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This assignment focuses on implementing a Multi-Agent Reinforcement Learning (MARL) system using TorchRL, where multiple
agents (ants) interact in a shared 2D environment containing scattered items of different categories. Items are scattered randomly at
spawn and do not have predefined destinations. Agents must dynamically form spatial clusters based on category, rather than placing
items at fixed goal locations. The agents must learn to pick up, sort and cluster these items into coherent spatial groups across the
map, based on their types.

Project GitHub Link (highly recommend TA's work)

The current project versions utilize:

Agents must learn to:

A PettingZoo AEC (Agent Environment Cycle) environment, customized to simulate 2D pathfinding with discrete grid or
continuous motion. AEC API
A TensorFlow based PPO implementation.

Real-time visual rendering using pygame and post-processed visualizations.
Centralized Training and Centralized Execution model. A single shared policy is trained alongside a centralized value function
that has access to shared information across agents. During evaluation, this same centralized policy is used by all agents, meaning
that each agent’s behavior is determined by a common model, rather than acting independently based on purely local
observations.
A simple agent evaluation framework.

Perceive local item types and neighborhood density.
Decide which item to move and where to place it.
Avoid interfering with teammates while cooperatively building category-specific clusters.

Adapt to varying map layouts, object types, and dynamic item spawning conditions.

https://pytorch.org/rl/stable/index.html
https://github.com/elte-collective-intelligence/student-sorting-clustering
https://pettingzoo.farama.org/api/aec/


This setting requires cooperative behavior, best addressed with a Centralized Training with Decentralized Execution (CTDE)
approach, where policies are trained with access to global critic information but executed independently by each agent. An Introduction
to Centralized Training for Decentralized Execution in Cooperative Multi-Agent Reinforcement Learning

While the final goal is to use TorchRL’s native environment structure ( EnvBase , TensorDict , etc.), you may initially use PettingZoo
environments with the official PettingZooWrapper  provided by TorchRL, if helpful for bootstrapping.

Note: This task is loosely inspired by ant-based clustering models, where agents interact locally with their environment to
collectively sort objects into piles without explicit coordination or global knowledge.

Assignment Directions
You may choose between the following development directions for this assignment:

Elements to Preserve:

Elements to Improve or Redesign:

Option 1: Incremental Migration
Maintain the current implementation based on TensorFlow (SB3) and gradually migrate the system to TorchRL. This approach
involves adapting the environment and training loop to TorchRL-compatible components while preserving existing functionality. The
migration should also include:

Integration of a configuration management system (e.g., Hydra or structured YAML)

Inclusion of logging via both Weights & Biases (WandB) and TensorBoard
Docker for reproducibility and cross-platform compatibility
Structured unit testing (at least 2 components)

Visualization outputs (e.g., GIFs, performance plots)
A clear and well-maintained README.md  with setup and usage instructions

Option 2: Reimplementation Using Native TorchRL
Build the project from scratch using TorchRL’s native APIs. Start from a TorchRL-compatible environment (e.g., based on
EnvBase ) or adapt an existing one. Design the training pipeline, agent interaction logic, and evaluation procedures entirely within
the TorchRL framework. As with the first option, the final solution should support:

Centralized Training with Decentralized Execution (CTDE)
Configuration management

Docker deployment
WandB/TensorBoard logging
Visualization and reproducibility tools

Testing and documentation

PPO Algorithm: Continue using Proximal Policy Optimization, specifically the clipped variant (PPO-Clip), as the core learning
algorithm. PPO-Clip (Optionally, you could experiment with MADDPG, QMIX, VDN)
Core Objective: The primary task remains, agents must learn to pick up, sort and cluster categorized items into coherent
spatial groups across the map, based on their types.

