
2. Assignment - Cooperative Mingle

👤 Zoltán Barta, PhD student, Department of Artificial Intelligence

🕓 10 min read

📅 March 31, 2025

📚 Collective Intelligence

This assignment focuses on implementing a Multi-Agent Reinforcement Learning (MARL) system using TorchRL. Inspired by real-
world cooperative robotics, this challenge requires a team of TurtleBot3 agents to learn coordinated navigation and obstacle
avoidance in dynamic environments simulated in ROS2 Humble and Gazebo. Agents must operate in a shared arena with static and
dynamic obstacles, reaching individual goals without colliding with one another or the environment.

You will start with an existing MARL project built using custom Deep Q-Networks (DQN) integrated with ROS2 nodes. The main task is
to migrate this project to use TorchRL's native ecosystem.

Project GitHub Link

This task is best addressed using the Centralized Training with Decentralized Execution (CTDE) paradigm. During training, agents
can access global state information and train with a centralized critic to stabilize learning. During evaluation, however, each TurtleBot3
agent must act independently based on partial, local sensor data such as LiDAR, odometry, and goal pose. An Introduction to
Centralized Training for Decentralized Execution in Cooperative Multi-Agent Reinforcement Learning

While the final goal is to use TorchRL’s native environment structure (EnvBase , TensorDict , etc.), you may initially use PettingZoo
environments with the official PettingZooWrapper provided by TorchRL, if helpful for bootstrapping.

Assignment Directions
Adapt the Existing TurtleBot3 Environment Using Native TorchRL and MAPPO
Your primary task is to rebuild the existing ROS2 + Gazebo-based MARL project using TorchRL’s native APIs, replacing the
current DQN implementation with a Multi-Agent Proximal Policy Optimization (MAPPO) architecture. Instead of using PettingZoo,
adapt the custom simulation environment to be compatible with EnvBase and TensorDict .

You will design a full training pipeline using TorchRL that supports:
Centralized Training with Decentralized Execution (CTDE)
MAPPO implementation using TorchRL’s policy and value networks
Integration of a configuration management system (e.g., Hydra or structured YAML)

Inclusion of logging via both Weights & Biases (WandB) and TensorBoard
Docker for reproducibility and cross-platform compatibility
Structured unit testing (at least 2 components)

Visualization outputs (e.g., GIFs, performance plots)

https://pytorch.org/rl/stable/index.html
https://medium.com/%40nilutpolkashyap/setting-up-turtlebot3-simulation-in-ros-2-humble-hawksbill-70a6fcdaf5de
https://docs.ros.org/en/humble/Tutorials/Advanced/Simulators/Gazebo/Gazebo.html?
https://github.com/elte-collective-intelligence/student-turtlebot3s
https://arxiv.org/abs/2409.03052
https://arxiv.org/abs/2409.03052
https://github.com/pytorch/rl
https://hydra.cc/
https://wandb.ai/
https://www.tensorflow.org/tensorboard
https://www.docker.com/

Elements to Preserve:

Elements to Improve or Redesign:

A Possible Structured Plan for Implementation Using Native TorchRL

0. Possible Directory Structure

A clear and well-maintained README.md with setup and usage instructions

Gazebo + ROS2 Environment: Preserve the existing ROS2 Humble and Gazebo simulation setup, including TurtleBot3 motion
primitives, sensor models, and real-time physics-based interactions.
The core challenge remains multi-agent goal-reaching without collisions, where agents must coordinate spatially in a confined
shared arena with limited sensing.
Multi-Agent Setting

Utilize Proximal Policy Optimization, specifically the clipped variant (PPO-Clip), as the core learning algorithm. PPO-Clip
(Optionally, you could experiment with MADDPG, QMIX, VDN)

