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Recap

Previously on Lecture 5
• Single-Shot Detectors: Naïve SSD, YOLO
• Multi-box Detection
• Non-Max Suppression (NMS)
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Recap

Previously on Lecture 5
• Object Detection Metrics: IoU, mAP, etc.
•  Applications of Object Detection

How can we compare our prediction 
to the ground-truth box?

Intersection over Union (IoU) 
(Also called “Jaccard similarity” or 
“Jaccard index”):

𝑨𝒓𝒆𝒂 𝒐𝒇 𝑰𝒏𝒕𝒆𝒓𝒔𝒆𝒄𝒕𝒊𝒐𝒏

𝑨𝒓𝒆𝒂 𝒐𝒇 𝑼𝒏𝒊𝒐𝒏
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Recap

Supervised Learning tasks

Classification Semantic 
Segmentation

Classification 
+ Localization

Object 
Detection

Instance 
Segmentation

CAT GRASS, CAT,
TREE, SKY

Single Object Multiple Objects

CAT DOG, DOG, CAT DOG, DOG, CAT

Single Object No objects, just pixels Multiple Objects
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Instance SegmentationSemantic Segmentation

Applications of  Image Segmentat ion

Image Segmentation
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Autonomous Driving example - NVIDIA DRIVE (2024)
Video Segmentation

Applications of  Image Segmentat ion
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• Medical image diagnosis
https://github.com/mateuszbuda/brain-segmentation-pytorch
https://github.com/Saswatm123/3D-Brain-Tumor-Segmentation-PyTorch
https://github.com/hahnicity/pytorch-lung-segmentation 

Applications of  Image Segmentat ion

Applications

Input Image Segmented Image

https://github.com/mateuszbuda/brain-segmentation-pytorch
https://github.com/Saswatm123/3D-Brain-Tumor-Segmentation-PyTorch
https://github.com/hahnicity/pytorch-lung-segmentation


Applications 
Applications of  Image Segmentat ion
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• Medical image diagnosis
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• Entertainment
• Photo effect
• Virtual try on

https://towardsdatascience.com/semantic-image-segmentation-with-deeplabv3-pytorch-989319a9a4fb
https://github.com/thuyngch/Human-Segmentation-PyTorch 
https://github.com/kishorkuttan/Deep-Virtual-Try-On
https://github.com/shadow2496/VITON-HD
https://github.com/JDAI-CV/Down-to-the-Last-Detail-Virtual-Try-on-with-Detail-Carving  

Applications
Applications of  Image Segmentat ion

https://towardsdatascience.com/semantic-image-segmentation-with-deeplabv3-pytorch-989319a9a4fb
https://github.com/thuyngch/Human-Segmentation-PyTorch
https://github.com/kishorkuttan/Deep-Virtual-Try-On
https://github.com/shadow2496/VITON-HD
https://github.com/JDAI-CV/Down-to-the-Last-Detail-Virtual-Try-on-with-Detail-Carving
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• Microsoft Teams segmentation
Video Segmentation

Applications of  Image Segmentat ion



Classification Task

0.01 Dog

0.01 Cat

0.91 Racoon*

… …

0.01 Flower

We map images (x) to labels (y)

The Reconstruction  Task
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Reconstruction task

We try to get back the original image while constraining the network to only learn meaningful information
- Can be used for denoising images
- We lose information during the constraining
- How can we upsample from the latent representation?

Latent space 
representation

BottleneckEncoder Decoder

The Reconstruction  Task
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How to upsample?
1. Unpooling
2. Transposed Convolution

1.  Upsampling

Upsampling
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• Whereas pooling operations downsample the resolution by summarizing a local area with a single value (ie. average or max pooling), 
"unpooling" operations upsample the resolution by distributing a single value into a higher resolution.

Pooling Unpooling

Bilinear
Linear Shifted

1.  Upsampling

Unpooling
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• Whereas pooling operations downsample the resolution by summarizing a local area with a single value (I.e. average or max pooling), 
"unpooling" operations upsample the resolution by distributing a single value into a higher resolution.

