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Supervised Learning tasks
Recap

Classification Semantic 
Segmentation

Classification 
+ Localization

Object 
Detection

Instance 
Segmentation

CAT GRASS, CAT,
TREE, SKY

Single Object Multiple Objects

CAT DOG, DOG, CAT DOG, DOG, CAT

Single Object No objects, just pixels Multiple Objects
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Sequential Data Processing
1.  RNNs and Embeddings

Sequential data
Text – sequence of words 
/ characters

Speech – sequence of signals / 
acoustic features

Video – sequence of images (frames)

DNA – sequence of symbols 
(nucleotides)
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Sequential Data Processing
1.  RNNs and Embeddings

Sequential data carry temporal information – Is this car parking or leaving?
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Sequential Data Processing
1.  RNNs and Embeddings

Sequential data carry context

BANK

“The bank will lend us money.” "Let's swim to the opposite bank."
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Sequential Data Processing
1.  RNNs and Embeddings

Name entity recognition

Input X: Harry Potter and Hermione Granger invented a new spell. 
                 X<1>    X<2>       X<3>                  …                        X<t> …        X<9>

Output Y:  1        1        0             1               1             0       0    0      0    
                   Y<1>    Y<2>     Y<3>                  …                          Y<t> …       Y<9>
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Sequential Data Processing
1.  RNNs and Embeddings

Representing words as One hot vectors
Dataset: (X,Y)
Vocabulary: [a, aron, …, harry, …, potter, …, zulu]
Position:        1,   2,   …,     4075, …., 6883, …., 10000

Input X: Harry Potter and Hermione Granger invented a new spell. 
                 X<1>    X<2>       X<3>                  …                        X<t> …        X<9>

Representation:
Harry =  [0, 0, 0, …., 1, 0, 0, …., 0]
Position: 0               4075           10000

Potter =  [0, 0, 0, …., 0, …, 1, 0, …., 0]
Position: 0                        6883      10000
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Introduction to Recurrent Neural Network
1.  RNNs and Embeddings

What should we consider? 

The model needs to: 
• Handle variable length sequences 
• Track long term dependencies 
• Maintain the order of the input 
• Share parameters across sequences
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Introduction to Recurrent Neural Network
1.  RNNs and Embeddings

Why not a standard network?

Problems:
- Inputs, outputs can be different lengths in different examples
- Doesn’t share features learned across different positions of text
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Introduction to Recurrent Neural Network
1.  RNNs and Embeddings

What about Recurrent Neural Networks (RNNs)?

DNN
-1 -1 
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Introduction to Recurrent Neural Network
1.  RNNs and Embeddings

RNN (unrolled version)
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Introduction to Recurrent Neural Network
1.  RNNs and Embeddings

RNN (unrolled version)
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Introduction to Recurrent Neural Network
1.  RNNs and Embeddings

RNN (unrolled version)

at-1 

Hidden state at =  tanh( Waa at-1 +  Wax xt + ba)

Output  vector ŷt = tanh( Wya at + by)
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Introduction to Recurrent Neural Network
1.  RNNs and Embeddings
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Introduction to Recurrent Neural Network
1.  RNNs and Embeddings

Backpropagation

1. Calculate the forward pass
2. Determine the loss
3. Take the partial derivative (gradient) of the loss respect 

to each parameter
4. Shift the parameters to minimize the loss
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Introduction to Recurrent Neural Network
1.  RNNs and Embeddings
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Introduction to Recurrent Neural Network
1.  RNNs and Embeddings
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Tasks using RNNs
1.  RNNs and Embeddings
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Tasks using RNNs
1.  RNNs and Embeddings

RNN Many to One – Sentiment Analysis 
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Tasks using RNNs
1.  RNNs and Embeddings

RNN Many to One – Video Activity Recognition
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Tasks using RNNs
1.  RNNs and Embeddings

RNN Many to Many – Machine Translation 
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Tasks using RNNs
1.  RNNs and Embeddings

RNN One to Many – Music Generation 
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Tasks using RNNs
1.  RNNs and Embeddings

RNN One to Many – Image Caption
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Tasks using RNNs
1.  RNNs and Embeddings

…
Time series
Q&A

And more….
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Embeddings
1.  RNNs and Embeddings

Representing words as One hot vectors
Input X: My favorite sport is football.
                X<1>    X<2>        X<3>  X<4>   X<5>

Vocabulary: [favorite, football, is, my, sport]
Position:             1          2          3    4      5

Representation:
Football =  [0, 1, 0, 0, 0]
Position:      1  2  3   4  5

Sport =  [0, 0, 0, 0, 1]
Position: 1  2  3  4  5

Problems
• Scalability - huge vector for each word

• If we have a dataset of several sentences, from which we 
form a vocabulary of 10 000 words.

