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Last Practice
In our last practice, we covered:

That’s quite a lot again! Now, let’s dive into how you can design and create your own NetLogo model completely from scratch.

Simple Economy Model
In 1996, Josh Epstein and Rob Axtell published one of the first definitive books on agent-based modeling and social science, Growing
Artificial Societies, which featured artificial economic agents.

We will create a simple model of economic agents, inspired in part by Epstein and Axtell's work and a paper by Dragulescu and
Yakovenko (2000).

Dragulescu, A., & Yakovenko, V. M. (2000). Statistical mechanics of money. The European Physical Journal B, 17(4), 723–729.
doi:10.1007/s100510070114

The Rules

Simple, right? Let's try to implement it in NetLogo!

First Step - setup

Designing the setup  procedure is usually the first step, followed by the go  procedure. These two components are not always required,
but they are a style heavily utilized in NetLogo. Let's start with an empty project:

File > New

First, let's set our grid parameters before adding anything to the model. These can be edited to your liking; however, in this example, we
will use the following parameters:

The Models Library and Benchmark Simulations
The Fire model
Extensions of the Fire model
Phase Transitions and Tipping Points
BehaviorSpace experiments
The Info Tab
Schelling's Segregation model
Extensions of Schelling's Segregation model
Plotting
The Virus on a Network model
Links
Extensions of the Virus on a Network model

500 people start off with $100 each (starting with a uniform distribution).
At every tick, each person gives $1 to another person randomly.
If you run out of money, you can't give any more money away until someone gives you money.



One of the first things to add is a setup  button next to the 2D environment grid. After adding the setup  button, go to the Code Tab and
create a basic skeleton for the setup  function. A setup  function should always include the clear-all  and reset-ticks  commands.

Looking at the first rule of the exercise, it requires us to create 500 agents and assign them $100 as a starting point. This can be
implemented using the create-turtles  command and defining agent attributes. Additionally, we can set them to a circular shape with
green color and size 2 for convenience.

Running the setup  creates the turtles, but we cannot see them because all turtles are created at the (0, 0)  patch by default. Let's
modify the code so that the agents spawn in specific locations.

Note: NetLogo will create all turtles at the (0, 0) patch if no location is specified in the command.

The goal is to visualize the wealth distribution. Rich agents should move to the right side of the grid, while poorer agents move to the
left. Initially, all agents start in a random row with their x-coordinate (horizontal alignment) set to match their wealth.

Second Step - go

In the go  procedure, turtles must transact their wealth if they have any. This can be done by calling a transact  command (defined
later). All go  commands should end with the tick  command.

This ensures only agents with wealth can give money to others. However, our grid size only allows a total wealth of $500 for a single
agent. To avoid errors, we limit the simulation with the following condition:

Location of Origin: Corner, Bottom Left
max-pxcor: 500
min-pycor: 80
Patch size: 1
Font size: 10
Frame rate: 30

to setup

clear-all

;; setup code

reset-ticks

end

turtles-own [ wealth ]

create-turtles 500 [  

    set wealth 100  

    set shape "circle"  

    set color green  

    set size 2

]

to setup  

  clear-all  

  create-turtles 500 [  

    set wealth 100  

    set shape "circle"  

    set color green  

    set size 5  

    setxy wealth random-ycor  

  ]  

  reset-ticks  

end

ask turtles with [ wealth > 0 ] [ transact ]

ask turtles [ if wealth <= max-pxcor [ set xcor wealth ]]



This ensures that agents with wealth exceeding 500 do not move further right on the grid. The final go  procedure looks like this:

Don't forget to also add the go  Button to the Interface Tab.

The transact  Command

The transact  command reduces one unit of wealth from the agent and gives it to a random agent. The set  command is used to
reduce wealth, while ask one-of other turtles  is used to transfer wealth to a random recipient.

At this point, the simulation should work as intended. Agents will move horizontally across the grid, visualizing the wealth distribution as
the simulation progresses.

