
2. Assignment - Formation

👤 Tamás Takács, PhD student, Department of Artificial Intelligence

🕓 10 min read

📅 February 28, 2025

📚 Collective Intelligence

This assignment focuses on implementing a Multi-Agent Reinforcement Learning (MARL) system using TorchRL, where agents
collaboratively self-organize inside dynamically generated geometric patterns (e.g., circles, squares, convex and non-convex
shapes).

Project GitHub Link

The current project utilizes:

Agents must collaboratively enter the shape and space themselves as evenly as possible, adapting to both static and dynamically
shifting shapes. This setting requires cooperative behavior, best addressed with a Centralized Training with Decentralized
Execution (CTDE) approach, where policies are trained with access to global critic information but executed independently by each
agent. An Introduction to Centralized Training for Decentralized Execution in Cooperative Multi-Agent Reinforcement Learning

While the final goal is to use TorchRL’s native environment structure (EnvBase , TensorDict , etc.), you may initially use PettingZoo
environments with the official PettingZooWrapper provided by TorchRL, if helpful for bootstrapping.

A PettingZoo AEC (Agent Environment Cycle) environment, customized to simulate physical formations with simple agent
dynamics. AEC API
The Stable-Baselines3 PPO algorithm for training shared policies. SB3 PPO
Real-time visual rendering using pygame and post-processed visualizations with GIF exports using PIL and imageio. pygame

Centralized Training and Centralized Execution model. A single shared policy is trained alongside a centralized value function
that has access to shared information across agents. During evaluation, this same centralized policy is used by all agents, meaning
that each agent’s behavior is determined by a common model, rather than acting independently based on purely local
observations.
A simple agent evaluation framework. (SB3 with TensorBoard Integration, SB3 with WANDB Integration)

https://pytorch.org/rl/stable/index.html
https://github.com/elte-collective-intelligence/student-formation/tree/main
https://arxiv.org/abs/2409.03052
https://github.com/pytorch/rl
https://pettingzoo.farama.org/api/aec/
https://stable-baselines3.readthedocs.io/en/master/modules/ppo.html
https://www.pygame.org/news

Example: Imagine a swarm of rescue drones dispatched over a disaster zone. They must quickly position themselves into various
geometric formations - grids, circles, spirals - to optimize communication coverage. The formations change based on terrain and
mission phase.

Environment Phases

Assignment Directions
You may choose between the following development directions for this assignment:

Elements to Preserve:

Elements to Improve or Redesign:

1. Entry phase: agents approach the shape.
2. Alignment phase: agents adjust their positions.

3. Reconfiguration: mid-episode shape changes.

Option 1: Incremental Migration
Maintain the current implementation based on Stable-Baselines3 (SB3), Supersuit, and PettingZoo, and gradually migrate the
system to TorchRL. This approach involves adapting the environment and training loop to TorchRL-compatible components while
preserving existing functionality. The migration should also include:

Integration of a configuration management system (e.g., Hydra or structured YAML)
Preservation of logging via both Weights & Biases (WandB) and TensorBoard

Docker for reproducibility and cross-platform compatibility
Structured unit testing (at least 2 components)

Visualization outputs (e.g., GIFs, performance plots)
A clear and well-maintained README.md with setup and usage instructions

Option 2: Reimplementation Using Native TorchRL
Build the project from scratch using TorchRL’s native APIs. Instead of using PettingZoo, start from a TorchRL-compatible
environment (e.g., based on EnvBase) or adapt an existing one. Design the training pipeline, agent interaction logic, and evaluation
procedures entirely within the TorchRL framework. As with the first option, the final solution should support:

Centralized Training with Decentralized Execution (CTDE)
Configuration management
Docker deployment

WandB/TensorBoard logging
Visualization and reproducibility tools

Testing and documentation

PPO Algorithm: Continue using Proximal Policy Optimization, specifically the clipped variant (PPO-Clip), as the core learning
algorithm. PPO-Clip (Optionally, you could experiment with MADDPG, QMIX, VDN)
MPE Environment (Optional): The Multi-Agent Particle Environment (MPE) can be retained, though you are also encouraged to
consider reimplementing a simplified particle-based environment using native TorchRL. PettingZoo MPE
Core Objective: The primary task remains, agents must coordinate to form structured spatial arrangements within designated
shapes.

