
2. Assignment - Search and Rescue

👤 Zoltán Barta, PhD student, Department of Artificial Intelligence

🕓 10 min read

📅 March 31, 2025

📚 Collective Intelligence

Task Description
This assignment focuses on re-implementing a Multi-Agent Reinforcement Learning (MARL) system using TorchRL, where a swarm
of rescuers must locate and assist stranded victims while navigating an environment with obstacles and dynamic conditions. The task
enforces Centralized Training with Decentralized Execution (CTDE) - agents are trained with shared information, but deployed with
only partial local observations. An Introduction to Centralized Training for Decentralized Execution in Cooperative Multi-Agent
Reinforcement Learning

Project GitHub Link

https://pytorch.org/rl/
https://arxiv.org/abs/2409.03052
https://arxiv.org/abs/2409.03052
https://github.com/elte-collective-intelligence/student-search

The existing project features:

The Search and Rescue scenario involves agents (rescuers) navigating an environment to locate and assist missing persons (victims)
while avoiding obstacles. The environment includes various landmarks, such as trees and safe zones, each with specific properties
affecting agent behavior.

While the final goal is to use TorchRL’s native environment structure (EnvBase , TensorDict , etc.), you may initially use PettingZoo
environments with the official PettingZooWrapper provided by TorchRL, if helpful for bootstrapping.

Example: Picture a team of autonomous drones scanning earthquake rubble for survivors. Each drone can see locally, but needs
coordinated behavior to cover ground efficiently, rescue victims, and avoid getting stuck.

Environment Phases

Assignment Directions
You may choose between the following development directions for this assignment:

Elements to Preserve:

A PettingZoo AEC-based simulation.

Victims and rescuers interacting on a dynamic 2D map.
Landmarks like trees, and safe zones.
Centralized policy training (currently SB3 PPO).

Visual rendering (PyGame/imageio) and simple evaluation tools.

1. Exploration Phase: Rescuers disperse and search for victims.
2. Rescue Phase: Victims are located and guided to safety.

3. Obstacle Phase: Agents must avoid trees, walls, or hazards.

Option 1: Incremental Migration
Maintain the current implementation based on Stable-Baselines3 (SB3), Supersuit, and PettingZoo, and gradually migrate the
system to TorchRL-compatible components. This approach involves adapting the environment and training loop to TorchRL-
compatible components while preserving existing functionality. The migration should also include:

Integration of a configuration management system (e.g., Hydra or structured YAML)
Preservation of logging via both Weights & Biases (WandB) and TensorBoard

Docker for reproducibility and cross-platform compatibility
Structured unit testing (at least 2 components)
Visualization outputs (e.g., GIFs, performance plots)

A clear and well-maintained README.md with setup and usage instructions
Option 2: Reimplementation Using Native TorchRL
Build the project from scratch using TorchRL’s native APIs. Instead of using PettingZoo, start from a TorchRL-compatible
environment (e.g., based on EnvBase) or adapt an existing one. Design the training pipeline, agent interaction logic, and evaluation
procedures entirely within the TorchRL framework. As with the first option, the final solution should support:

Centralized Training with Decentralized Execution (CTDE)
Configuration management
Docker deployment

WandB/TensorBoard logging
Visualization and reproducibility tools
Testing and documentation

PPO Algorithm: Continue using Proximal Policy Optimization, specifically the clipped variant (PPO-Clip), as the core learning
algorithm. PPO-Clip (Optionally, you could experiment with MADDPG, QMIX, VDN)
MPE Environment (Optional): The Multi-Agent Particle Environment (MPE) can be retained, though you are also encouraged to
consider reimplementing a simplified particle-based environment using native TorchRL. PettingZoo MPE

https://pytorch.org/rl/stable/index.html
https://hydra.cc/
https://wandb.ai/
https://www.tensorflow.org/tensorboard
https://www.docker.com/
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1706.02275
https://arxiv.org/abs/1803.11485
https://arxiv.org/pdf/2311.06255
https://pettingzoo.farama.org/environments/mpe/