Exercise: Run the setup  command in the Interface tab and press the go  button to start the simulation.

Analyze the wealth distribution in the system:

The simulation works, agents are moving around, and wealth is being redistributed. However, to better understand the inner dynamics of
the model, we need additional insights through plots and monitors that provide valuable analytics.

Let's create a point plot that visualizes the wealth distribution. The x-axis will represent each agent's unique who  ID, and the y-axis will
represent their wealth. The plot will be named "Turtle Distribution", and we will also include a legend displaying the total wealth in the
system, which remains constant at $50,000 ($100 * 500 agents).

To achieve this, we need to plot each agent's who  ID against their respective wealth as points on the graph. This can be done easily
using the following configuration:

to go

ask turtles with [ wealth > 0 ] [ transact ]

ask turtles [ if wealth <= max-pxcor [ set xcor wealth ]]

tick

end

to transact

set wealth wealth - 1

ask one-of other turtles [ set wealth wealth + 1 ]

end

Based on your observations, hypothesize the probability density function (PDF) that the wealth distribution might follow.
What factors could contribute to the shape of the wealth distribution?
Provide a formal justification for your guess before verifying with additional experiments.



We set the plot's maximum x and y ranges using the set-plot-x-range  and set-plot-y-range  commands. These define the bounds
of the plot: the x-axis for the agents' IDs and the y-axis for their wealth. Then, we ask the turtles to plot their x and y coordinates, which
correspond to their who  ID and wealth, respectively. This ensures each agent's wealth is represented as a point on the plot.

Exercise: Observe the wealth distribution in the simulation. Over time, the dynamics of the simulation result in a noisy distribution
of wealth among the agents. As the simulation progresses through many steps, the wealth starts to become increasingly unequal.

Exercise: Create another plot, but this time switch the roles of the x and y axes. In this plot, we aim to explore how different
amounts of wealth are distributed among agents. Follow these steps:

Think about what this plot reveals. How does the wealth distribution change over time?

Solution:
Click to show/hide solution

What part of the simulation dynamics contributes to this phenomenon?
Why does wealth inequality emerge despite the random nature of the transactions?

Use a bar plot with wealth as the x-axis and the number of turtles as the y-axis.
Set the interval for the wealth bins to 5.
Set the maximum x value to 500 (wealth) and the maximum y value to 40 turtles.
Label the plot wealth distribution and add a legend indicating the total number of wealth ($50,000).



For additional analytics, we want to calculate two key metrics:

To achieve this, we can create two reporters in our NetLogo code: one to calculate the total wealth of the top 10% of agents and
another to calculate the total wealth of the bottom 50% of agents.

The max-n-of  reporter retrieves the n turtles with the highest wealth values, where n  is 10% of the total number of turtles (in this
case, count turtles * 0.1 ). Similarly, the min-n-of  reporter retrieves the n turtles with the lowest wealth values, based on the
wealth  attribute.

To complete the task, add two respective monitor elements to the interface.

We can also plot these values on a Plot Element to observe how the wealth distribution changes over time. With the reporters for the
top 10% wealth and bottom 50% wealth already created, these values can be dynamically added to a plot during the simulation.

1. The wealth of the top 10% of agents in the environment (to understand how much wealth is controlled by the richest agents).
2. The total wealth of the bottom 50% of agents (to assess the distribution of wealth among the poorer agents).

to-report top-10-pct-wealth  

  report sum [ wealth ] of max-n-of (count turtles * 0.10) turtles [ wealth ]  

end

to-report bottom-50-pct-wealth  

  report sum [ wealth ] of min-n-of (count turtles * 0.50) turtles [ wealth ]  

end



Which results in something like this:

As the simulation progresses, the lines on the plot will likely cross each other. Over time, the top 10% of agents will control the majority
of the wealth in the economy, while the bottom 50% of agents will control only around 20% of the total wealth. This illustrates the
emergence of wealth inequality in the system. Is this always the case?