• No weights, nothing to learn here!

Unpooling

1.  Upsampling

In-Network upsampling: “Max Unpooling”
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• Most popular approach
• Whereas a typical convolution operation will take the dot product of the values currently in the filter's view and produce a single value 

for the corresponding output position, a transpose convolution essentially does the opposite. For a transpose convolution, we take a 
single value from the low-resolution feature map and multiply all the weights in our filter by this value, projecting those weighted 
values into the output feature map.

1.  Upsampling

Transposed Convolution
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• 1D example

a

b

c

d

e

x

y

z

Good explanation: https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0 

Input size: 5 Filter size: 3
Stride: 2

*

1.  Upsampling

Normal Convolution

https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
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a

b

c

d

e

x

y

z

Input size: 5 Filter size: 3
Stride: 2

*

1.  Upsampling

Normal Convolution

Output size: 2

ax + by + cz=

Good explanation: https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0 

• 1D example

https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
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x

y

z

Input size: 5 Filter size: 3
Stride: 2

*

1.  Upsampling

Normal Convolution

Output size: 2

= ax + by + cz

cx + dy + ez

a

b

c

d

e

Good explanation: https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0 

𝑛 × 𝑛 𝑖𝑚𝑎𝑔𝑒 𝑓 × 𝑓 𝑓𝑖𝑙𝑡𝑒𝑟

𝑝𝑎𝑑𝑑𝑖𝑛𝑔 𝑝 𝑠𝑡𝑟𝑖𝑑𝑒 𝑠

𝑛 + 2𝑝 − 𝑓

𝑠
+ 1

• 1D example

https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
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x

y

z

Input size: 2 Filter size: 3
Stride: 2

a

b *

1.  Upsampling

Transposed Convolution

Good explanation: https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0 

• 1D example

https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
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x

y

z

Input size: 2 Filter size: 3
Stride: 2

a

b
*

1.  Upsampling

Transposed Convolution

ax

ay

az

Output size: 5

=

Good explanation: https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0 

• 1D example

https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
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x

y

z

Input size: 2 Filter size: 3
Stride: 2

*

1.  Upsampling

Transposed Convolution

ax

ay

az

Output size: 5

ax

ay

az + bx

by

bz

𝒐𝒖𝒕𝒑𝒖𝒕 𝒔𝒊𝒛𝒆 = (𝑖𝑛𝑝𝑢𝑡 𝑠𝑖𝑧𝑒 − 1) ∗ 𝑠𝑡𝑟𝑖𝑑𝑒 − 2 ∗ 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 + (𝑘𝑒𝑟𝑛𝑒𝑙 𝑠𝑖𝑧𝑒 − 1) + 1
a

b

Good explanation: https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0 

• 1D example

https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
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• 1D example
• For filter sizes which produce an overlap in the output feature map, the overlapping values are simply added 

together.
• Less common names: Deconvolution, Fractionally strided convolution, Up convolution, …