Multi-Agent Setting

Environmental Complexity: Add multiple item types (e.g., red, green, blue blocks) with varying spawn locations. Include
distractors, obstacles, or limited pickup range. Optionally allow agents to pick up, carry, or drop items in 2D space. Consider
map setups with limited clustering zones or spatial constraints.
PettingZoo Support (Optional): Leverage existing tools or port environments to TorchRL format.
Curriculum Learning: Start with simple and small maps, then gradually increase complexity (e.g., more item categories, obstacles).
Curriculum Learning

Reward Design: Develop a reward function that balances sorting efficiency (sorting items in their respective cluster), obstacle
avoidance, time efficiency, and collaborative movement (e.g., penalizing blocking teammates or deadlocks) Reward Shaping.
Reward shaping should encourage correct placement (item ends up near similar items), penalize misplacement (e.g., placing a red
item in a blue cluster), and incentivize space-efficient clustering.
Evaluation Metrics: Add custom metrics for training and evaluation, such as:

Clustering purity

Mean sorting accuracy

https://arxiv.org/abs/2409.03052
https://arxiv.org/abs/2409.03052
https://github.com/pytorch/rl
https://hydra.cc/
https://wandb.ai/
https://www.tensorflow.org/tensorboard
https://www.docker.com/
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1706.02275
https://arxiv.org/abs/1803.11485
https://arxiv.org/pdf/2311.06255
https://arxiv.org/abs/2302.03429
https://arxiv.org/abs/2011.02669


A Possible Structured Plan for Reimplementation Using Native TorchRL

0. Possible Directory Structure

Conflict rate

Idle time

For clustering purity or accuracy, you can calculate the mean intra-cluster distance or use DBSCAN-style heuristics over item
positions after an episode.

marl-task/
├── configs/                         # Hydra or YAML configs for experiment control
│   ├── base.yaml
│   ├── env/
│   │   ├── task.yaml
│   ├── algo/
│   │   ├── ppo.yaml
│   ├── agent/
│   │   ├── default.yaml
│   └── experiment/
│       ├── sphere_spawn.yaml
│
├── docker/                         # Dockerfile and entrypoints
│   ├── Dockerfile
│   └── entrypoint.sh
│
├── logs/                           # TensorBoard / WandB logs (auto-created)
│
├── outputs/                        # Visualizations (e.g., GIFs, videos)
│   ├── gifs/
│   └── metrics/
│
├── models/                         # Trained model checkpoints
│   ├── ppo/
│   │   ├── seed_1.pt
│   │   ├── seed_2.pt
│
├── src/                            # Source code
│   ├── envs/
│   │   ├── env.py
│   │   └── metrics.py              # Custom metrics
│   │
│   ├── agents/
│   │   ├── ppo_agent.py            # PPO policy/training logic
│   │   └── utils.py
│   │
│   ├── rollout/
│   │   ├── evaluator.py            # Evaluation logic
│   │   └── visualizer.py
│   │
│   └── main.py                     # Entry point: loads config and runs training
│
├── test/                           # Unit tests
│   ├── test_env.py
│   ├── test_metrics.py
│
├── .gitignore
├── requirements.txt
├── README.md



1. Environment Setup

Define a Custom TorchRL-Compatible Environment

Create a class Env(EnvBase)  in src/envs/env.py  with the following methods:

Define:

Ensure all I/O uses TensorDict . Observations should be partial and relative, including distance to the shape center and nearest
neighbor. Use torchrl.envs.transforms  for normalization or preprocessing.

Optional: PettingZoo Wrapper

Use PettingZooWrapper  from torchrl.envs.libs.pettingzoo  if adapting from existing environments:

2. Agent and Model Definition

Define Policy and Critic Modules

In src/agents/ppo_agent.py , implement:

This supports the CTDE paradigm: centralized critic with decentralized policy execution.

3. PPO Training Setup

Collector Configuration

Use SyncDataCollector  or MultiSyncDataCollector :

Loss Function

Use ClipPPOLoss :

└── LICENSE

reset(self) -> TensorDict

step(self, actions: TensorDict) -> TensorDict

observation_spec

action_spec

reward_spec

done_spec

from torchrl.envs.libs.pettingzoo import PettingZooWrapper
wrapped_env = PettingZooWrapper(pettingzoo_env)

A shared TensorDictModule  policy:

policy = TensorDictModule(network, in_keys=[...], out_keys=["action"])

A centralized critic using ValueOperator :

critic = ValueOperator(critic_network, in_keys=[...])

collector = SyncDataCollector(
    create_env_fn=env_fn,
    policy=policy,
    frames_per_batch=2048,
    total_frames=...
)



4. Training Loop

Training in main.py

Set up the training loop using collector , replay_buffer , loss_module , and optimizer :

5. Evaluation and Logging

Logging

Use TensorBoard or W&B:

Evaluation

Run trained policies with local observations only (CTDE) and export GIFs using pygame , matplotlib , or imageio . Store results in
outputs/ .