Exercise: Using the BehaviorSpace experiment tool, create an experiment named wealth-distribution  to measure the top 10%
and bottom 50% wealth values in the system.

Based on the dynamics of this wealth redistribution system, the wealth distribution tends to evolve into a Boltzmann-Gibbs
distribution, which is also referred to as an exponential distribution in statistical mechanics.

Key Characteristics of the Emergent Distribution:

Exercise: Create a Slider  element to control the number of agents in the simulation dynamically. Follow these steps:

Ensure the experiment collects these metrics only at the end of the simulation; intermediate steps are not needed.
Set the experiment to run for a total of 10 repetitions to account for variability.
Limit the simulation to 10,000 ticks.
Analyze the final wealth distribution from the results.

1. The probability of an agent having wealth (w) follows: [P(w) = 1
⟨w⟩ e

−w/⟨w⟩] where (⟨w⟩) is the average wealth in the system.

2. The random exchange of wealth between agents leads to this exponential distribution, as it mirrors the energy exchange dynamics
observed in gas molecules in statistical mechanics.



Extending the Model

Exercise: Modify the rules of the system to allow agents to go into debt. Specifically:

Observe the effect of this rule change on the wealth distribution over time:

Solution:
Click to show/hide solution

Exercise: Change the transaction rule so agents give out more money per transaction (e.g., from $1  to $5  or more).

Solution:
Click to show/hide solution

Add a global variable (e.g., agent-count ) to store the number of agents.
Configure the Slider  in the Interface tab with appropriate minimum, maximum, and default values (e.g., min: 10, max: 500,
default: 100).
Ensure the setup  procedure uses the value of agent-count  to create the corresponding number of turtles.
Update the plot configurations dynamically to reflect changes in the number of agents:

Set the x-axis range of the plot to 0  to agent-count .
Ensure the plots scale dynamically as the number of agents changes.

Remove the restriction that prevents agents with 0 wealth  from giving money.
Allow agents to give money even if their wealth drops below 0 .

Does the system still follow an exponential distribution?
What happens to the wealth dynamics as debt accumulates in the system?

What happens to the wealth distribution?
Does inequality increase or decrease?



Exercise: Change the rules so that richer agents have a lower chance of receiving money, based on their wealth.

Solution:
Click to show/hide solution

Try different probability functions, such as 1 / wealth  or 1 / sqrt(wealth) .
Observe how this affects the wealth distribution and inequality.



Total Wealth Proportional Probability:

Solution:
Click to show/hide solution

Solution:
Click to show/hide solution

Exercise: Modify the giving rule so that wealthier agents give out more money based on the percentage of their wealth.

Solution:
Click to show/hide solution

Change the rule so that every agent gives out a fixed percentage (e.g., 5% ) of their current wealth in each transaction.
Experiment with different percentage values (e.g., 2% , 10% , or 20% ).
Observe how this rule affects the wealth distribution and inequality over time.



With 5%:

With 20%:

This percentage-based payment functions as a form of taxation, disproportionately impacting wealthier agents more than poorer ones.
As the tax percentage decreases, the wealth distribution becomes more uniform, with agents converging toward similar living standards.
Conversely, increasing the tax percentage flattens the wealth distribution, reducing inequality. However, if the tax rate becomes
excessively high, the system reverts to an exponential Boltzmann-Gibbs distribution.

Fun Facts:

Extra Exercise: Modify the model to introduce the following features:

1. The original model of Epstein and Axtell was called the Sugarscape model, which can be found in the Models Library.
2. This redistribution phenomenon aligns with the broader concept in economics and sociology that, in systems with random

exchanges and without redistributive policies, wealth tends to become concentrated among a small fraction of the
population.

3. The simulation outcome mirrors the energy distribution among particles in an ideal gas, where energy is exchanged randomly
during collisions.



Observe how introducing transaction-cap  and reputation affects the wealth and reputation distributions over time. Try varying the
initial values for transaction-cap  and reputation  to see their effects on inequality.