1.  Upsampling

Transposed Convolution

Good explanation: https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0 

https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0


1.  Upsampling

Normal Convolution

0

a

b

c

d

e

0

x

y

z

Padding = 1

Padding = 1

*

0

a

b

c

d

e

0

x

y

z

Padding = 1

Padding = 1

* =

𝑛 × 𝑛 𝑖𝑚𝑎𝑔𝑒 𝑓 × 𝑓 𝑓𝑖𝑙𝑡𝑒𝑟

𝑝𝑎𝑑𝑑𝑖𝑛𝑔 𝑝 𝑠𝑡𝑟𝑖𝑑𝑒 𝑠

𝑛 + 2𝑝 − 𝑓

𝑠
+ 1
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1.  Upsampling

Normal Convolution

0

a

b

c

d

e

0

Padding = 1

* =

Padding = 1

x

y

z

0

a

b

c

d

e

0

Padding = 1

* =

Padding = 1

x

y

z

0x + ay + bz

bx + cy + dz

0

a

b

c

d

e

0

Padding = 1

* =

Padding = 1

x

y

z

0x + ay + bz

bx + cy + dz

dx + ey + 0z

Stride = 2
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1.  Upsampling

𝒐𝒖𝒕𝒑𝒖𝒕 𝒔𝒊𝒛𝒆 = (𝑖𝑛𝑝𝑢𝑡 𝑠𝑖𝑧𝑒 − 1) ∗ 𝑠𝑡𝑟𝑖𝑑𝑒 − 2 ∗ 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 + (𝑘𝑒𝑟𝑛𝑒𝑙 𝑠𝑖𝑧𝑒 − 1) + 1
Transposed Convolution

a

b

c

x

y

z
* =

a

b

c

x

y

z
* =

Padding = 1

Padding = 1
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1.  Upsampling

Transposed Convolution

a

b

c

Padding = 1

* =

Padding = 1

x

y

z

a

b

c

Padding = 1

* =

Padding = 1

x

y

z

ay

az +bx

by

bz

Stride = 2

a

b

c

Padding = 1

* =

Padding = 1

x

y

z

ay

az +bx

by

bz + cx

cy

Stride = 2

Stride = 2
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1.  Upsampling

Transposed Convolution

a

b

c
* =

x

y

z

ay

az +bx

by

bz + cx

cy

Stride = 2

Stride = 2
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1

2

3
* =

2

2

2

2

2

2 + 4 = 6

4

4 + 6 = 10

6

6

Stride = 2

Stride = 2

Padding = 1

Padding = 1



1.  Upsampling

Summary on 1D
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0

a

b

c

d

e

0

Padding = 1

* =

Padding = 1

x

y

z

0x + ay + bz

bx + cy + dz

dx + ey + 0z

Stride = 2

Stride = 2

VSConvolution Transposed Convolution

a

b

c

Padding = 1

* =

Padding = 1

x

y

z

ay

az +bx

by

bz + cx

cy

Stride = 2

Stride = 2

Filter size: 3
Stride: 2
Padding: 1

Output size: 3Input size: 5 Filter size: 3
Stride: 2
Padding: 1

Output size: 5Input size: 3



1.  Upsampling

Convolution
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• 2D example

0 0 0 0 0 0 0

0 4 0 0 2 10 0

0 8 16 0 0 20 0

0 0 0 0 0 5 0

0 2 1 0 2 8 0

0 7 1 6 0 2 0

0 0 0 0 0 0 0

2 2 2

1 0 1

2 2 2

* =

Stride = 2

Stride = 2

Padding = 1



1.  Upsampling

Transposed Convolution
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+ +

+ + + + +

+ +

+ + + + +

+ +

2 2 2

1 0 1

2 2 2

*

0 5 2

2 1 0

0 3 1

=

Stride = 2

Stride = 2

Padding = 1

• 2D example
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Interactive Jupyter Notebook available on Canvas

$jupyter nbconvert <notebook_name>.ipynb --to slides --post serve

Interactive Explanation on HuggingFace
https://huggingface.co/spaces/PercibalBuxus/TransposedConvolutions

1.  Upsampling

https://huggingface.co/spaces/PercibalBuxus/TransposedConvolutions
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Semantic image segmentation is the task of labelling each pixel of an image with a corresponding 
class of what is being represented. 

Input: RGB image (height × width × 3) or a grayscale (height × width × 1)
Output: a segmentation map (height × width × 1), where each pixel contains a class label represented as an integer.

2.  Semantic Segmentation

Semantic Segmentation

Input Semantic Labels

Person
Bicycle
Background
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Output of the neural network is a K  long vector

How should we encode the ground-truth values?
One-hot encoding (K=3):

(cat) 1 -> [1, 0, 0]
(dog) 2 -> [0, 1, 0]
(horse) 3 -> [0, 0, 1,]

Just as h(x): values between 0 and 1, sum up to 1

2.  Semantic Segmentation

Multiclass Classification (Recap)
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Similar to how we treat standard categorical values, we'll create our target by one-hot encoding the class 
labels - essentially creating an output channel for each of the possible classes.

