
2. Assignment - Mechanism Design

👤 Zoltán Barta, PhD student, Department of Artificial Intelligence

🕓 10 min read

📅 March 12, 2025

📚 Collective Intelligence

Task Description
This assignment focuses on implementing a Multi-Agent Proximal Policy Optimization (MAPPO) algorithm using TorchRL within a
dynamic, graph-based MARL environment. Based on the famous board game "Scotland Yard", where agents operate in asymmetric
roles - one as a target (Mr. X) and others as cooperative pursuers (Policemen).

Project GitHub Link

The current project utilizes:

A custom graph environment implemented in the PettingZoo AEC format.
A centralized value function and shared policy (IDQN) for Policemen.
A dynamic adversary (Mr. X), controlled by DQN or PPO.

Meta-learning capabilities that adjust difficulty during training.
Experimental Graph Neural Networks (GNNs) to process local agent neighborhoods and guide movement strategies.
Stable-Baselines3 for initial training, with TensorBoard + WandB logging and trajectory visualizations.

https://pytorch.org/rl/stable/index.html
https://github.com/elte-collective-intelligence/Mechanism-Design

The new assignment goal is to replace the Policemen’s current IDQN policy with a MAPPO-based TorchRL implementation,
supporting Centralized Training with Decentralized Execution (CTDE). Policemen must learn to coordinate efficiently on the graph
using only local views, while Mr. X attempts to evade detection for as long as possible. An Introduction to Centralized Training for
Decentralized Execution in Cooperative Multi-Agent Reinforcement Learning

While the final goal is to use TorchRL’s native environment structure (EnvBase , TensorDict , etc.), you may initially use PettingZoo
environments with the official PettingZooWrapper provided by TorchRL, if helpful for bootstrapping.

Example: Consider a team of police drones tracking a stealthy target in an urban environment. Each drone has local neighborhood
information but no global view. By learning together during training but acting independently at test time, they must corner and capture
the intruder with optimal coverage.

Environment Phases

Assignment Directions
You may choose between the following development directions for this assignment:

Elements to Preserve:

Elements to Improve or Redesign:

A Possible Structured Plan for Reimplementation Using Native TorchRL

1. Spawn Phase: All agents are randomly placed on graph nodes.
2. Pursuit Phase: Policemen must collaborate to locate and catch Mr. X using local views.

3. Evasion Phase (Mr. X): Uses stealthy navigation to maximize survival time.

Option 1: Incremental Migration
Maintain the current implementation based on Stable-Baselines3, PettingZoo, and Supersuit, and gradually migrate to TorchRL.
This involves:

Converting the current environment to TorchRL’s EnvBase format.
Replacing IDQN with MAPPO using TorchRL’s PPO implementation.

Retaining logging (TensorBoard + WandB), curriculum integration, and Docker support.
Adding structured unit tests, visualization tools, and configuration logic.

Option 2: Reimplementation Using Native TorchRL
Build a new version of the environment directly with TorchRL-native components, including:

MAPPO-based CTDE pipeline.
GNN-encoded local observations.

Fully decentralized execution logic.
Structured logging, evaluation, and visualization tools.

MAPPO-style PPO Algorithm: Centralized critic, shared policy for Policemen, trained with PPO-Clip. PPO-Clip

Map topology represented as a graph (nodes = positions, edges = moves).
Adversarial Setup: Separate policy for Mr. X (e.g., DQN or PPO).

GNN-Based State Encoding. Graph Spaces
Encourage coverage, triangulation, and proximity coordination. Penalize isolated movement or redundant overlaps.

Curriculum Learning: Gradually increase graph size, node degrees, and evasion intelligence. Curriculum Learning
Evaluation Metrics:

Capture rate
Policemen clustering entropy
Average distance to Mr. X
Coverage heatmaps

https://arxiv.org/abs/2409.03052
https://arxiv.org/abs/2409.03052
https://github.com/pytorch/rl
https://arxiv.org/abs/1707.06347
https://gymnasium.farama.org/_modules/gymnasium/spaces/graph/
https://arxiv.org/abs/2302.03429

0. Possible Directory Structure

1. Environment Setup

Define a Custom TorchRL-Compatible Environment

Create a class Env(EnvBase) in src/envs/env.py with the following methods:

marl-task/
├── configs/ # Hydra or YAML configs for experiment control
│ ├── base.yaml
│ ├── env/
│ │ ├── task.yaml
│ ├── algo/
│ │ ├── ppo.yaml
│ ├── agent/
│ │ ├── default.yaml
│ └── experiment/
│ ├── exp.yaml
│
├── docker/ # Dockerfile and entrypoints
│ ├── Dockerfile
│ └── entrypoint.sh
│
├── logs/ # TensorBoard / WandB logs (auto-created)
│
├── outputs/ # Visualizations (e.g., GIFs, videos)
│ ├── gifs/
│ └── metrics/
│
├── models/ # Trained model checkpoints
│ ├── ppo/
│ │ ├── seed_1.pt
│ │ ├── seed_2.pt
│
├── src/ # Source code
│ ├── envs/
│ │ ├── env.py
│ │ └── metrics.py # Custom metrics
│ │
│ ├── agents/
│ │ ├── ppo_agent.py # PPO policy/training logic
│ │ └── utils.py
│ │
│ ├── rollout/
│ │ ├── evaluator.py # Evaluation logic
│ │ └── visualizer.py
│ │
│ └── main.py # Entry point: loads config and runs training
│
├── test/ # Unit tests
│ ├── test_env.py
│ ├── test_metrics.py
│
├── .gitignore
├── requirements.txt
├── README.md
└── LICENSE

reset(self) -> TensorDict

step(self, actions: TensorDict) -> TensorDict

Define:

Ensure all I/O uses TensorDict . Observations should be partial and relative, including distance to the shape center and nearest
neighbor. Use torchrl.envs.transforms for normalization or preprocessing.