Multi-Agent Setting

Environmental Complexity: Introduce static or dynamic obstacles to increase navigation difficulty and promote more strategic
coordination.
Curriculum Learning: Implement a training curriculum that gradually increases difficulty, e.g., by varying shape complexity or
introducing shape changes mid-episode. Curriculum Learning

Reward Design: Develop a more comprehensive reward function that balances formation accuracy, distance to assigned target
position, agent spacing, boundary adherence, and obstacle avoidance. Reward Shaping
Evaluation Metrics: Add custom metrics for training and evaluation, such as:

Formation symmetry

https://hydra.cc/
https://wandb.ai/
https://www.tensorflow.org/tensorboard
https://www.docker.com/
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1706.02275
https://arxiv.org/abs/1803.11485
https://arxiv.org/pdf/2311.06255
https://pettingzoo.farama.org/environments/mpe/
https://arxiv.org/abs/2302.03429
https://arxiv.org/abs/2011.02669

A Possible Structured Plan for Reimplementation Using Native TorchRL

0. Possible Directory Structure

Agent spacing variance

Obstacle proximity penalties
Formation completion time

marl-task/
├── configs/ # Hydra or YAML configs for experiment control
│ ├── base.yaml
│ ├── env/
│ │ ├── task.yaml
│ ├── algo/
│ │ ├── ppo.yaml
│ ├── agent/
│ │ ├── default.yaml
│ └── experiment/
│ ├── exp.yaml
│
├── docker/ # Dockerfile and entrypoints
│ ├── Dockerfile
│ └── entrypoint.sh
│
├── logs/ # TensorBoard / WandB logs (auto-created)
│
├── outputs/ # Visualizations (e.g., GIFs, videos)
│ ├── gifs/
│ └── metrics/
│
├── models/ # Trained model checkpoints
│ ├── ppo/
│ │ ├── seed_1.pt
│ │ ├── seed_2.pt
│
├── src/ # Source code
│ ├── envs/
│ │ ├── env.py
│ │ └── metrics.py # Custom metrics
│ │
│ ├── agents/
│ │ ├── ppo_agent.py # PPO policy/training logic
│ │ └── utils.py
│ │
│ ├── rollout/
│ │ ├── evaluator.py # Evaluation logic
│ │ └── visualizer.py
│ │
│ └── main.py # Entry point: loads config and runs training
│
├── test/ # Unit tests
│ ├── test_env.py
│ ├── test_metrics.py
│
├── .gitignore
├── requirements.txt
├── README.md
└── LICENSE

1. Environment Setup

Define a Custom TorchRL-Compatible Environment

Create a class Env(EnvBase) in src/envs/env.py with the following methods:

Define:

Ensure all I/O uses TensorDict . Observations should be partial and relative, including distance to the shape center and nearest
neighbor. Use torchrl.envs.transforms for normalization or preprocessing.

Optional: PettingZoo Wrapper

Use PettingZooWrapper from torchrl.envs.libs.pettingzoo if adapting from existing environments:

2. Agent and Model Definition

Define Policy and Critic Modules

In src/agents/ppo_agent.py , implement:

This supports the CTDE paradigm: centralized critic with decentralized policy execution.

3. PPO Training Setup

Collector Configuration

Use SyncDataCollector or MultiSyncDataCollector :

Loss Function

Use ClipPPOLoss :

reset(self) -> TensorDict

step(self, actions: TensorDict) -> TensorDict

observation_spec

action_spec

reward_spec

done_spec

from torchrl.envs.libs.pettingzoo import PettingZooWrapper
wrapped_env = PettingZooWrapper(pettingzoo_env)

A shared TensorDictModule policy:

policy = TensorDictModule(network, in_keys=[...], out_keys=["action"])

A centralized critic using ValueOperator :

critic = ValueOperator(critic_network, in_keys=[...])

collector = SyncDataCollector(
 create_env_fn=env_fn,
 policy=policy,
 frames_per_batch=2048,
 total_frames=...
)

loss_module = ClipPPOLoss(
 actor=policy,
 critic=critic,
 clip_epsilon=0.2,

4. Training Loop

Training in main.py

Set up the training loop using collector , replay_buffer , loss_module , and optimizer :

5. Evaluation and Logging

Logging

Use TensorBoard or W&B:

Evaluation

Run trained policies with local observations only (CTDE) and export GIFs using pygame , matplotlib , or imageio . Store results in
outputs/ .