A prediction can be collapsed into a segmentation map by taking the argmax of each depth-wise pixel vector.

Depth-wise argmax

2.  Semantic Segmentation

Semantic Segmentation

Semantic Labels



• Sliding Windows + Classification
• Computationally expensive
• Not reusing shared features

2.  Semantic Segmentation

How to solve it? The naïve approach:
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Cow

Cow

Grass

Classify center 
pixel with CNNExtract patch

Full Image



• Apply convolutions for all pixels at once, keeping original resolution
• Computationally expensive
• Does not enforce network to learn key features. It only learns a direct mapping from 

input pixels to the segmentation pixels.

2.  Semantic Segmentation

How to solve it? The naïve approach:
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Input:
3 × 𝐻 × 𝑊 Convolutions:

𝐷 × 𝐻 × 𝑊 

Scores:
𝐶 × 𝐻 × 𝑊 

Predictions:
𝐻 × 𝑊 

Conv Conv Conv Conv argmax



Convolutional Autoencoders
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• Specifically designed for image data. 
• They employ convolutional layers in both the encoder and decoder parts of the network. 
• This architecture allows them to capture spatial dependencies and hierarchical features effectively. 
• The reconstruction of the input image is often blurry and of lower quality due to compression during which 

information is lost.

2.  Semantic Segmentation



Convolutional Autoencoders
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Image Segmentation
• Image segmentation is the process of partitioning an image into multiple segments each belonging to a 

class. 
• The goal is to simplify and/or change the representation of an image by grouping pixel values according 

to the class they belong to.

2.  Semantic Segmentation
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• One popular approach for image segmentation models is to follow an encoder/decoder structure where we downsample the 
spatial resolution of the input, developing lower-resolution feature mappings which are learned to be highly efficient at discriminating 
between classes, and then upsample the feature representations into a full-resolution segmentation map.

BottleneckEncoder Decoder

2.  Semantic Segmentation

Encoder-Decoder Structure

Input:
3 × 𝐻 × 𝑊 

High-res:
𝐷1 × 𝐻/2 × 𝑊/2 

High-res:
𝐷1 × 𝐻/2 × 𝑊/2 

Med-res:
𝐷1 × 𝐻/2 × 𝑊/2 

Med-res:
𝐷1 × 𝐻/2 × 𝑊/2 

Predictions:
𝐻 × 𝑊 

Low-res:
𝐷1 × 𝐻/2 × 𝑊/2 
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The approach of using a “Fully Convolutional" network trained end-to-end, pixels-to-pixels for the task of image segmentation was 
introduced by Long et al. in late 2014. The paper's authors propose adapting existing, well-studied image classification networks (e.g. 
AlexNet) to serve as the encoder module of the network, appending a decoder module with transpose convolutional layers to upsample 
the coarse feature maps into a full-resolution segmentation map.

Fully Convolutional Network (FCN) [1]

[1] Long, Jonathan, Evan Shelhamer, and Trevor Darrell. "Fully convolutional networks for semantic segmentation." Proceedings of the IEEE conference on computer vision and pattern recognition. 2015.

2.  Semantic Segmentation

Original AlexNet model

Repurposed AlexNet model

The encoder
produces a coarse
feature map which is
then refined by the
decoder module.

https://arxiv.org/abs/1411.4038


However, because the encoder module reduces the resolution of the input by a 
factor of 32, the decoder module struggles to produce fine-grained 
segmentations.

Fully Convolutional Network (FCN) [1]
2.  Semantic Segmentation
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Ground truth target Predicted segmentation

[1] Long, Jonathan, Evan Shelhamer, and Trevor Darrell. "Fully convolutional networks for semantic segmentation." Proceedings of the IEEE conference on computer vision and pattern recognition. 2015.
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• Adding skip connections - The authors address this tension by slowly upsampling (in stages) the 
encoded representation, adding "skip connections" from earlier layers, and summing these two 
feature maps.

