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Last Practice
In our last practice, we covered:

That’s quite a lot! Now, let’s dive into how these concepts are applied in simulations using the Models Library.

Models Library
The NetLogo Models Library is a comprehensive resource included with NetLogo, containing pre-built simulation models spanning
diverse disciplines such as biology, economics, physics, and social sciences.

Benchmark Simulations

An introduction to NetLogo and its competitor programmable modeling environments
The advantages of using NetLogo
World and Agents
Turtles and their properties
The Observer
Reporters and Commands
Variables and their types
Conditionals and loops
Lists and higher-order functions
Tasks, including map , filter , and reduce
Working with Breeds

It includes over 200 models, categorized for easy navigation (e.g., Biology, Social Science, and Computer Science).
Models like Wolf Sheep Predation and Segregation have become benchmarks for studying agent-based systems.
Models are fully editable, allowing users to modify parameters, add features, or adapt them for custom research needs.



Your Model Library should look somehow like this under File > Models Library.

The Fire Model

File > Models Library > Sample Models > Earth Science > Fire



Interface Tab

The Fire Model is a simple yet illustrative agent-based simulation used to study the spread of fire through a forest, represented on a 2D
grid. The environment consists of three primary elements:

Mechanics

The setup  button initializes the forest grid based on a key variable called density . This global variable determines the proportion of
the grid occupied by trees and is controlled by a slider in the interface. The density  variable is only utilized during the setup phase and
remains constant throughout the simulation, even if the slider is adjusted during runtime.

The go  button initiates the core simulation loop, which governs the spread of fire:

The model includes a monitor labeled percent burned , which reports the percentage of the grid area affected by fire. This value is
calculated by a reporter function that dynamically tracks the burned areas during the simulation.

Running the Simulation

Let's run the simulation with the initial density  value of 57%.

Exercise: Run the setup  command in the Interface tab and press the go  button to start the simulation.

Observe what happens to the forest:

1. Trees: Represented as green patches on the grid.
2. Fires: Represented by red turtles that simulate active fire.
3. Embers: Representing fading fire agents, marking burned areas.

Fire agents ignite adjacent trees based on predefined rules.
Burned trees transition into embers, and fire agents disappear once their task is complete.

Does the forest burn down completely? If yes, why? If no, why not?
What is the percent burned value displayed in the monitor?
Try to explain your observations based on the behavior of fire spread before looking into the code.



Exercise: Find the epidemic threshold—the critical tree density where the fire just barely spreads across the entire forest (agents
reach the right side of the grid):

In modeling, this epidemic threshold is more accurately referred to as a phase transition—a point where a small change in an input
parameter causes a dramatic shift in the system's behavior, leading to the collapse of a previously stable state.

For this simulation, there is a closed-form solution: with a tree density of 57%, there is nearly a 0% chance of the fire reaching the right
side of the grid. However, as density increases to 62%, this probability jumps to nearly 100%.

Reference: Phase Transition Robertson, Duncan & Caldart, Adrián. (2008). Natural Science Models in Management: Opportunities and
Challenges. E:CO Emergence: Complexity and Organization. 10.

The Code

Initial Setup

Adjust tree density and observe when the fire reaches the right edge.
Record the percent burned at densities above, below, and near the threshold.
Explain why the fire behaves differently at these densities.

globals [  

  initial-trees   ;; how many trees (green patches) we started with  

  burned-trees    ;; how many have burned so far  

]

breed [fires fire]    ;; bright red turtles -- the leading edge of the fire  

breed [embers ember]  ;; turtles gradually fading from red to near black



Helper Commands

Main Loop

Exercise: Modify the code to allow the fire to spread to all 8 neighboring patches (not just the 4 directly adjacent ones).

Run the setup  command in the Interface tab and press go  to start the simulation.