Flattening The Curve
The COVID-19 pandemic, one of the most significant global health crises in recent history, exposed the challenges of managing an
unprecedented epidemic that disrupted economies and healthcare systems worldwide. The complexity of disease transmission, coupled
with the uncertainty surrounding symptoms, prevention strategies, and public health guidelines, made decision-making incredibly
difficult for policymakers.

In such critical situations, simulation models, particularly agent-based models (ABMs), can play a huge role in exploring potential
scenarios and evaluating intervention strategies. While it is impossible to fully replicate the intricacies of a global epidemic, abstracting
key elements into a model allows for a deeper understanding of disease dynamics and the potential impact of policy decisions.

However, modeling public health crises comes with its own set of challenges. Simulations must account for limited data, uncertainty in
hyperparameters, and the inherent variability of human behavior. Furthermore, developing and deploying these models requires rigorous
validation and ethical considerations, as they inform decisions that directly impact millions of lives.

While not a substitute for real-world experimentation, agent-based models offer a valuable decision-support tool for analyzing scenarios,
testing assumptions, and informing evidence-based policy-making during epidemics and other complex healthcare crises.

Modeling Commons

Modeling Commons is a website for sharing and discussing agent-based models written in NetLogo. There are at least 1,000 models
contributed by modelers from around the world.

One notable model that gained attention during the COVID-19 pandemic was titled "Covid-19: How quarantine can flatten the curve".
This model, while relatively simple in design, focused on exploring the effectiveness of quarantine measures in reducing the spread of
infection and "flattening the curve" within a population.

Add a new attribute called transaction-cap  to turtles, representing the maximum amount an agent can give in a single
transaction (based on their wealth).
Introduce a reputation system: Each agent starts with a reputation  value of 100. Agents with higher reputation are more
likely to receive money.
Update the transact  procedure:

Agents give an amount based on their transaction-cap  (e.g., up to 10% of their wealth).
The recipient is selected randomly but weighted by their reputation  (higher reputation = higher chance).
Reputation increases for agents who receive money and decreases for agents who give money.

Update the plots:
Create a plot to track the average reputation of agents over time.
Modify the wealth distribution plot to include both wealth and reputation effects.

https://m.modelingcommons.org/account/login
https://m.modelingcommons.org/account/login


The Code

The code adheres to the typical NetLogo structure, with global variables, breeds, and agent-specific attributes clearly defined. The
borders  global variable serves as a flag to indicate whether the borders are currently closed.

The primary agents in the model are the actor  breed, which are responsible for carrying and spreading the infection. The borders
breed, on the other hand, is used primarily for visualization purposes and to act as immovable barriers that restrict movement within the
environment. Each actor  is equipped with an additional attribute, days , which tracks the number of days an agent has been infected
with the virus.

The setup  code primarily focuses on initializing the environment, using a somewhat convoluted approach to visualize the borders and
set up the simulation. It involves generating the borders through algorithmic placement, spawning healthy agents within the grid, and
designating one of the agents as the initial infected individual.

globals [  

  borders? ;; Flag to track if borders are closed  

]  

breed [actors actor] ;; Main agents representing the population  

breed [borders border] ;; Temporary breed for creating border visuals  

actors-own [  

  days ;; Tracks the number of days an actor has been infected  

]

to setup  

  clear-all  

  reset-ticks  

  clear-plot  

  set borders? FALSE ;; Initialize borders as open  

  ;; Scenario-based setup  

  (ifelse senario = "base" [  

    ;; Base scenario: spawn a proportion of the population on black patches  

    ask n-of (count patches with [pcolor = black] * population / 100) patches [  

      sprout-actors 1 [  

        set shape "person"  

        set color white ;; Healthy actors start as white  

      ]  

    ]  

    ask one-of actors [set color red] ;; Infect one random actor  

  ]  