6. Configuration Management

Hydra Integration

Use Hydra or structured YAML configs in configs/ :

Launch with:

7. Testing

Unit Tests

Place tests in test/ :

8. CTDE Framework Details

 entropy_coef=0.01
)

for batch in collector:
 for _ in range(ppo_epochs):
 loss = loss_module(batch)
 loss.backward()
 optimizer.step()
 optimizer.zero_grad()

from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter(log_dir=...)
writer.add_scalar("reward/mean", mean_reward, step)

configs/env/task.yaml

configs/algo/ppo.yaml

configs/experiment/sweep.yaml

python src/main.py +experiment=task +algo=ppo

def test_env_reset():
 env = Env(...)
 td = env.reset()
 assert "observation" in td

The shared policy is trained with access to a centralized value function.
Execution uses only local observations per agent.

During inference, policies should operate without access to the global state or other agents’ observations.
Ensure the actor’s input keys are restricted to local observations, while the critic receives richer information.

9. Docker for Reproducibility

Add Docker Support

Create a docker/ folder with the following:

Build and run:

PowerPoint Presentation
While presenting your work is not mandatory, not presenting will limit your maximum grade to 3. The presentation serves as a
concise overview of your project.

Duration

Suggested Structure

Important Notes

Dockerfile :

FROM python:3.12-slim
WORKDIR /app
COPY . /app
RUN pip install -r requirements.txt
CMD ["python", "src/main.py"]

entrypoint.sh (optional launcher script)

docker build -t marl-task .
docker run --rm marl-task

Aim for a few well-organized slides that complement your documentation without repeating it verbatim.

1. Title & Objective
Briefly state the objective.
Mention which direction you chose (migration or reimplementation).

2. System Architecture
Give a high-level overview of your system (environment, agent setup, training loop).
Highlight the use of TorchRL, and explain your training logic (CTDE, PPO-Clip).

Optionally include a block diagram of the pipeline (env → collector → buffer → PPO → evaluation).

3. Environment & Task Setup
Describe the environment design:

Custom vs. PettingZoo-based
Agent count and spawn logic
Obstacles and dynamics (if any)

Explain how agents observe the world and what actions they take.

4. Key Design Choices
Discuss reward structure, curriculum learning, and logic.
Explain any metric(s) you implemented for evaluation
Mention logging strategy (WandB, TensorBoard) and how configuration and reproducibility are handled.

5. Results & Visualizations
Show GIFs or short clips of trained agents forming shapes.

Present reward curves, training stability plots, or metric graphs.
Provide insights into what worked, what didn’t, and what improved after tuning.

6. Conclusion & Future Work
Summarize key takeaways.

The core of your submission is your documentation and code, which will be the primary basis for grading.

Assignment Submission and General Rules

👤 Tamás Takács

📅 February 28, 2025
Licensed under CC BY-NC-ND 4.0. © Tamás Takács, 2025.

The presentation is an opportunity to highlight your contributions and insights.

All development must be carried out within a GitHub repository.

If working as a team:
The collaboration strategy (e.g., shared or individual branches) can be determined by the team.
Task division must be clearly defined and documented in the project’s README.md file (e.g., who worked on the
environment, training logic, visualization, etc.).

If working individually, each student must develop their solution on a separate branch within the repository.
Once development is complete, you (or your team) must upload a single ZIP file to Canvas containing:

The entire project repository (excluding large model files or checkpoints to keep the size manageable).

The presentation in PDF format.
Collaboration is highly encouraged, as this is a larger-scale assignment that benefits from cooperative design and debugging.

https://creativecommons.org/licenses/by-nc-nd/4.0/