Preview Commands Editor

to setup  

  clear-all  

  set-default-shape turtles "square"   ;; turn turtles into square shapes

  ask patches with [(random-float 100) < density]   ;; make some green trees

    [ set pcolor green ]  

  ask patches with [pxcor = min-pxcor]   ;; make a column of burning trees  

    [ ignite ]  

  set initial-trees count patches with [pcolor = green]   ;; set tree counts  

  set burned-trees 0  

  reset-ticks  

end

;; creates the fire turtles  

to ignite  ;; patch procedure  

  sprout-fires 1  

    [ set color red ]  

  set pcolor black  

  set burned-trees burned-trees + 1  

end

;; achieve fading color effect for the fire as it burns  

to fade-embers  

  ask embers  

    [ set color color - 0.3  ;; make red darker  

      if color < red - 3.5     ;; are we almost at black?  

        [ set pcolor color  

          die ] ]  ;; Removes the turtle, only the black patch remains

end

to go  

  if not any? turtles  ;; either fires or embers  

    [ stop ]  

  ask fires  

    [ ask neighbors4 with [pcolor = green]  

        [ ignite ]  

      set breed embers ]  

  fade-embers  

  tick  

end

Observe how the fire spreads. Does it behave differently with the change?
Does the forest burn down completely? If yes, why? If no, why not?
Determine the new density  for which a phase transition happens. How does it compare to the original density threshold?
Do you think the critical density needs to be halved or adjusted differently? Explain why this might be the case.



The Preview Commands Editor in NetLogo is a helpful tool that allows you to test your setup and go commands before running an
experiment. It ensures that your commands are valid and that the model behaves as expected, helping to catch errors early and avoid
wasting time on misconfigured experiments.

BehaviorSpace

BehaviorSpace in NetLogo is a tool that allows you to run and analyze parameterized experiments by automating the execution of your
model with different variable combinations. The Preview Commands Editor is connected to BehaviorSpace because it allows you to
validate and fine-tune the setup and go commands used in your experiment before running it.

Pressing the New button brings up the following window:



Each experiment in NetLogo can be exported as an .xml file, allowing it to be reused or shared later to ensure reproducibility.

NetLogo also efficiently bundles all components—interface elements (in XML), the Info tab, and the Code tab—into a single .nlogo
file for easy management and distribution.

The Info Tab

NetLogo includes a built-in documentation tool that helps users effectively document their models. This tool's structure can also serve
as a skeleton for documenting other projects. It typically follows the structure below:

Experiment Name: Assigns a name to the experiment for identification.
Vary Variables as Follows: Specifies which variables will change during the experiment and their values. ["density" 30 40 50
60 70]

Repetitions: Defines how many times the experiment will repeat for each parameter combination. Set it to 100  to average the
results over 100 runs at each density value.
Execute Combinations in Sequential Order: Ensures that variable combinations are tested in the order specified.
Measure Runs Using These Reporters as Metrics: Specifies the values to record during the experiment. count fires
Run Metrics Every Step: Records the specified metrics at every step of the simulation.
Pre Experiment Commands: Commands to initialize the simulation before each run.
Stop Condition: Defines when the simulation should stop.
Time Limit: Specifies a maximum runtime for the simulation in seconds (0 means no limit).

What is it?: A brief overview of the model and its purpose.
How it works?: Explains the underlying mechanics, rules, and logic driving the model's behavior.
How to use it?: Instructions for running the model, including details on controls, sliders, buttons, and other interface elements.
Things to Notice: Key behaviors or patterns to observe when running the model.
Things to Try: Suggestions for experimenting with the model, such as changing parameters or testing specific scenarios.
Extending the Model: Ideas for adding new features or expanding the model's functionality.
NetLogo Features: Highlights specific NetLogo commands or tools used in the model.
Related Models: Lists similar models in the NetLogo library or other related projects.



Utilizes Markdown syntax, just like this document.

Exercise: Create a reporter called percent-burned  that calculates and reports the percentage of burned trees in the simulation.

Modify the code to use neighbors  instead of neighbors4 , allowing the fire to spread to all 8 neighboring patches.

Solution:
Click to show/hide solution

Exercise: Update the model so that fires start from all edges of the grid lattice instead of just one side.

Run the simulation and observe how the fire spreads:

Solution:
Click to show/hide solution

Exercise: Extend the functionality of the model by incorporating the effect of wind on fire spread.

This means that fire can spread not only to immediate neighbors but also to the neighbors of those neighbors.