  ;; Communities and borders scenario  



  senario = "communities" or senario = "communities and borders" [  

    create-borders 10 [  

      setxy 0 0  

      set heading one-of [90 270] ;; Borders align horizontally or vertically  

    ]  

    ;; Draw initial border lines  

    ask borders [  

      repeat 4 [  

        repeat sqrt (count patches) [  

          set pcolor grey ;; Create a horizontal line of borders  

          fd 1  

        ]  

        rt 90 ;; Turn to create the next segment  

        repeat sqrt (count patches) + sqrt (count patches) / 4 [  

          set pcolor grey ;; Extend the border vertically  

          fd 1  

        ]  

      ]  

    ]  

    ;; Add additional borders for larger grids  

    if sqrt (count patches) > 20 [  

      ask borders [  

        setxy sqrt(sqrt(count patches)) sqrt(sqrt(count patches)) ;; Place at center  

        repeat 4 [  

          repeat sqrt (count patches) [  

            set pcolor grey  

            fd 1  

          ]  

          rt 90  

          repeat sqrt (count patches) + sqrt (count patches) / 4 [  

            set pcolor grey  

            fd 1  

          ]  

        ]  

      ]  

    ]  

    ;; Create a central border  

    create-borders 1 [  

      setxy sqrt(count patches) / 2 sqrt(count patches) / 2  

      set heading 90  

    ]  

    ;; Extend central borders  

    ask border 10 [  

      repeat 2 [  

        repeat sqrt (count patches) [  

          fd 1  

          set pcolor grey  

        ]  

        rt 90  

      ]  

    ]  

    ;; Clean up temporary borders  

    ask borders [die]  

    ;; Spawn actors based on population percentage  

    ask n-of (count patches with [pcolor = black] * population / 100) patches with [pcolor = black] [  

      sprout-actors 1 [  

        set shape "person"  

        set color white  

      ]  

    ]  

    ask one-of actors [set color red] ;; Infect one random actor  

  ]  

  [stop] ;; End setup if no valid scenario  

  )  

end



The go  Loop

The go  loop is relatively straightforward but relies on several utility functions to handle various aspects of the simulation. Here's a
breakdown of its functionality:

Traveling

The travel  function is straightforward yet effectively simulates the concept of movement. It selects a proportion of agents standing on
black patches (indicating areas not blocked by borders) based on the travel-rate . If the travel-rate  is set to 100, all agents will
travel; if it is set to 1, only 1% of the agents will travel. The exact number of agents selected to travel depends on the density  global
parameter.

All selected traveling agents are temporarily moved to patch (0, 0) . At this location, the patch agent (the patch itself) is asked to
instruct all actors on it to move to a random patch that is both unoccupied and has a black color. This ensures that agents do not move
back to their original location, facilitating valid movement across the grid.

Infecting

The loop terminates if there are no infected agents (red-colored actors) remaining.
Agents move around the map using the travel  function.
Infection spreads to neighboring agents through the infect  function.
If the proportion of infected agents surpasses the close-when  threshold, borders are closed using the close-borders  function.
The not-live  function handles deaths among infected agents.
Recovery is managed via the cure  function.
Finally, the simulation advances to the next tick, and the loop continues.

to go  

  ;; Stop if there are no infected (red) actors  

  if not any? actors with [color = red] [stop]  

  ;; Model dynamics  

  travel ;; Move actors around  

  infect ;; Spread infection  

  if count actors with [color = red] / count actors > close-when [  

    close-borders ;; Close borders when infection threshold is met  

  ]  

  not-live ;; Handle deaths from infection  

  cure ;; Handle recovery  

  tick ;; Advance simulation time  

end

to travel  

  ;; Move a proportion of actors based on travel-rate  

  ask n-of (count actors-on patches with [pcolor = black] * travel-rate / 100)  

  actors-on patches with [pcolor = black] [  

    setxy 0 0  

  ]  

  ;; Move actors to random unoccupied black patches  

  ask patch 0 0 [  

    ask actors-here [  

      if not any? patches with [not any? turtles-here and pcolor = black] [stop]  

      move-to one-of patches with [not any? turtles-here and pcolor = black]  

    ]  

  ]  

end



The infect  function is straightforward, with no complex dynamics. It instructs all infected actors (red-colored agents) to check their
eight neighboring patches. For each neighboring patch, if an actor is present and not already infected, there is a chance, determined by
the infection-rate , that the actor becomes infected. If the neighboring actor is already infected, no action is taken.