Elements to Improve or Redesign:

A Possible Structured Plan for Implementation Using Native TorchRL

0. Possible Directory Structure

Core Objective: The primary task remains, agents must locate, reach, and rescue victims in a shared environment, coordinating
without full knowledge of each other’s positions

Multi-Agent Setting

Introduce dynamic obstacles, varied terrain types (e.g., slippery, blocked, hazardous), and randomized victim spawn logic.
Curriculum Learning: Start with simplified scenarios, then gradually increase map size, obstacle density, or victim mobility to foster
generalization. Curriculum Learning
Shape the reward to encourage fast and safe rescues, penalizing delays, collisions, and ineffective exploration patterns.
Reward Shaping

Design and track custom metrics to evaluate the performance of your agents, such as:
Rescue success rate
Time taken to complete missions
Number of collisions with obstacles

marl-task/
├── configs/ # Hydra or YAML configs for experiment control
│ ├── base.yaml
│ ├── env/
│ │ ├── task.yaml
│ ├── algo/
│ │ ├── ppo.yaml
│ ├── agent/
│ │ ├── default.yaml
│ └── experiment/
│ ├── exp.yaml
│
├── docker/ # Dockerfile and entrypoints
│ ├── Dockerfile
│ └── entrypoint.sh
│
├── logs/ # TensorBoard / WandB logs (auto-created)
│
├── outputs/ # Visualizations (e.g., GIFs, videos)
│ ├── gifs/
│ └── metrics/
│
├── models/ # Trained model checkpoints
│ ├── ppo/
│ │ ├── seed_1.pt
│ │ ├── seed_2.pt
│
├── src/ # Source code
│ ├── envs/
│ │ ├── env.py
│ │ └── metrics.py # Custom metrics
│ │
│ ├── agents/
│ │ ├── ppo_agent.py # PPO policy/training logic
│ │ └── utils.py
│ │
│ ├── rollout/
│ │ ├── evaluator.py # Evaluation logic
│ │ └── visualizer.py

https://arxiv.org/abs/2302.03429
https://arxiv.org/abs/2011.02669

1. Environment Setup

Define a Custom TorchRL-Compatible Environment

Create a class Env(EnvBase) in src/envs/env.py with the following methods:

Define:

Ensure all I/O uses TensorDict . Observations should be partial and relative, including distance to the shape center and nearest
neighbor. Use torchrl.envs.transforms for normalization or preprocessing.

Optional: PettingZoo Wrapper

Use PettingZooWrapper from torchrl.envs.libs.pettingzoo if adapting from existing environments:

2. Agent and Model Definition

Define Policy and Critic Modules

In src/agents/ppo_agent.py , implement:

This supports the CTDE paradigm: centralized critic with decentralized policy execution.

3. PPO Training Setup

Collector Configuration

Use SyncDataCollector or MultiSyncDataCollector :

│ │
│ └── main.py # Entry point: loads config and runs training
│
├── test/ # Unit tests
│ ├── test_env.py
│ ├── test_metrics.py
│
├── .gitignore
├── requirements.txt
├── README.md
└── LICENSE

reset(self) -> TensorDict

step(self, actions: TensorDict) -> TensorDict

observation_spec

action_spec

reward_spec

done_spec

from torchrl.envs.libs.pettingzoo import PettingZooWrapper
wrapped_env = PettingZooWrapper(pettingzoo_env)

A shared TensorDictModule policy:

policy = TensorDictModule(network, in_keys=[...], out_keys=["action"])

A centralized critic using ValueOperator :

critic = ValueOperator(critic_network, in_keys=[...])

Loss Function

Use ClipPPOLoss :

4. Training Loop
Training in main.py

Set up the training loop using collector , replay_buffer , loss_module , and optimizer :

5. Evaluation and Logging

Logging

Use TensorBoard or W&B:

Evaluation

Run trained policies with local observations only (CTDE) and export GIFs using pygame , matplotlib , or imageio . Store results in
outputs/ .