Solution:
Click to show/hide solution

Exercise: Extend the functionality of the model by adding tree regrowth at each step.

Modify the code so that trees can regrow with a certain percentage per step, controlled by a slider (e.g., regrowth-rate ).

Credits and References: Acknowledgments for contributors and references to materials that inspired or informed the model.
How to Cite: Citation format for the model, useful for academic or research purposes.
Copyright and License: Details on the model's licensing terms and copyright information.

Set up a parameterized experiment in BehaviorSpace with the following conditions:
density  set to 37%.
100 repetitions of the experiment.
Metrics logged at every simulation step.

Analyze the experiment results at step 25:
Calculate the mean and standard deviation of the percent-burned  values across all runs.
Determine if any of the runs reached 90% burned trees.

Determine the density  percentage at which the phase transition occurs when fire spreads from all directions.
Compare the results to the original setup where fire started from one edge.
Is the fire approximately four times as effective when starting from all edges? Explain your observations.

Modify the fire-spreading logic to include wind as a factor influencing the spread of fire.
Determine the phase transition density for fire spread under wind influence.

Add a slider to the interface to control the regrowth percentage.
Update the go  procedure to allow patches (previously burned or empty) to regrow into trees based on the slider value.
Run your experiments again and observe how regrowth affects fire spread dynamics.



Solution:
Click to show/hide solution

Exercise: Update the model to calculate the percentage burned based on the number of burned patches currently on the map,
rather than using the initial number of trees (since trees can now regrow).

Solution:
Click to show/hide solution

Extra Exercise: Create and analyze a parameterized simulation using the following steps:

Determine the new phase transition density with tree regrowth enabled.

Modify the percent-burned  reporter to dynamically calculate the percentage of burned patches at any given moment.
Ensure the calculation accounts only for patches with pcolor = black .

1. Set up a simulation in BehaviorSpace with:
density  values ranging from 25% to 30% (in increments of 1%).
regrowth-rate  values ranging from 2% to 5% (in increments of 1%).
10 repetitions for each combination of parameters.
A time limit of 10 seconds per simulation.

2. Use the newly created percent-burned  reporter to record the percentage of burned trees at the last step of each simulation.



Schelling's Segregation Model
File > Models Library > Sample Models > Social Science > Segregation

Schelling's model of segregation has been regarded as one of the first agent-based models to address a significant social issue. It was
created by Thomas Schelling, an economist who won the Nobel Prize for his contributions to economics during the Cold War. The
segregation model naturally focuses on the social issue of segregation. He published it in 1972 and was originally called Schelling's
Tipping Model.

In Schelling's original concept, the model represented a traditional American urban landscape, primarily inhabited by Black and White
Americans. Racism and its resulting segregation were significant societal issues, and Schelling aimed to understand the mechanisms
behind how racism influenced the urban landscape.

The basic idea was to create two types of agents, each with a preference for the composition of their neighboring agents expressed as a
percentage. For example, a similar-wanted  value of 30% means an agent will be considered happy  if at least 30% of its neighbors
are of the same type. This concept of happiness is crucial, as the goal of the model was to explore the tolerance level at which
segregation does not occur while ensuring that all agents remain happy.

In this model, if an agent is unhappy, it attempts to move to a random empty location.

The density  setup  go  and go once  interface elements should be familiar by now. What they do here is exactly the same as what
they did at the Fire Model.

There are four monitors with different reporters in the model:

Fun Facts:

3. Export the simulation results to a CSV file.
4. In Python:

Calculate the mean of the percent-burned  values at the last step for each parameter combination.
Plot the results in 4 separate histograms, one for each regrowth-rate  value (2%, 3%, 4%, and 5%).
Each histogram should display the percentage burned for density  values from 25% to 30% (6 bars).

One reports the total number of agents, which remains constant and reflects the density  value.
The percent-similar  monitor calculates the average percentage of an agent's neighbors that are the same color as the agent.
The num-unhappy  monitor reports the total number of unhappy agents.
The percent-unhappy  monitor reports the percentage of unhappy agents on the grid.