Extend the task dynamics by introducing tighter corridors, dynamic door states, or shifting obstacles (e.g., mobile barriers or
rotating gates) to enforce collision-aware path planning.
Curriculum Learning: Implement a curriculum that starts with low-density, obstacle-free arenas, gradually introducing more agents,
goal proximity overlaps, and cluttered layouts to promote scalable coordination. Curriculum Learning
Refine the reward function to penalize overshooting, deadlocks, or collisions while positively rewarding coordinated timing, goal
occupancy success, and spatial distribution. Reward Shaping

Optionally, inject LiDAR noise or add occlusion logic to simulate more realistic sensing and encourage robust policies.
Design and track custom metrics to evaluate the performance of your swarm, such as:

**Average time-to-goal per agent

**Number of idle or blocked agents per episode
**Collision count and type (agent-agent, agent-wall)

marl-task/
├── configs/ # Hydra or YAML configs for experiment control
│ ├── base.yaml
│ ├── env/
│ │ ├── task.yaml
│ ├── algo/
│ │ ├── ppo.yaml
│ ├── agent/
│ │ ├── default.yaml
│ └── experiment/
│ ├── exp.yaml
│
├── docker/ # Dockerfile and entrypoints
│ ├── Dockerfile
│ └── entrypoint.sh
│
├── logs/ # TensorBoard / WandB logs (auto-created)
│
├── outputs/ # Visualizations (e.g., GIFs, videos)
│ ├── gifs/
│ └── metrics/
│
├── models/ # Trained model checkpoints
│ ├── ppo/
│ │ ├── seed_1.pt
│ │ ├── seed_2.pt
│

https://docs.ros.org/en/humble/Tutorials/Advanced/Simulators/Gazebo/Gazebo.html?
https://medium.com/%40nilutpolkashyap/setting-up-turtlebot3-simulation-in-ros-2-humble-hawksbill-70a6fcdaf5de
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1706.02275
https://arxiv.org/abs/1803.11485
https://arxiv.org/pdf/2311.06255
https://arxiv.org/abs/2302.03429
https://arxiv.org/abs/2011.02669

1. Environment Setup

Define a Custom TorchRL-Compatible Environment

Create a class Env(EnvBase) in src/envs/env.py with the following methods:

Define:

Ensure all I/O uses TensorDict . Observations should be partial and relative, including distance to the shape center and nearest
neighbor. Use torchrl.envs.transforms for normalization or preprocessing.

Optional: PettingZoo Wrapper

Use PettingZooWrapper from torchrl.envs.libs.pettingzoo if adapting from existing environments:

2. Agent and Model Definition

Define Policy and Critic Modules

In src/agents/ppo_agent.py , implement:

├── src/ # Source code
│ ├── envs/
│ │ ├── env.py
│ │ └── metrics.py # Custom metrics
│ │
│ ├── agents/
│ │ ├── ppo_agent.py # PPO policy/training logic
│ │ └── utils.py
│ │
│ ├── rollout/
│ │ ├── evaluator.py # Evaluation logic
│ │ └── visualizer.py
│ │
│ └── main.py # Entry point: loads config and runs training
│
├── test/ # Unit tests
│ ├── test_env.py
│ ├── test_metrics.py
│
├── .gitignore
├── requirements.txt
├── README.md
└── LICENSE

reset(self) -> TensorDict

step(self, actions: TensorDict) -> TensorDict

observation_spec

action_spec

reward_spec

done_spec

from torchrl.envs.libs.pettingzoo import PettingZooWrapper
wrapped_env = PettingZooWrapper(pettingzoo_env)

A shared TensorDictModule policy:

policy = TensorDictModule(network, in_keys=[...], out_keys=["action"])

A centralized critic using ValueOperator :

This supports the CTDE paradigm: centralized critic with decentralized policy execution.

3. PPO Training Setup

Collector Configuration

Use SyncDataCollector or MultiSyncDataCollector :

Loss Function

Use ClipPPOLoss :

4. Training Loop

Training in main.py

Set up the training loop using collector , replay_buffer , loss_module , and optimizer :

5. Evaluation and Logging

Logging

Use TensorBoard or W&B:

Evaluation

Run trained policies with local observations only (CTDE) and export GIFs using pygame , matplotlib , or imageio . Store results in
outputs/ .