• Each word would be represented as a 10 000 long 
vector, having a single element set to 1. X<1> = [0 , 0, …, 1, 
…, 0, 0]

• There is no relationship between words. Each word is 
treated as an independent entity with no similarity to other 
words.
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Embeddings: Word representation
1.  RNNs and Embeddings

Featurized representation: Word Embedding
Vocabulary size: 10 000
Vocabulary: [a, …, apple, …, football, …, man, …, orange, …, sport, …, woman, …, zulu]
Position:        1       456             2078          5391        6257          7301         9853         10 000

Man 
(5391)

Woman
(9853)

King
(4914)

Queen
(7151)

Apple
(456)

Orange
(6257)

Gender -1 1 -0.95 0.97 0.00 0.01

Royal 0.01 0.02 0.93 0.95 -0.01 0.00

Age 0.03 0.02 0.7 0.68 0.03 -0.02

Food 0.04 0.01 0.02 0.01 0.95 0.97

… … … … … … …
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Embeddings: Word representation
1.  RNNs and Embeddings

Featurized representation: Word Embedding
Man (5391) instead of being represented a one hot encoded vector [0,0,…,1,…,0,0] would be represented as:
e5391=[-1, 0.01, 0.03, 0.04, …]   Embedding Matrix x one hot man = embedding man 

Man 
(5391)

Woman
(9853)

King
(4914)

Queen
(7151)

Apple
(456)

Orange
(6257)

Gender -1 1 -0.95 0.97 0.00 0.01

Royal 0.01 0.02 0.93 0.95 -0.01 0.00

Age 0.03 0.02 0.7 0.68 0.03 -0.02

Food 0.04 0.01 0.02 0.01 0.95 0.97

… … … … … … …

                              
(# features , vocab size) (vocab size, 1)   (# features, 1)
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Embeddings: Word representation
1.  RNNs and Embeddings

Featurized representation: Word Embedding
If we subtract man and woman, main difference is gender
We can compute word similarities
We can compute word analogies: man is to woman as king is to 
https://vectors.nlpl.eu/explore/embeddings/en/calculator/

Man 
(5391)

Woman
(9853)

King
(4914)

Queen
(7151)

Apple
(456)

Orange
(6257)

Gender -1 1 -0.95 0.97 0.00 0.01

Royal 0.01 0.02 0.93 0.95 -0.01 0.00

Age 0.03 0.02 0.7 0.68 0.03 -0.02

Food 0.04 0.01 0.02 0.01 0.95 0.97

… … … … … … …

https://vectors.nlpl.eu/explore/embeddings/en/calculator/
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Embeddings: Word representation
1.  RNNs and Embeddings

Featurized representation: Word Embedding
The word embeddings are learned with training.
Therefore, in practice, the features aren’t that understandable.
We can visualize lower representations of the embeddings with techniques such as T-SNE
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Embeddings: Word representation
1.  RNNs and Embeddings

Embeddings
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Embeddings: Word representation
1.  RNNs and Embeddings

Embeddings can be used to represent other types of data:

       Image: image embeddingsSpeech: speaker embeddings
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Embeddings: Word representation
1.  RNNs and Embeddings

How does Google Translate work? https://www.pinecone.io/learn/vector-database/ 

https://www.pinecone.io/learn/vector-database/
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Vanilla RNNs
2.  LSTM, GRU & Seq2Seq
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Vanilla RNNs
2.  LSTM, GRU & Seq2Seq

Problems with vanilla RNN
• Vanishing gradients
• Short term dependency
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Vanilla RNNs
2.  LSTM, GRU & Seq2Seq

Problems with vanilla RNN
• It is like a very deep neural network
• Vanishing gradients
• Short term dependency
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Long Short-Term Memory (LSTM)
2.  LSTM, GRU & Seq2Seq

LSTM – a more complex network
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Long Short-Term Memory (LSTM)
2.  LSTM, GRU & Seq2Seq