1. In 1972, Schelling did not have access to computers capable of performing complex calculations in hours. Instead, he used a
checkerboard with pennies and dimes, manually moving them around to observe the effects of his model.



Plot Interface Element

The plot interface element in NetLogo allows us to visualize how a global variable changes over time, providing insights into how the
system responds to small changes in the environment.

Exercise: Explore the tipping points in the model with a density of 95%.

While studying population dynamics of two groups of equal size, Schelling found a threshold (Bseg) such that:

The value of (Bseg) was approximately ( 1
3 ).

2. Schelling described segregation as a "macro behavior" resulting from "micro motives." He later wrote a book titled Micromotives
and Macrobehavior.

Plot Name: Specifies the name of the plot, which will be displayed in the interface.
X-Axis Settings: Allows you to label the x-axis and set its minimum and maximum values.
Y-Axis Settings: Allows you to label the y-axis and set its minimum and maximum values.
Auto-Scale: Automatically adjusts the minimum and maximum values for better scaling during the simulation.
Legend: Adds a legend to identify what each pen represents.
Setup Commands: You can add commands to run before plotting begins, such as initializing variables or preparing the
environment.
Pen Options:

Multiple Pens: Track multiple variables on the same plot using different pens with different colors.
Pen Names: You can assign a unique name to each pen for clarity.
Plot Types: Pens support bar plots, point plots, and line plots. In your example, a line plot is used.
Plotting Intervals: You can specify how frequently the pen updates, controlling the time intervals for plotting.
Basic Pen Updates: A typical pen update looks like the following: plot <reporter>

Find the tolerance level where the number of unhappy agents reaches 0, and no segregation occurs.
Identify the tolerance level where more than 90% of agents remain unhappy, and the simulation does not converge (does not
end).

(Ba < Bseg) leads to a random population configuration.
(Ba ≥ Bseg) leads to a segregated population.



The Code

So what do the X  marks on the grid represent when setup  is run?

The X  marks indicate agents who are currently unhappy with their living situation. These agents will move to a new location in the next
simulation step. Agents that are not marked with X  are satisfied and will remain in their current position.

Global Variable Definitions

Turtle Properties (each turtle will have these)

Setup

Breeds are not used in this model because agents are only created during the setup phase, their color (representing race) does not
change, and their movement is not influenced by their color. This simplifies the implementation.

Helper Functions

The [color] of myself  is used to explicitly reference the color  of the turtle executing the command (the caller), distinguishing it from
the color  of the agents in the agentset ( turtles-on neighbors ).

For visualizations, there are two if  statements controlling different representations. In the case of the square visualization, there is an
ifelse  within the true  branch of the first if . If the agent is happy, it is displayed as a square; if not, it is displayed as an X shape.

globals [  

  percent-similar  ; on the average, what percent of a turtle's neighbors  

                   ; are the same color as that turtle?  

  percent-unhappy  ; what percent of the turtles are unhappy?  

]

turtles-own [  

  happy?           ; indicates whether at least %-similar-wanted percent of  

                   ; that turtle's neighbors are the same color as the turtle  

  similar-nearby   ; how many neighboring patches have a turtle with my color?  

  other-nearby     ; how many have a turtle of another color?  

  total-nearby     ; sum of previous two variables  

]

to setup  

  clear-all  

  ; create turtles on random patches.  

  ask patches [  

    set pcolor white  

    if random 100 < density [   ; set the occupancy density  

      sprout 1 [  

        ; 105 is the color number for "blue"  

        ; 27 is the color number for "orange"  

        set color one-of [105 27]  

        set size 1  

      ]  

    ]  

  ]  

  update-turtles  

  update-globals  

  reset-ticks  

end

to update-turtles  

  ask turtles [  

    ; in next two lines, we use "neighbors" to test the eight patches  

    ; surrounding the current patch  

    set similar-nearby count (turtles-on neighbors)  with [ color = [ color ] of myself ]  

    set other-nearby count (turtles-on neighbors) with [ color != [ color ] of myself ]  

    set total-nearby similar-nearby + other-nearby  

    set happy? similar-nearby >= (%-similar-wanted * total-nearby / 100)  

    ; add visualization here  

    if visualization = "old" [ set shape "default" set size 1.3 ]  



Here, two local variables are defined. These should not be confused with agent variables, as they are not updated here but are only
used within the sum  command. Their role is determined by the calling order in the setup  command.