Closing Borders

The close-borders  procedure operates only in the communities and borders  scenario and when the borders are still open. It selects
a specified number ( number-of-border ) of patches to serve as initial border closures, changing their color to yellow. The procedure
then iteratively propagates the closure by expanding the yellow area to neighboring black patches, repeating this process close-
borders-law  times. This ensures that travel, which can only occur on black patches, is restricted. Finally, the borders?  flag is set to
indicate that the borders are now closed.

Not Living

The not-live  function, which handles the process of dying, is also relatively simple in this simulation. Infected actors (red-colored
agents) increment their days  counter at every tick to track how long they have been infected. As the number of days increases, the
probability of dying also increases. The chance of death reaches a maximum of 20%, simulating a higher mortality risk over time. This
essentially means that each agent has the following probability of dying:

P(not-livei) = {

  to infect  

  ;; Infected actors (red) spread infection to healthy neighbors  

  ask actors with [color = red] [  

    ask neighbors [  

      ask actors-here with [color = white] [  

        if random 100 <= infection-rate [set color red]  

      ]  

    ]  

  ]  

end

to close-borders  

  if not borders? [  

    if senario = "communities and borders" [  

      ;; Mark random patches as closed borders  

      ask n-of number-of-borders patches with [pcolor = black] [  

        set pcolor yellow  

      ]  

      ;; Expand borders by specified steps  

      repeat close-borders-law [  

        ask patches with [pcolor = yellow] [  

          ask neighbors with [pcolor = black] [set pcolor yellow]  

        ]  

      ]  

      set borders? TRUE ;; Borders are now closed  

    ]  

  ]  

end

0 if days_infectedi ≤ 30

( days_infectedi−30
100 )× 1

5 if days_infectedi > 30

to not-live  

  ;; Infected actors (red) age and may die over time  

  ask actors with [color = red] [  

    set days days + 1  

    if random 100 <= days - 30 [  

      if random 100 < 20 [die] ;; Chance of death increases with time  

    ]  

  ]  

end



Cure

The cure process can occur for actors that are infected. The probability of an infected actor iii being cured can be represented by the
following formula:

P(curei) = (
cure_rate
100

)× 1
2

Exercise: Experiment with the hyperparameters of the model.

Exercise: Adjust travel and border rules to minimize deaths.

Exercise: Modify the infection dynamics by allowing agents to infect others within a variable radius.

Solution:
Click to show/hide solution

Exercise: Add a vaccination strategy to the model.

Solution:
Click to show/hide solution

Extra Exercise: Add super-spreader  agents with higher infection rates.

Adjust the values for each hyperparameter (e.g., population , infection-rate , travel-rate , cure-rate , and others).
Log the results of each simulation run, including the shape of the infection curve and the total number of deaths.
Analyze how each hyperparameter influences the dynamics of the simulation, particularly the infection curve and mortality
rate.

Fix the infection-related parameters (e.g., infection-rate , cure-rate , etc.) to their default values.
Modify the travel and border-related rules (e.g., travel-rate , close-borders-law , and number-of-borders ).
Run the simulation and log the results for each configuration, focusing on the total death count.
Can you find a set of hyperparameters that minimizes the death count?

Add a slider infection-radius  in the Interface tab to allow the user to control the radius of infection.
Modify the infect  procedure so that it checks all agents within the specified radius, not just neighbors.
Run simulations with different values of infection-radius  and observe how the infection spreads over time.