• These skip connections from earlier layers in the network (prior to a downsampling operation) 
should provide the necessary detail to reconstruct accurate shapes for segmentation boundaries. 
Indeed, we can recover more fine-grain detail with the addition of these skip connections.

Before

with skip connections

2.  Semantic Segmentation

Fully Convolutional Network (FCN) [1]

Skip connections
[1] Long, Jonathan, Evan Shelhamer, and Trevor Darrell. "Fully convolutional networks for semantic segmentation." Proceedings of the IEEE conference on computer vision and pattern recognition. 2015.

Ground truth target Predicted segmentation

Ground truth target Predicted segmentation
Input

Upsampling

Encoder Module

Output
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• Ronneberger et al. improve upon the "fully 
convolutional" architecture primarily through 
expanding the capacity of the decoder 
module of the network. More concretely, they 
propose the U-Net architecture which "consists 
of a contracting path to capture context and a 
symmetric expanding path that enables precise 
localization."

[2] Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-net: Convolutional networks for biomedical image segmentation." Medical image computing and computer -assisted intervention–MICCAI 2015: 18th international 
conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18. Springer International Publishing, 2015.

U-Net: Convolutional Networks for Biomedical Image Segmentation 
[2]

2.  Semantic Segmentation



U-Net Encoder Decoder

2.  Semantic Segmentation
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U-Net Encoder

2.  Semantic Segmentation

Decoder
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U-Net
2.  Semantic Segmentation
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How can we use it for images with arbitrary size?
- Do the segmentation for smaller regions of the image
- On the edges mirror the image
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Advanced U-Net variants
• The standard U-Net model consists of a series of convolution operations for each "block" in the architecture. These convolutional blocks 

can be replaced for more advanced ones such as:
• ResNet blocks
• Inception modules
• Dense blocks
• Etc.

DeepLab
• Deeplab from a group of researchers from Google have proposed a multitude of techniques to improve the existing results and get finer 

output at lower computational costs. The 3 main improvements suggested as part of the research are:
• Atrous convolutions
• Atrous Spatial Pyramidal Pooling
• Conditional Random Fields usage for improving final output

DeepLab v3: https://arxiv.org/abs/1706.05587v3 

Architectures
2.  Semantic Segmentation

https://arxiv.org/abs/1706.05587v3


Segment Anything Model (SAM)
• Encoder-Decoder architecture
• The focus is on interactive segmentation based on generalized mask prediction
• Incorporates the user selected point/box/text to the prediction
• https://segment-anything.com/demo#

3.  Instance Segme ntation

[6] Ravi, N., Gabeur, V., Hu, Y.-T., Hu, R., Ryali, C., Ma, T., … Feichtenhofer, C. (2024). SAM 2: Segment Anything in Images and Videos. arXiv [Cs.CV]. Retrieved from http://arxiv.org/abs/2408.00714
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https://segment-anything.com/demo


Segment Anything Model (SAM)
- The generated masks does not contain label 

prediction
• https://segment-anything.com/demo#

3.  Instance Segme ntation

[6] Ravi, N., Gabeur, V., Hu, Y.-T., Hu, R., Ryali, C., Ma, T., … Feichtenhofer, C. (2024). SAM 2: Segment Anything in Images and Videos. arXiv [Cs.CV]. Retrieved from http://arxiv.org/abs/2408.00714
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https://segment-anything.com/demo


Segment Anything Model (SAM 2)
- Extending SAM with memory to keep the masks over the whole video
- Images are considered as a single frame video 
- iVOS/VOS
• https://sam2.metademolab.com/demo

3.  Instance Segme ntation

[7] Ravi, N., Gabeur, V., Hu, Y.-T., Hu, R., Ryali, C., Ma, T., … Feichtenhofer, C. (2024). SAM 2: Segment Anything in Images and Videos. arXiv [Cs.CV]. Retrieved from http://arxiv.org/abs/2408.00714
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https://sam2.metademolab.com/demo
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How to train such networks?
• Have input X (images) and labels Y (masks).
• Define architecture
• Set hyperparameters
• Define loss function and metrics