Main Loop

If all turtles are happy, stop the simulation; otherwise, move the unhappy turtles and update both agent and global variables.

The find-new-spot  command is applied to all unhappy turtles. It rotates the agent in a random direction (right turn) and moves it
forward by a random distance between 0 and 10 patches. If the destination is already occupied by another agent, the turtle continues
searching for a new spot on the grid.

This computation might seem inefficient. Let’s create a new command that identifies empty patches on the grid and moves agents
randomly to one of those patches.

Exercise: Create a new find-new-spot  command to optimize agent movement.

Solution:
Click to show/hide solution

Modifying the Code

    if visualization = "square-x" [  

      ifelse happy? [ set shape "square" ] [ set shape "X" ]  

    ]  

  ]  

end

to update-globals  

  let similar-neighbors sum [ similar-nearby ] of turtles  

  let total-neighbors sum [ total-nearby ] of turtles  

  set percent-similar (similar-neighbors / total-neighbors) * 100  

  set percent-unhappy (count turtles with [ not happy? ]) / (count turtles) * 100  

end

to go  

  if all? turtles [ happy? ] [ stop ]  

  move-unhappy-turtles  

  update-turtles  

  update-globals  

  tick  

end

to move-unhappy-turtles  

  ask turtles with [ not happy? ]  

    [ find-new-spot ]  

end

to find-new-spot  

  rt random-float 360  

  fd random-float 10  

  if any? other turtles-here [ find-new-spot ] ; keep going until we find an unoccupied patch  

  move-to patch-here  ; move to center of patch  

end

Instead of having the agent repetitively move to random spaces, first infer all empty patches on the grid where no turtles are
present.
Update the agent to move randomly to one of the inferred empty patches.
How does this updated command perform compared to the original one?



Exercise: Add a goodness level to the agents in the simulation and modify their behavior based on this attribute.

Solution:
Click to show/hide solution

Exercise: Can you think of any other visualization types that could be used here? Instead of showing the two types of agents, one
could display one of their attributes to provide a different perspective.

Add at least two new visualizations!

Solution:
Click to show/hide solution

Extra Exercise: Modify the code to include a controllable number of agent types in the environment, rather than just orange and
blue.

1. For the setup  stage, add two sliders:
orange-good-percentage : Controls the percentage of orange agents who are "good" (e.g., 80% means 80% of orange
agents are good).
blue-good-percentage : Controls the percentage of blue agents who are "good".

2. Create a slider called %-good-wanted  to control the percentage of good neighbors required for an agent to be happy.
3. Modify the model dynamics so that:

Agents prioritize having enough "good" neighbors based on %-good-wanted .
If the required number of good neighbors is not met, agents fall back to checking similarity in race ( %-similar-wanted ).
If neither condition is met, the agent becomes unhappy and moves.

4. Run the simulation with the following parameters:
Set orange-good-percentage  and blue-good-percentage  to 50%.
Test what happens when %-good-wanted  is larger than %-similar-wanted .

5. Observe and analyze the results:
How does the newly added "good" attribute affect segregation?
How does it influence tipping dynamics when agents move?

Add a new slider to control the number of agent types.
Ensure each agent type is assigned a unique color dynamically based on the number of types specified.
Update the dynamics to account for similarity checks across all agent types.



Virus on a Network Model

File > Models Library > Sample Models > Networks > Virus on a Network

The Virus on a Network model was created by Uri Wilensky in 2008 to simulate the spread of a virus within a social network. The
simulation begins with a network-building process, where parameters such as number-of-nodes , average-node-degree , and initial-
outbreak-size  define the structure of the network. This setup creates a network that closely resembles the structure of a social
network. The model uses agents and links to represent nodes and their connections, respectively.

Remember: Links are also considered as agents in the NetLogo environment.

