
2. Assignment - Cooperative Mingle

👤 Tamás Takács, PhD student, Department of Artificial Intelligence

🕓 10 min read

📅 March 14, 2025

📚 Collective Intelligence

This assignment focuses on implementing a Multi-Agent Reinforcement Learning (MARL) system using TorchRL. Inspired by the
series "Squid Game", this project requires agents to learn coordinated decision-making and spatial negotiation in a competitive-
cooperative setting. Agents begin each episode standing on a rotating central platform. Once the platform stops spinning, agents must
quickly and cooperatively navigate toward rooms positioned around the arena, each with limited capacity. Their goal is to fill the
rooms fairly and efficiently, avoiding overcrowding or exclusion, which results in penalties or failure.

Project GitHub Link

At this stage, the project is in its early conceptual phase - no implementation or starter code has been developed yet. The idea remains
exploratory and has not been successfully realized in previous semesters. It represents an original contribution within the context
of the class.

This task is best addressed using the Centralized Training with Decentralized Execution (CTDE) paradigm. During training, agents
can access global critic information to stabilize learning, but during evaluation, each agent must act independently based on partial,
local observations. An Introduction to Centralized Training for Decentralized Execution in Cooperative Multi-Agent Reinforcement
Learning

While the final goal is to use TorchRL’s native environment structure (EnvBase , TensorDict , etc.), you may initially use PettingZoo
environments with the official PettingZooWrapper provided by TorchRL, if helpful for bootstrapping.

Environment Phases
1. At the start of each episode, agents are spun into randomized positions on a central circular arena. During this rotation phase,

agents must observe others, explore the map, and begin to organize themselves into informal "teams". These teams are not
predefined—agents must learn heuristics or strategies to determine who to align with, how to split up, and what areas to claim.

2. Once the spinning stops, the arena suddenly reveals a fixed set of rooms around its perimeter - each with limited capacity (e.g.,
3 agents max). Agents must quickly and fairly occupy these rooms, avoiding overfilling, collisions, or being left out. Rooms are
claimed on a first-come, first-serve basis.

https://pytorch.org/rl/stable/index.html
https://github.com/elte-collective-intelligence/student-particle-swarm-optimization
https://arxiv.org/abs/2409.03052
https://arxiv.org/abs/2409.03052
https://github.com/pytorch/rl

This environment is designed to study spontaneous cooperation, social grouping, and negotiation-like behavior.

Assignment Directions
You may choose between the following development directions for this assignment:

Elements to Consider:

A Possible Structured Plan for Implementation Using Native TorchRL

0. Possible Directory Structure

Option 1: Incremental Migration (not available for Cooperative Mingle)
Maintain the current implementation based on Stable-Baselines3 (SB3), Supersuit, and PettingZoo, and gradually migrate the
system to TorchRL. This approach involves adapting the environment and training loop to TorchRL-compatible components while
preserving existing functionality. The migration should also include:

Integration of a configuration management system (e.g., Hydra or structured YAML)

Preservation of logging via both Weights & Biases (WandB) and TensorBoard
Docker for reproducibility and cross-platform compatibility
Structured unit testing (at least 2 components)

Visualization outputs (e.g., GIFs, performance plots)
A clear and well-maintained README.md with setup and usage instructions

Option 2: Reimplementation Using Native TorchRL
Build the project from scratch using TorchRL’s native APIs. Instead of using PettingZoo, start from a TorchRL-compatible
environment (e.g., based on EnvBase) or adapt an existing one. Design the training pipeline, agent interaction logic, and evaluation
procedures entirely within the TorchRL framework. As with the first option, the final solution should support:

Centralized Training with Decentralized Execution (CTDE)
Configuration management

Docker deployment
WandB/TensorBoard logging
Visualization and reproducibility tools

Testing and documentation

Utilize Proximal Policy Optimization, specifically the clipped variant (PPO-Clip), as the core learning algorithm. PPO-Clip
(Optionally, you could experiment with MADDPG, QMIX, VDN)
Custom Environment: Rotating phase (randomized starting angles), timed transition to active decision phase, discrete rooms
around the perimeter, room capacities, collisions, and overshooting penalties.