Training
2.  Semantic Segmentation
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Pixel-wise cross entropy loss
• This loss examines each pixel individually, comparing the class predictions (depth-wise pixel vector) to our 

one-hot encoded target vector.
• Problematic for unbalanced classes

Losses
2.  Semantic Segmentation

Prediction for a selected pixel Target for the corresponding pixel

Pixel-wise loss is calculated 
as the log loss, summed over 
all possible classes

− 
𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝑦𝑡𝑟𝑢𝑒 log 𝑦𝑝𝑟𝑒𝑑

The scoring is repeated over 
all pixels and averaged
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Pixel-wise cross entropy loss
• This loss examines each pixel individually, comparing the class predictions (depth-wise pixel vector) to our one-hot encoded target 

vector.
• Problematic for unbalanced classes

2.  Semantic Segmentation

Losses
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 Dice coefficient

Dice Loss
• Another popular loss function for image segmentation tasks is based on the Dice coefficient, which is essentially a measure of overlap 

between two samples. This measure ranges from 0 to 1 where a Dice coefficient of 1 denotes perfect and complete overlap. The Dice 
coefficient was originally developed for binary data, and can be calculated as:

𝐷𝑖𝑐𝑒 = 2 ×
|A∩B|

|A| + |B|
where:
• |A ∩B | represents the common elements between sets A and B, and
• |A | represents the number of elements in set A 
• |B | represents the number of elements in set B 

Losses
2.  Semantic Segmentation

https://en.wikipedia.org/wiki/S%C3%B8rensen%E2%80%93Dice_coefficient
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Instance Segmentation3



What is Instance Segmentation?
• Instance Segmentation is identifying each object instance for every known object within an image. It 

assigns a label to each pixel of the image.

3.  Instance Segme ntation

4/1/2025 Deep Network Development 60



What is Instance Segmentation?
Semantic Segmentation: gives per-pixel labels, but 
merges instances.

Object Detection: detects individual object instances, but 
only gives boxes.

Instance Segmentation

3.  Instance Segme ntation
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What is Instance Segmentation?
Things and Stuff

• Things: Object categories that can be separated 
into object instances (e.g. cats, cars, person)

• Stuff: Object categories that cannot be separated 
into instances (sky, grass, water, trees)

3.  Instance Segme ntation
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What is Instance Segmentation?
Semantic Segmentation: detects both objects and 
regions but doesn't distinguish individual instances.

Instance Segmentation: distinguishes individual object 
instances, but only for countable objects.

3.  Instance Segme ntation
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What is Instance Segmentation?
3.  Instance Segme ntation

Beyond Instance Segmentation: Panoptic Segmentation [3]

Label all pixels in the 
image (both things 
and stuff).

For “thing” categories 
also separate into 
instances.

[3] Kirillov, A., He, K., Girshick, R., Rother, C., & Dollár, P. (2019). Panoptic Segmentation. arXiv [Cs.CV]. Retrieved from http://arxiv.org/abs/1801.00868
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How does Instance Segmentation work?
Instance Segmentation:
• Detect all objects in the image and 

identify the pixels that belong to 
each object (Only things!)

Approach:
• Perform object detection, then 

predict a segmentation mask for 
each object!

3.  Instance Segme ntation
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How does Instance Segmentation work?
3.  Instance Segme ntation

[4] Ren, S., He, K., Girshick, R., & Sun, J. (2016). Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. arXiv [Cs.CV]. Retrieved from http://arxiv.org/abs/1506.01497
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Faster R-CNN: Learnable Region Proposals [4]



How does Instance Segmentation work?
3.  Instance Segme ntation

[4] Ren, S., He, K., Girshick, R., & Sun, J. (2016). Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. arXiv [Cs.CV]. Retrieved from http://arxiv.org/abs/1506.01497
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Object Detection: Faster R-CNN [4]