This graph does not follow a Rényi or Barabási graph but instead represents a random geometric graph (RGG). In graph theory, a
random geometric graph is the simplest type of spatial network. It is an undirected graph created by randomly placing N nodes in a
metric space and connecting two nodes with a link if and only if their distance is within a specified range, such as smaller than a given
neighborhood radius, r.

Links

Links are used to represent connections or relationships between agents. They are commonly used in models involving networks, such
as social networks, transportation systems, or ecological relationships. Link also have properties and can be inspected the same way as
turtles or patches.



Links have the following unique properties compared to turtles and patches:

When a link between two nodes is undirected, end1  is always the older node, meaning the node with the lowest who  ID. However,
when the link is directed, end1  represents the source node, and end2  represents the target node.

Examples:

Create an undirected link between turtle 0  and turtle 1 :

Create an directed link between turtle 0  and turtle 1 :

Query all links connected to turtle 0 :

Change link properties (the same as with turtles or patches):

Note: Once the first link has been created directed or undirected, all unbreeded links must match (links also support breeds, much
like turtles).

end1  and end2 : Represent the two agents connected by the link, specifying the source and target nodes.
hidden? : Indicates whether the link is hidden from view, similar to how it is used in the Fireflies simulation.
thickness : Specifies the visual thickness of the link on the grid.
shape : Defines the shape of the link. The default is a straight line, but other options are available (e.g., arrows for directed links).
tie-mode : Tie connects two turtles so that the movement of one turtles affects the location and heading of another. When a
link’s  tie-mode  is set to “fixed” or “free”  end1  and  end2  are tied together. If the link is directed  end1  is the “root agent”
and  end2  is the “leaf agent”. That is when  end1  moves (using  fd ,  jump ,  setxy , etc.)  end2  also moves the same distance and
direction.

ask turtle 0 [ create-link-with turtle 1 ]

ask turtle 0 [ create-link-to turtle 1 ]

ask turtle 0 [ show link-neighbors ]

ask links [ set color red set thickness 0.5 ]



Network Building

Let's see how it is done in the code:

The setup  command, when called, first creates all the nodes in the network based on the number-of-nodes  parameter. It then creates
links between these nodes according to the RGG process. After that, it randomly selects initial-outbreak-size  turtles to become
infected. Finally, it sets the color of all links to white.

Node Setup:

At the start of the simulations are agents becomes susceptible (not infected nor resistant to the virus). This also sets their color blue.
Then their virus check timer becomes a number between 0 (inclusive) and virus-check-frequency - 1  (exclusive)

The num-links  is the number of links needed to be created so that the network will have a proper average-node-degree . We know on
average how many links will be connected to a node, the number of nodes, and also that are network is undirected, so the calculation is
divided by 2.

While the global link count remains below the required threshold, an agent is selected from a filtered agentset. This agentset consists of
all other turtles that are not part of the calling agent's link-neighborhood. From this set, the closest agent is chosen based on distance
myself . If a valid choice is made (i.e., the selected agent is not empty), an undirected link is created between the two agents.

The second line is purely for visualization purposes, using spring and force-based physics to adjust the positions of the nodes.

turtles-own  

[  

  infected?           ;; if true, the turtle is infectious  

  resistant?          ;; if true, the turtle can't be infected  

  virus-check-timer   ;; number of ticks since this turtle's last virus-check  

]

to setup  

  clear-all  

  setup-nodes  

  setup-spatially-clustered-network  

  ask n-of initial-outbreak-size turtles  

    [ become-infected ]  

  ask links [ set color white ]  

  reset-ticks  

end

to setup-nodes  

  set-default-shape turtles "circle"  

  create-turtles number-of-nodes  

  [  

    ; for visual reasons, we don't put any nodes *too* close to the edges  

    setxy (random-xcor * 0.95) (random-ycor * 0.95)  

    become-susceptible  

    set virus-check-timer random virus-check-frequency  

  ]  

end

to become-susceptible  ;; turtle procedure  

  set infected? false  

  set resistant? false  

  set color blue  

end

to setup-spatially-clustered-network  

  let num-links (average-node-degree * number-of-nodes) / 2  

  while [count links < num-links ]  

  [  

    ask one-of turtles  

    [  

      let choice (min-one-of (other turtles with [not link-neighbor? myself])  

                   [distance myself])  



The Main Loop

If all turtles are either resistant or susceptible, the simulation stops. Otherwise, each agent increments its virus-check-timer  by 1.
When the timer reaches its threshold, it resets. The main loop concludes with the virus spreading (handled in a separate command) and
the agents performing a virus check.