Optional: PettingZoo Wrapper

Use PettingZooWrapper from torchrl.envs.libs.pettingzoo if adapting from existing environments:

2. Agent and Model Definition

Define Policy and Critic Modules

In src/agents/ppo_agent.py , implement:

This supports the CTDE paradigm: centralized critic with decentralized policy execution.

3. PPO Training Setup

Collector Configuration

Use SyncDataCollector or MultiSyncDataCollector :

Loss Function

Use ClipPPOLoss :

4. Training Loop

Training in main.py

Set up the training loop using collector , replay_buffer , loss_module , and optimizer :

observation_spec

action_spec

reward_spec

done_spec

from torchrl.envs.libs.pettingzoo import PettingZooWrapper
wrapped_env = PettingZooWrapper(pettingzoo_env)

A shared TensorDictModule policy:

policy = TensorDictModule(network, in_keys=[...], out_keys=["action"])

A centralized critic using ValueOperator :

critic = ValueOperator(critic_network, in_keys=[...])

collector = SyncDataCollector(
 create_env_fn=env_fn,
 policy=policy,
 frames_per_batch=2048,
 total_frames=...
)

loss_module = ClipPPOLoss(
 actor=policy,
 critic=critic,
 clip_epsilon=0.2,
 entropy_coef=0.01
)

5. Evaluation and Logging

Logging

Use TensorBoard or W&B:

Evaluation

Run trained policies with local observations only (CTDE) and export GIFs using pygame , matplotlib , or imageio . Store results in
outputs/ .

6. Configuration Management

Hydra Integration

Use Hydra or structured YAML configs in configs/ :

Launch with:

7. Testing

Unit Tests

Place tests in test/ :

8. CTDE Framework Details

9. Docker for Reproducibility

Add Docker Support

Create a docker/ folder with the following:

for batch in collector:
 for _ in range(ppo_epochs):
 loss = loss_module(batch)
 loss.backward()
 optimizer.step()
 optimizer.zero_grad()

from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter(log_dir=...)
writer.add_scalar("reward/mean", mean_reward, step)

configs/env/task.yaml

configs/algo/ppo.yaml

configs/experiment/sweep.yaml

python src/main.py +experiment=task +algo=ppo

def test_env_reset():
 env = Env(...)
 td = env.reset()
 assert "observation" in td

The shared policy is trained with access to a centralized value function.
Execution uses only local observations per agent.

During inference, policies should operate without access to the global state or other agents’ observations.
Ensure the actor’s input keys are restricted to local observations, while the critic receives richer information.

Dockerfile :

Build and run:

PowerPoint Presentation
While presenting your work is not mandatory, not presenting will limit your maximum grade to 3. The presentation serves as a
concise overview of your project.

Duration

Suggested Structure

Important Notes

Assignment Submission and General Rules

FROM python:3.12-slim
WORKDIR /app
COPY . /app
RUN pip install -r requirements.txt
CMD ["python", "src/main.py"]

entrypoint.sh (optional launcher script)

docker build -t marl-task .
docker run --rm marl-task

Aim for a few well-organized slides that complement your documentation without repeating it verbatim.

1. Title & Objective
Briefly state the objective.
Mention which direction you chose (migration or reimplementation).

2. System Architecture
Give a high-level overview of your system (environment, agent setup, training loop).

Highlight the use of TorchRL, and explain your training logic (CTDE, PPO-Clip).
Optionally include a block diagram of the pipeline (env → collector → buffer → PPO → evaluation).

3. Environment & Task Setup
Describe the environment design:

Custom vs. PettingZoo-based
Agent count and spawn logic

Obstacles and dynamics (if any)

Explain how agents observe the world and what actions they take.

4. Key Design Choices
Discuss reward structure, curriculum learning, and logic.
Explain any metric(s) you implemented for evaluation

Mention logging strategy (WandB, TensorBoard) and how configuration and reproducibility are handled.

5. Results & Visualizations
Show GIFs or short clips of trained agents forming shapes.

Present reward curves, training stability plots, or metric graphs.
Provide insights into what worked, what didn’t, and what improved after tuning.

6. Conclusion & Future Work
Summarize key takeaways.

The core of your submission is your documentation and code, which will be the primary basis for grading.

The presentation is an opportunity to highlight your contributions and insights.

All development must be carried out within a GitHub repository.

👤 Zoltán Barta

📅 March 12, 2025

If working as a team:
The collaboration strategy (e.g., shared or individual branches) can be determined by the team.

Task division must be clearly defined and documented in the project’s README.md file (e.g., who worked on the
environment, training logic, visualization, etc.).

If working individually, each student must develop their solution on a separate branch within the repository.

Once development is complete, you (or your team) must upload a single ZIP file to Canvas containing:
The entire project repository (excluding large model files or checkpoints to keep the size manageable).
The presentation in PDF format.

Collaboration is highly encouraged, as this is a larger-scale assignment that benefits from cooperative design and debugging.