6. Configuration Management

Hydra Integration

Use Hydra or structured YAML configs in configs/ :

Launch with:

7. Testing

Unit Tests

Place tests in test/ :

8. CTDE Framework Details

loss_module = ClipPPOLoss(
    actor=policy,
    critic=critic,
    clip_epsilon=0.2,
    entropy_coef=0.01
)

for batch in collector:
    for _ in range(ppo_epochs):
        loss = loss_module(batch)
        loss.backward()
        optimizer.step()
        optimizer.zero_grad()

from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter(log_dir=...)
writer.add_scalar("reward/mean", mean_reward, step)

configs/env/task.yaml

configs/algo/ppo.yaml

configs/experiment/sweep.yaml

python src/main.py +experiment=task +algo=ppo

def test_env_reset():
    env = Env(...)
    td = env.reset()
    assert "observation" in td



9. Docker for Reproducibility
Add Docker Support

Create a docker/  folder with the following:

Build and run:

PowerPoint Presentation
While presenting your work is not mandatory, not presenting will limit your maximum grade to 3. The presentation serves as a
concise overview of your project.

Duration

Suggested Structure

The shared policy is trained with access to a centralized value function.

Execution uses only local observations per agent.
During inference, policies should operate without access to the global state or other agents’ observations.
Ensure the actor’s input keys are restricted to local observations, while the critic receives richer information.

Dockerfile :

FROM python:3.12-slim
WORKDIR /app
COPY . /app
RUN pip install -r requirements.txt
CMD ["python", "src/main.py"]

entrypoint.sh  (optional launcher script)

docker build -t marl-task .
docker run --rm marl-task

Aim for a few well-organized slides that complement your documentation without repeating it verbatim.

1. Title & Objective
Briefly state the objective.

Mention which direction you chose (migration or reimplementation).

2. System Architecture
Give a high-level overview of your system (environment, agent setup, training loop).

Highlight the use of TorchRL, and explain your training logic (CTDE, PPO-Clip).
Optionally include a block diagram of the pipeline (env → collector → buffer → PPO → evaluation).

3. Environment & Task Setup
Describe the environment design:

Custom vs. PettingZoo-based

Agent count and spawn logic
Obstacles and dynamics (if any)

Explain how agents observe the world and what actions they take.

4. Key Design Choices
Discuss reward structure, curriculum learning, and logic.

Explain any metric(s) you implemented for evaluation
Mention logging strategy (WandB, TensorBoard) and how configuration and reproducibility are handled.

5. Results & Visualizations
Show GIFs or short clips of trained agents forming shapes.
Present reward curves, training stability plots, or metric graphs.
Provide insights into what worked, what didn’t, and what improved after tuning.

6. Conclusion & Future Work



Important Notes

Assignment Submission and General Rules
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Summarize key takeaways.

The core of your submission is your documentation and code, which will be the primary basis for grading.

The presentation is an opportunity to highlight your contributions and insights.

All development must be carried out within a GitHub repository.
If working as a team:

The collaboration strategy (e.g., shared or individual branches) can be determined by the team.

Task division must be clearly defined and documented in the project’s README.md  file (e.g., who worked on the
environment, training logic, visualization, etc.).

If working individually, each student must develop their solution on a separate branch within the repository.

Once development is complete, you (or your team) must upload a single ZIP file to Canvas containing:
The entire project repository (excluding large model files or checkpoints to keep the size manageable).
The presentation in PDF format.

Collaboration is highly encouraged, as this is a larger-scale assignment that benefits from cooperative design and debugging.

https://creativecommons.org/licenses/by-nc-nd/4.0/