6. Configuration Management

Hydra Integration

Use Hydra or structured YAML configs in configs/ :

critic = ValueOperator(critic_network, in_keys=[...])

collector = SyncDataCollector(
 create_env_fn=env_fn,
 policy=policy,
 frames_per_batch=2048,
 total_frames=...
)

loss_module = ClipPPOLoss(
 actor=policy,
 critic=critic,
 clip_epsilon=0.2,
 entropy_coef=0.01
)

for batch in collector:
 for _ in range(ppo_epochs):
 loss = loss_module(batch)
 loss.backward()
 optimizer.step()
 optimizer.zero_grad()

from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter(log_dir=...)
writer.add_scalar("reward/mean", mean_reward, step)

configs/env/task.yaml

Launch with:

7. Testing

Unit Tests

Place tests in test/ :

8. CTDE Framework Details

9. Docker for Reproducibility

Add Docker Support

Create a docker/ folder with the following:

Build and run:

PowerPoint Presentation
While presenting your work is not mandatory, not presenting will limit your maximum grade to 3. The presentation serves as a
concise overview of your project.

Duration

Suggested Structure

configs/algo/ppo.yaml

configs/experiment/sweep.yaml

python src/main.py +experiment=task +algo=ppo

def test_env_reset():
 env = Env(...)
 td = env.reset()
 assert "observation" in td

The shared policy is trained with access to a centralized value function.
Execution uses only local observations per agent.

During inference, policies should operate without access to the global state or other agents’ observations.
Ensure the actor’s input keys are restricted to local observations, while the critic receives richer information.

Dockerfile :

FROM python:3.12-slim
WORKDIR /app
COPY . /app
RUN pip install -r requirements.txt
CMD ["python", "src/main.py"]

entrypoint.sh (optional launcher script)

docker build -t marl-task .
docker run --rm marl-task

Aim for a few well-organized slides that complement your documentation without repeating it verbatim.

1. Title & Objective
Briefly state the objective.

Mention which direction you chose (migration or reimplementation).

Important Notes

Assignment Submission and General Rules

👤 Zoltán Barta

📅 March 31, 2025

2. System Architecture
Give a high-level overview of your system (environment, agent setup, training loop).

Highlight the use of TorchRL, and explain your training logic (CTDE, PPO-Clip).
Optionally include a block diagram of the pipeline (env → collector → buffer → PPO → evaluation).

3. Environment & Task Setup
Describe the environment design:

Custom vs. PettingZoo-based
Agent count and spawn logic

Obstacles and dynamics (if any)

Explain how agents observe the world and what actions they take.

4. Key Design Choices
Discuss reward structure, curriculum learning, and logic.

Explain any metric(s) you implemented for evaluation
Mention logging strategy (WandB, TensorBoard) and how configuration and reproducibility are handled.

5. Results & Visualizations
Show GIFs or short clips of trained agents forming shapes.
Present reward curves, training stability plots, or metric graphs.
Provide insights into what worked, what didn’t, and what improved after tuning.

6. Conclusion & Future Work
Summarize key takeaways.

The core of your submission is your documentation and code, which will be the primary basis for grading.

The presentation is an opportunity to highlight your contributions and insights.

All development must be carried out within a GitHub repository.
If working as a team:

The collaboration strategy (e.g., shared or individual branches) can be determined by the team.

Task division must be clearly defined and documented in the project’s README.md file (e.g., who worked on the
environment, training logic, visualization, etc.).

If working individually, each student must develop their solution on a separate branch within the repository.

Once development is complete, you (or your team) must upload a single ZIP file to Canvas containing:
The entire project repository (excluding large model files or checkpoints to keep the size manageable).
The presentation in PDF format.

Collaboration is highly encouraged, as this is a larger-scale assignment that benefits from cooperative design and debugging.