This command asks the infected agentset to check all their non-resistant neighbors and attempt to infect them based on the virus-
spread-chance . If successful, the neighboring agents become infected, their color changes to red, and their infected?  variable is set
to true .

The virus check asks all turtles that are infected and due for a check to attempt recovery. If recovery is successful, the agent has a
chance to gain resistance based on the gain-resistance-chance . If successful, the agent becomes resistant ; otherwise, it becomes
susceptible . If recovery is unsuccessful, the agent remains infected .

      if choice != nobody [ create-link-with choice ]  

    ]  

  ]  

  ; make the network look a little prettier  

  repeat 10  

  [  

    layout-spring turtles links 0.3 (world-width / (sqrt number-of-nodes)) 1  

  ]  

end

to go  

  if all? turtles [not infected?]  

    [ stop ]  

  ask turtles  

  [  

     set virus-check-timer virus-check-timer + 1  

     if virus-check-timer >= virus-check-frequency  

       [ set virus-check-timer 0 ]  

  ]  

  spread-virus  

  do-virus-checks  

  tick  

end

to become-resistant  ;; turtle procedure  

  set infected? false  

  set resistant? true  

  set color gray  

  ask my-links [ set color gray - 2 ]  

end

to become-infected  ;; turtle procedure  

  set infected? true  

  set resistant? false  

  set color red  

end

to spread-virus  

  ask turtles with [infected?]  

    [ ask link-neighbors with [not resistant?]  

        [ if random-float 100 < virus-spread-chance  

            [ become-infected ] ] ]  

end

to do-virus-checks  

  ask turtles with [infected? and virus-check-timer = 0]  

  [  

    if random 100 < recovery-chance  

    [  

      ifelse random 100 < gain-resistance-chance  

        [ become-resistant ]  

        [ become-susceptible ]  

    ]  



Exercise: Experiment with the variables that influence the dynamics of the virus:

Exercise: Increase the number-of-nodes  and the average-node-degree  hyperparameter.

Exercise: Set the gain-resistance-chance  to 0%.

Exercise: Real computer networks, where viruses often spread, typically do not rely on spatial proximity like the networks in this
model. Instead, they often exhibit a "scale-free" link-degree distribution, similar to those created using the Preferential Attachment
(Barabási) model.

Rényi Solution:
Click to show/hide solution

Barabási Solution:
Click to show/hide solution

Extra Exercise: As an optional exercise, think about extending the network to include additional virus variants or the ability for the
virus to mutate and evolve over time.

👤 Tamás Takács

📅 January 23, 2025

  ]  

end

Adjust the following hyperparameters in both directions:
virus-spread-chance

virus-check-frequency

recovery-chance

gain-resistance-chance

Observe and record the effects of these changes on the simulation dynamics.
Analyze which hyperparameter the model is most sensitive to and explain why this might be the case.

Observe how the changes affect the dynamics of the virus spread.
Compare the susceptible/resistant ratio to the previous configuration.

Observe whether the model can recover from the virus without agents gaining resistance.
With virus-spread-chance  set at 2.5%, identify the tipping point where the virus can no longer spread effectively.

Experiment with alternative network structures, such as Rényi (random networks) and Barabási (scale-free networks).
Observe how the behavior of the virus changes under these different network structures.
Compare the virus dynamics to the spatial network in the original model and analyze the differences.

Consider how multiple virus variants could interact within the network.
Design a solution to handle multiple virus types and their evolution over time.
Implement your solution.

https://en.wikipedia.org/wiki/Barab%C3%A1si%E2%80%93Albert_model
https://en.wikipedia.org/wiki/Barab%C3%A1si%E2%80%93Albert_model
https://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93R%C3%A9nyi_model
https://en.wikipedia.org/wiki/Barab%C3%A1si%E2%80%93Albert_model
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