Create a slider vaccination-rate  that determines the percentage of healthy actors vaccinated at the start.
Vaccinated actors should be immune to infection and represented by a unique color (e.g., blue).
Modify the setup  procedure to randomly vaccinate a proportion of the population based on vaccination-rate .
Analyze the effect of vaccination on the infection curve and total deaths.

Create a certain percentage of the population as super-spreaders  at the start of the simulation.
Super-spreaders should have a higher infection radius and infection rate compared to regular agents.
Modify the setup  and infect  procedures to account for super-spreaders.



Game Development?
The implementation and development of this project were carried out by Ramesh Maddegoda in June 2021.

Can you create simple games in NetLogo? Absolutely! By leveraging the built-in tools and features, you can design simulations that
use keyboard inputs such as W , A , S , and D  for movement, as well as button clicks to trigger specific events within the environment.
NetLogo also supports other mouse and keyboard inputs, allowing for a wide range of interactive possibilities.

Let’s explore what creative games can be built in NetLogo!

Let's just quickly go through what makes this game being a thing possible. Let's look at some global variables, agent attributes and
breeds.

breed [ players player ]  

breed [ player-bullets player-bullet ]  

breed [ enemy-bullets enemy-bullet ]  

breed [ landing-zones landing-zone ]  

breed [ enemies enemy ]  

breed [ explosions explosion ]  

breed [ final-statuses final-status ]  

; Global variables  

globals [  

  mouse-was-down  

  stop-game  

]  

; Private varaiabled  

players-own [  

 health  

]  



There are several breeds utilized in this code, each serving a distinct and specific purpose. Let’s break them down:

The setup  command is straightforward but crucial for initializing the game. It creates the player agent and positions it at the bottom of
the grid. The player is assigned a plane-shaped appearance, customized color, heading, and a health attribute, which is shared by both
players  and enemies  as agent-specific attributes. Additionally, it sets up the landing zones where enemy agents will spawn and
creates the enemy agents with similar properties to the player. Finally, the setup command draws the blue borders around the grid to
define the play area visually.

enemies-own [  

 health  

]

Player: Represents the main agent controlled by you.
Player-bullets: These are the bullet agents fired by the player.
Enemy-bullets: Bullets fired by enemy agents targeting the player.
Landing-zones: Designated areas where enemy agents spawn.
Enemy: Represents the hostile agents that the player must defeat.
Explosion: Simulates explosions using orange agents that scatter outward from the point of impact.
Final-statuses: Used to display emojis or symbols on the screen at the end of the game by coloring specific patches.

to setup  

 clear-all  

 reset-ticks  

 set stop-game false  

 setup-players  

 setup-landing-zones  

 setup-enemies  

 set mouse-was-down false  

  ask patches with [ count neighbors != 8 ]  

    [ set pcolor blue ]  

end

to setup-players  

create-players 1  

 ask players [  

set shape "Airplane"  

   set color green  

   set size 3  

   setxy 40 5  

   set heading 0  

   set health 100  

 ]

end

to setup-enemies  

  ask enemies [  

    set shape "Airplane"  

    set size 3  

    set color red  

    set heading 180  

    set health 100  

  ]

end

to setup-landing-zones  

  let x 0  

  create-landing-zones 4  

  ask landing-zones [  

    set shape "square"  



The stop-game  command is responsible for managing the game's state, determining when the game should end based on specific
conditions. The mouse-was-down  command tracks the status of mouse clicks, enabling interactions or triggering events within the
simulation based on user input.

The Play Loop

The play  loop is designed to run indefinitely but can be terminated when the stop-game  global variable is set to true . This variable is
triggered when either all enemy planes' health reaches 0 or the player's health is depleted.

The player-rules  command is straightforward: it checks if the player's health has reached 0. If so, it triggers the game-over
command, which creates the emoji effect and sets the stop-game  variable to true , effectively ending the game.