Curriculum Learning: Start with fewer agents and more room availability, then gradually reduce room sizes, increase agent count,
or add randomized delays. Curriculum Learning
Shape the reward function to promote desirable behaviors - such as occupancy success and coordination. Reward Shaping
Design and track custom metrics to evaluate the performance of your swarm, such as:

Room fill rate
Completion time
Movement collisions or idle agents

marl-task/
├── configs/ # Hydra or YAML configs for experiment control
│ ├── base.yaml
│ ├── env/
│ │ ├── task.yaml
│ ├── algo/
│ │ ├── ppo.yaml
│ ├── agent/
│ │ ├── default.yaml
│ └── experiment/

https://hydra.cc/
https://wandb.ai/
https://www.tensorflow.org/tensorboard
https://www.docker.com/
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1706.02275
https://arxiv.org/abs/1803.11485
https://arxiv.org/pdf/2311.06255
https://arxiv.org/abs/2302.03429
https://arxiv.org/abs/2011.02669

1. Environment Setup

Define a Custom TorchRL-Compatible Environment

Create a class Env(EnvBase) in src/envs/env.py with the following methods:

Define:

Ensure all I/O uses TensorDict . Observations should be partial and relative, including distance to the shape center and nearest
neighbor. Use torchrl.envs.transforms for normalization or preprocessing.

Optional: PettingZoo Wrapper

│ ├── exp.yaml
│
├── docker/ # Dockerfile and entrypoints
│ ├── Dockerfile
│ └── entrypoint.sh
│
├── logs/ # TensorBoard / WandB logs (auto-created)
│
├── outputs/ # Visualizations (e.g., GIFs, videos)
│ ├── gifs/
│ └── metrics/
│
├── models/ # Trained model checkpoints
│ ├── ppo/
│ │ ├── seed_1.pt
│ │ ├── seed_2.pt
│
├── src/ # Source code
│ ├── envs/
│ │ ├── env.py
│ │ └── metrics.py # Custom metrics
│ │
│ ├── agents/
│ │ ├── ppo_agent.py # PPO policy/training logic
│ │ └── utils.py
│ │
│ ├── rollout/
│ │ ├── evaluator.py # Evaluation logic
│ │ └── visualizer.py
│ │
│ └── main.py # Entry point: loads config and runs training
│
├── test/ # Unit tests
│ ├── test_env.py
│ ├── test_metrics.py
│
├── .gitignore
├── requirements.txt
├── README.md
└── LICENSE

reset(self) -> TensorDict

step(self, actions: TensorDict) -> TensorDict

observation_spec

action_spec

reward_spec

done_spec

Use PettingZooWrapper from torchrl.envs.libs.pettingzoo if adapting from existing environments:

2. Agent and Model Definition

Define Policy and Critic Modules

In src/agents/ppo_agent.py , implement:

This supports the CTDE paradigm: centralized critic with decentralized policy execution.

3. PPO Training Setup

Collector Configuration

Use SyncDataCollector or MultiSyncDataCollector :

Loss Function

Use ClipPPOLoss :

4. Training Loop

Training in main.py

Set up the training loop using collector , replay_buffer , loss_module , and optimizer :

5. Evaluation and Logging

Logging

from torchrl.envs.libs.pettingzoo import PettingZooWrapper
wrapped_env = PettingZooWrapper(pettingzoo_env)

A shared TensorDictModule policy:

policy = TensorDictModule(network, in_keys=[...], out_keys=["action"])

A centralized critic using ValueOperator :

critic = ValueOperator(critic_network, in_keys=[...])

collector = SyncDataCollector(
 create_env_fn=env_fn,
 policy=policy,
 frames_per_batch=2048,
 total_frames=...
)

loss_module = ClipPPOLoss(
 actor=policy,
 critic=critic,
 clip_epsilon=0.2,
 entropy_coef=0.01
)

for batch in collector:
 for _ in range(ppo_epochs):
 loss = loss_module(batch)
 loss.backward()
 optimizer.step()
 optimizer.zero_grad()

Use TensorBoard or W&B:

Evaluation

Run trained policies with local observations only (CTDE) and export GIFs using pygame , matplotlib , or imageio . Store results in
outputs/ .