6. Configuration Management

Hydra Integration

Use Hydra or structured YAML configs in configs/ :

Launch with:

7. Testing

collector = SyncDataCollector(
 create_env_fn=env_fn,
 policy=policy,
 frames_per_batch=2048,
 total_frames=...
)

loss_module = ClipPPOLoss(
 actor=policy,
 critic=critic,
 clip_epsilon=0.2,
 entropy_coef=0.01
)

for batch in collector:
 for _ in range(ppo_epochs):
 loss = loss_module(batch)
 loss.backward()
 optimizer.step()
 optimizer.zero_grad()

from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter(log_dir=...)
writer.add_scalar("reward/mean", mean_reward, step)

configs/env/task.yaml

configs/algo/ppo.yaml

configs/experiment/sweep.yaml

python src/main.py +experiment=task +algo=ppo

Unit Tests

Place tests in test/ :

8. CTDE Framework Details

9. Docker for Reproducibility

Add Docker Support

Create a docker/ folder with the following:

Build and run:

PowerPoint Presentation
While presenting your work is not mandatory, not presenting will limit your maximum grade to 3. The presentation serves as a
concise overview of your project.

Duration

Suggested Structure

def test_env_reset():
 env = Env(...)
 td = env.reset()
 assert "observation" in td

The shared policy is trained with access to a centralized value function.
Execution uses only local observations per agent.
During inference, policies should operate without access to the global state or other agents’ observations.

Ensure the actor’s input keys are restricted to local observations, while the critic receives richer information.

Dockerfile :

FROM python:3.12-slim
WORKDIR /app
COPY . /app
RUN pip install -r requirements.txt
CMD ["python", "src/main.py"]

entrypoint.sh (optional launcher script)

docker build -t marl-task .
docker run --rm marl-task

Aim for a few well-organized slides that complement your documentation without repeating it verbatim.

1. Title & Objective
Briefly state the objective.
Mention which direction you chose (migration or reimplementation).

2. System Architecture
Give a high-level overview of your system (environment, agent setup, training loop).
Highlight the use of TorchRL, and explain your training logic (CTDE, PPO-Clip).

Optionally include a block diagram of the pipeline (env → collector → buffer → PPO → evaluation).

3. Environment & Task Setup
Describe the environment design:

Custom vs. PettingZoo-based
Agent count and spawn logic
Obstacles and dynamics (if any)

Important Notes

Assignment Submission and General Rules

👤 Zoltán Barta

📅 March 31, 2025

Explain how agents observe the world and what actions they take.

4. Key Design Choices
Discuss reward structure, curriculum learning, and logic.
Explain any metric(s) you implemented for evaluation

Mention logging strategy (WandB, TensorBoard) and how configuration and reproducibility are handled.

5. Results & Visualizations
Show GIFs or short clips of trained agents forming shapes.

Present reward curves, training stability plots, or metric graphs.
Provide insights into what worked, what didn’t, and what improved after tuning.

6. Conclusion & Future Work
Summarize key takeaways.

The core of your submission is your documentation and code, which will be the primary basis for grading.
The presentation is an opportunity to highlight your contributions and insights.

All development must be carried out within a GitHub repository.
If working as a team:

The collaboration strategy (e.g., shared or individual branches) can be determined by the team.

Task division must be clearly defined and documented in the project’s README.md file (e.g., who worked on the
environment, training logic, visualization, etc.).

If working individually, each student must develop their solution on a separate branch within the repository.
Once development is complete, you (or your team) must upload a single ZIP file to Canvas containing:

The entire project repository (excluding large model files or checkpoints to keep the size manageable).
The presentation in PDF format.

Collaboration is highly encouraged, as this is a larger-scale assignment that benefits from cooperative design and debugging.