LSTM – no vanishing gradients



4/1/2025 Deep Network Development 41

Long Short-Term Memory (LSTM)
2.  LSTM, GRU & Seq2Seq

LSTM – a more complex network

Activations
• a = h 
• at = ht

Cell state (memory)
• C
• C~



4/1/2025 Deep Network Development 42

Long Short-Term Memory (LSTM)
2.  LSTM, GRU & Seq2Seq

LSTM - Gate

• Sigmoid puts output between 0 and 1
• Output of sigmoid controls which info goes through the gate
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Long Short-Term Memory (LSTM)
2.  LSTM, GRU & Seq2Seq

LSTM – Forget Gate
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Long Short-Term Memory (LSTM)
2.  LSTM, GRU & Seq2Seq

LSTM – Input / Ignore Gate
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Long Short-Term Memory (LSTM)
2.  LSTM, GRU & Seq2Seq

LSTM – Output Gate
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Long Short-Term Memory (LSTM)
2.  LSTM, GRU & Seq2Seq

LSTM – a more complex network

Vanilla RNN:

LSTM:
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Long Short-Term Memory (LSTM)
2.  LSTM, GRU & Seq2Seq
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Long Short-Term Memory (LSTM)
2.  LSTM, GRU & Seq2Seq
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Long Short-Term Memory (LSTM)
2.  LSTM, GRU & Seq2Seq
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Long Short-Term Memory (LSTM)
2.  LSTM, GRU & Seq2Seq
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Long Short-Term Memory (LSTM)
2.  LSTM, GRU & Seq2Seq
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Long Short-Term Memory (LSTM)
2.  LSTM, GRU & Seq2Seq
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Long Short-Term Memory (LSTM)
2.  LSTM, GRU & Seq2Seq
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Long Short-Term Memory (LSTM)
2.  LSTM, GRU & Seq2Seq



4/1/2025 Deep Network Development 55

Long Short-Term Memory (LSTM)
2.  LSTM, GRU & Seq2Seq
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Gated Recurrent Unit (GRU)
2.  LSTM, GRU & Seq2Seq
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LSTM vs GRU
2.  LSTM, GRU & Seq2Seq

The main differences between GRU and LSTM are:
• Number of gates: GRU has two gates - an update gate and a reset gate, whereas LSTM has three gates - input, forget, 

and output gates.
• Memory cell: Unlike LSTM, GRU doesn't have a separate memory cell. It combines the hidden state and memory cell into 

a single hidden state, simplifying the structure.
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Recurrent Layer
2.  LSTM, GRU & Seq2Seq
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Bidirectional RNN
2.  LSTM, GRU & Seq2Seq
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Bidirectional RNN
2.  LSTM, GRU & Seq2Seq
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Encoder – Decoder (Seq2Seq)
2.  LSTM, GRU & Seq2Seq

Question : Answer
(sequence) : (sequence) 

Machine Translation
English : German
(sequence) : (sequence) 
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Encoder – Decoder (Seq2Seq)
2.  LSTM, GRU & Seq2Seq

• The encoder and decoder are nothing more than stacked RNN layers, such as LSTM’s. The encoder processes the input and 
produces one compact representation, called z, from all the input timesteps. It can be regarded as a compressed format 
of the input.
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Encoder – Decoder (Seq2Seq)
2.  LSTM, GRU & Seq2Seq

• On the other hand, the decoder receives the context vector z and generates the output sequence. The most common 
application of Seq2seq is language translation. We can think of the input sequence as the representation of a sentence in 
English and the output as the same sentence in French.
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Encoder – Decoder (Seq2Seq)
2.  LSTM, GRU & Seq2Seq

Problems with the Seq2Seq
• The intermediate representation z cannot encode information from all the input timesteps. This is commonly known as the bottleneck 

problem. The vector z needs to capture all the information about the source sentence.
• In practice, how far we can see in the past (the so-called reference window) is finite. RNN’s tend to forget information from 

timesteps that are far behind.
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Introduction to Attention Mechanism
3.  Attent ion Mechanism

• All the information from the encoder is 
represented in the z vector (context)

• However, as seen previously, 
information from earlier timestamps is 
not preserved

• Can we create a better context 
vector? 
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Introduction to Attention Mechanism
3.  Attent ion Mechanism

• Attention mechanism helps creating a 
better context vector

• It learns which information from the 
encoder is relevant for the decoder
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Introduction to Attention Mechanism
3.  Attent ion Mechanism

• Attention mechanism helps creating a 
better context vector

• It learns which information from the 
encoder is relevant for the decoder
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Introduction to Attention Mechanism
3.  Attent ion Mechanism

• The core idea is that the context vector z should have access to all parts of the input sequence instead of just the last 
one.