The enemy-rules  command follows a similar structure to player-rules  but includes additional logic for enemy behavior. It checks
whether an enemy's health has dropped to 0, and if so, triggers the explode  command and removes the agent. If an enemy is far from
the player (beyond a distance of 50), it patrols the environment in a predefined motion. However, if it comes within 50 units of the player,

    set size 5  

    set color grey  

    set x ( x + 15 )  

    setxy x  (max-pycor - 3)  

    hatch-enemies 1 [  

      create-link-from myself [  

        set color black  

      ]  

    ]  

  ]  

end

to play  

tick  

if stop-game = true [  

stop  

]  

player-rules  

player-bullet-rules  

enemy-bullet-rules  

enemy-rules  

explosion-rules  

check-mouse-button   

end

to player-rules  

ask players [  

if health <= 0 [  

game-over  

]  

set label round(health)  

facexy mouse-xcor mouse-ycor  

]  

end

to game-over  

hatch-final-statuses 1 [  

setxy 40 40  

set shape "face sad"  

set size 15  

set label ""  

set color yellow  

]  

set stop-game true  

end



it begins to approach and fire bullets. The explosion effect for enemies is also handled within this command. Let’s take a closer look at
the explode  command.

The explode  command simply hatches turtles of the explosion  breed, creating the visual representation of the explosion. However, it
does not handle their movement. The movement and behavior of these explosion agents are managed by the explosion-rules
command, which is executed in the play  loop.

The x-bullet-rules  command controls the bullet behavior in the model. It asks all bullet agents to move forward by one unit. The
bullets are removed under specific conditions:

Additionally, if a bullet hits an enemy within a radius of 3, it reduces the enemy's health by 0.01. When bullets collide or hit their targets,
they trigger the explode  command, which hatches explosion  agents to create a visual effect, similar to the explosions caused by
enemy deaths.

The check-mouse-button  command is another key part of the model. It monitors whether the mouse button was pressed during the
previous tick. If it detects that the mouse was clicked, it hatches a bullet from the player's position.

Movement

Lastly, the go-up  command handles player movement, allowing the player to move upward when the W  key is pressed.

to explode  

  hatch-explosions 25 [  

    set shape "Default"  

    set color orange  

    set size 2  

    set heading random 360  

    set label ""  

  ]  

  sound:play-note "Gunshot" 0 64 2  

end

to explosion-rules  

ask explosions [  

fd 0.01  

    if [pcolor] of patch-here = blue [  

      die  

    ]  

  ]  

end

if they reach the borders of the grid
if they enter the landing zones
or if they collide with enemy bullets within a radius of 3.

to bullet-explode  

  hatch-explosions 3 [  

    set shape "Default"  

    set color grey  

    set size 1  

    set heading random 360  

    set label ""  

  ]  

  sound:play-note "Gunshot" 50 64 2  

end

to go-up  

  ask players [  

    set heading 0  

    if ycor < max-pycor [  

      set ycor (ycor + 1)  

    ]  



The player's vertical position ( ycor ) stays within the defined bounds, preventing the player from exceeding the grid's upper limit.

Extra Exercise: Add Power-ups

Extra Exercise: Add Obstacles

Extra Exercise: Multiplayer Support

Extra Exercise: Add difficulty levels:
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  ]  

end

Create a new power-up  breed that spawns randomly on the grid.
Make power-ups provide benefits to players, such as increased speed, additional health, or temporary immunity.
Ensure power-ups disappear after a certain time or after being collected by the player.

Create stationary or moving obstacles that block bullets and player movement.
Ensure obstacles are randomly generated during the setup  procedure of the game.

Add support for multiple players controlled by different keys (e.g., WASD  for Player 1 and Arrow Keys  for Player 2).
Implement cooperative gameplay where players work together to defeat enemies.

Implement a difficulty scaling system where the number and health of enemies increase as the player progresses.
Optionally, increase the speed or frequency of enemy bullets over time.
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