches command to create the checkerboard pattern.

Solution:
Click to show/hide solution

👤 Tamás Takács

📅 January 22, 2025

Licensed under CC BY-NC-ND 4.0. © Tamás Takács, 2025.

Use the ask turtles command to set their properties dynamically.
Utilize loops, conditions (if statements), and lists where needed.

https://creativecommons.org/licenses/by-nc-nd/4.0/