• In other words, we need to form a direct connection with each timestamp. We can look at all the different words at 
the same time and learn to “pay attention“ to the correct ones depending on the task at hand.

• In the encoder-decoder:
• Given the hidden states of the encoder at each time step h = h1, h2, …, hn
• Given the previous state in the decoder yi-1
• We define an attention network that gives the attention scores for the current state of the decoder 

• We convert this scores into probabilities

• Finally, we get our new context vector z:
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Attention Mechanism
3.  Attent ion Mechanism

Several ways to calculate the scores



4/1/2025 Deep Network Development 71

Attention Mechanism
3.  Attent ion Mechanism

Jane visite L’Afrique en septembre

RNN
Encoder

Decoder

RNN RNN RNN RNN

RNN

x<1> x<2> x<3> x<4> x<5>

S<0>

Jane
Y<1>

z

α<1,1> α<1,2> α<1,3> α<1,4> α<1,5>

RNN RNN RNN RNN

h<0>

⌃
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Attention Mechanism
3.  Attent ion Mechanism

Jane visite L’Afrique en septembre

RNN
Encoder

Decoder

RNN RNN RNN RNN

RNN

x<1> x<2> x<3> x<4> x<5>

S<0>

Jane
Y<1>

z

α<1,1> α<1,2> α<1,3> α<1,4> α<1,5>

RNN RNN RNN RNN

h<0>

⌃

α<t,t’> =  amount of “attention” y<t> should pay to h<t’>
 

⌃
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Attention Mechanism
3.  Attent ion Mechanism

Jane visite L’Afrique en septembre

RNN
Encoder

Decoder

RNN RNN RNN RNN

RNN

x<1> x<2> x<3> x<4> x<5>

S<0>

z

α<1,1> α<1,2> α<1,3> α<1,4> α<1,5>

RNN RNN RNN RNN

α<2,1> α<2,2>
α<2,3> α<2,4> α<2,5>

h<0>

z

y<2>
visits

SAME FOR THE OTHERS …
Jane
Y<1>⌃ ⌃
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Next Lecture
Next Lecture

We will continue next lecture with Attention and Transformers…
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Summary
Summary

• Sequential data is important because it carries temporal information and context

• Recurrent Neural Networks:
• Sequence based models
• Handle variable length sequences 
• Track dependencies 
• Maintain the order of the input 
• Share parameters across sequences

• RNNs have limitations: vanishing gradients and short memory

• Other architectures like LSTM and GRU improve the limitations of RNNs
• Include gates to control the flow of information

• Seq2Seq models are encoder-decoder based architectures
• The context vector from the encoder is limited

• Attention mechanism provides a better context by allowing the network to pay attention to every part of the input / 
have access to all hidden states
• It computes a score / weight that tells the relevance of each part



Books:
• Courville, Goodfellow, Bengio: Deep Learning 

Freely available: https://www.deeplearningbook.org/ 
• Zhang, Aston and Lipton, Zachary C. and Li, Mu and Smola, Alexander J.: Dive into Deep Learning
    Freely available: https://d2l.ai/ 

Courses:
• Deep Learning specialization by Andrew NG
• https://www.coursera.org/specializations/deep-learning 

764/1/2025 Deep Network Development

Resources
Summary

https://www.deeplearningbook.org/
https://d2l.ai/
https://www.coursera.org/specializations/deep-learning


• Beam search: https://towardsdatascience.com/foundations-of-nlp-explained-visually-beam-search-how-it-works-
1586b9849a24   

• BLEU score: https://cloud.google.com/translate/automl/docs/evaluate#bleu  
• https://theaisummer.com/attention/  
• Coursera Deep Learning Specialization

Further Links + Resources
Summary

774/1/2025 Deep Network Development

https://towardsdatascience.com/foundations-of-nlp-explained-visually-beam-search-how-it-works-1586b9849a24
https://towardsdatascience.com/foundations-of-nlp-explained-visually-beam-search-how-it-works-1586b9849a24
https://cloud.google.com/translate/automl/docs/evaluate
https://theaisummer.com/attention/


That’s all for today!
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