How does Instance Segmentation work?
3.  Instance Segme ntation

[5] He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2018). Mask R-CNN. arXiv [Cs.CV]. Retrieved from http://arxiv.org/abs/1703.06870
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Instance Segmentation: Mask R-CNN [5]



Mask R-CNN architecture (2017) [5]
3.  Instance Segme ntation

[5] He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2018). Mask R-CNN. arXiv [Cs.CV]. Retrieved from http://arxiv.org/abs/1703.06870
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Mask R-CNN



Segmentation labels (recap)
• Similar to how we treat standard categorical values, we'll create our target by one-hot encoding the class labels - essentially creating 

an output channel for each of the possible classes.
• A prediction can be collapsed into a segmentation map by taking the argmax of each depth-wise pixel vector.

Depth-wise argmax

3.  Instance Segme ntation
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Semantic Labels



Instance Segmentation labels
3.  Instance Segme ntation

[5] He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2018). Mask R-CNN. arXiv [Cs.CV]. Retrieved from http://arxiv.org/abs/1703.06870
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Mask R-CNN: Example Training Targets [5]



Mask R-CNN architecture
• From [5] (More details on the paper)

3.  Instance Segme ntation

[5] He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2018). Mask R-CNN. arXiv [Cs.CV]. Retrieved from http://arxiv.org/abs/1703.06870
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Mask R-CNN results [5]
3.  Instance Segme ntation

[5] He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2018). Mask R-CNN. arXiv [Cs.CV]. Retrieved from http://arxiv.org/abs/1703.06870
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Mask R-CNN results [5]
3.  Instance Segme ntation

[5] He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2018). Mask R-CNN. arXiv [Cs.CV]. Retrieved from http://arxiv.org/abs/1703.06870
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• Upsampling is essential to reconstruct the original image from lower-resolution feature maps. 
• By increasing the resolution, upsampling enlarges images with the following methods:

• Unpooling upsamples by distributing a single value over higher resolution.
• Transpose Convolution reverses the operation of convolution.

• Object masks are predicted within an image through Image Segmentation.
• Fully Convolutional Networks (FCNs) serve as encoders for coarse feature maps but struggle with detailed 

segmentations.
• U-Net improves localization by expanding the decoder's capacity for segmentation tasks.
• With Mask R-CNN, adding a mask prediction head allows for extended segmentation capabilities.

• SAM: Interactive image segmentation based on user prompt. The predicted mask does not contain a label.
• SAM2: Extending SAM with a memory to keep track of the segmented object for a video.

• Semantic Segmentation: Treats all objects of the same class as one, using one-hot encoded class labels.
• Instance Segmentation: Identifies individual instances of the same object.

Summary
Image Segmentation
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• A survey of loss functions for semantic segmentation - https://arxiv.org/pdf/2006.14822
• R-CNN - https://medium.com/@selfouly/r-cnn-3a9beddfd55a
• Review: Fully Convolutional Network (Semantic Segmentation) - https://medium.com/towards-data-science/review-fcn-semantic-

segmentation-eb8c9b50d2d1

Further Links + Resources
Image Segmentation

https://arxiv.org/pdf/2006.14822
https://medium.com/@selfouly/r-cnn-3a9beddfd55a
https://medium.com/towards-data-science/review-fcn-semantic-segmentation-eb8c9b50d2d1
https://medium.com/towards-data-science/review-fcn-semantic-segmentation-eb8c9b50d2d1


Books:
• Courville, Goodfellow, Bengio: Deep Learning 

Freely available: https://www.deeplearningbook.org/ 
• Zhang, Aston and Lipton, Zachary C. and Li, Mu and Smola, Alexander J.: Dive into Deep Learning
    Freely available: https://d2l.ai/ 

Courses:
• Deep Learning specialization by Andrew NG
• https://www.coursera.org/specializations/deep-learning 
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Resources
Summary

https://www.deeplearningbook.org/
https://d2l.ai/
https://www.coursera.org/specializations/deep-learning


That’s all for today!
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