6. Configuration Management
Hydra Integration

Use Hydra or structured YAML configs in configs/ :

Launch with:

7. Testing

Unit Tests

Place tests in test/ :

8. CTDE Framework Details

9. Docker for Reproducibility
Add Docker Support

Create a docker/ folder with the following:

Build and run:

from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter(log_dir=...)
writer.add_scalar("reward/mean", mean_reward, step)

configs/env/task.yaml

configs/algo/ppo.yaml

configs/experiment/sweep.yaml

python src/main.py +experiment=task +algo=ppo

def test_env_reset():
 env = Env(...)
 td = env.reset()
 assert "observation" in td

The shared policy is trained with access to a centralized value function.

Execution uses only local observations per agent.
During inference, policies should operate without access to the global state or other agents’ observations.

Ensure the actor’s input keys are restricted to local observations, while the critic receives richer information.

Dockerfile :

FROM python:3.12-slim
WORKDIR /app
COPY . /app
RUN pip install -r requirements.txt
CMD ["python", "src/main.py"]

entrypoint.sh (optional launcher script)

docker build -t marl-task .

PowerPoint Presentation
While presenting your work is not mandatory, not presenting will limit your maximum grade to 3. The presentation serves as a
concise overview of your project.

Duration

Suggested Structure

Important Notes

Assignment Submission and General Rules

docker run --rm marl-task

Aim for a few well-organized slides that complement your documentation without repeating it verbatim.

1. Title & Objective
Briefly state the objective.
Mention which direction you chose (migration or reimplementation).

2. System Architecture
Give a high-level overview of your system (environment, agent setup, training loop).
Highlight the use of TorchRL, and explain your training logic (CTDE, PPO-Clip).

Optionally include a block diagram of the pipeline (env → collector → buffer → PPO → evaluation).

3. Environment & Task Setup
Describe the environment design:

Custom vs. PettingZoo-based
Agent count and spawn logic
Obstacles and dynamics (if any)

Explain how agents observe the world and what actions they take.

4. Key Design Choices
Discuss reward structure, curriculum learning, and logic.
Explain any metric(s) you implemented for evaluation
Mention logging strategy (WandB, TensorBoard) and how configuration and reproducibility are handled.

5. Results & Visualizations
Show GIFs or short clips of trained agents forming shapes.
Present reward curves, training stability plots, or metric graphs.

Provide insights into what worked, what didn’t, and what improved after tuning.

6. Conclusion & Future Work
Summarize key takeaways.

The core of your submission is your documentation and code, which will be the primary basis for grading.
The presentation is an opportunity to highlight your contributions and insights.

All development must be carried out within a GitHub repository.

If working as a team:
The collaboration strategy (e.g., shared or individual branches) can be determined by the team.
Task division must be clearly defined and documented in the project’s README.md file (e.g., who worked on the
environment, training logic, visualization, etc.).

If working individually, each student must develop their solution on a separate branch within the repository.
Once development is complete, you (or your team) must upload a single ZIP file to Canvas containing:

The entire project repository (excluding large model files or checkpoints to keep the size manageable).

The presentation in PDF format.
Collaboration is highly encouraged, as this is a larger-scale assignment that benefits from cooperative design and debugging.

👤 Tamás Takács

📅 March 14, 2025
Licensed under CC BY-NC-ND 4.0. © Tamás Takács, 2025.

https://creativecommons.org/licenses/by-nc-nd/4.0/

