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Recap
Sequential data
Text – sequence of words 
/ characters

Speech – sequence of signals / 
acoustic features

Video – sequence of images (frames)

DNA – sequence of symbols 
(nucleotides)
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Recap
Previous Lecture

Key properties of sequential data
• Order
• Temporal information
• Context

Key model properties: 
• Handle variable length sequences 
• Track long term dependencies 
• Maintain the order of the input 
• Share parameters across sequences
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Recurrent Neural Network (review)
Previous Lecture

RNN (unrolled version)
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Embeddings: Word representation (review)
Previous Lecture

Featurized representation: Word Embedding
If we subtract man and woman, main difference is gender
We can compute word similarities
We can compute word analogies: man is to woman as king is to ____

Man 
(5391)

Woman
(9853)

King
(4914)

Queen
(7151)

Apple
(456)

Orange
(6257)

Gender -1 1 -0.95 0.97 0.00 0.01

Royal 0.01 0.02 0.93 0.95 -0.01 0.00

Age 0.03 0.02 0.7 0.68 0.03 -0.02

Food 0.04 0.01 0.02 0.01 0.95 0.97

… … … … … … …
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Embeddings: Word representation (review)
Previous Lecture

Featurized representation: Word Embedding
The word embeddings are learned with training.
Therefore, in practice, the features aren’t that understandable.
We can visualize lower representations of the embeddings with techniques such as T-SNE



4/28/2025 Deep Network Development 8

Embeddings: Word representation (review)
Previous Lecture

RNN (unrolled version)

Embeddings
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Long Short-Term Memory (LSTM) (review)
Previous Lecture

LSTM – a more complex network
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Long Short-Term Memory (LSTM) (review)
Previous Lecture

LSTM – a more complex network

Activations
• a = h 
• at = ht

Cell state (memory)
• C
• C~
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Long Short-Term Memory (LSTM) (review)
Previous Lecture

LSTM – Forget Gate
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Long Short-Term Memory (LSTM) (review)
Previous Lecture

LSTM – Input / Ignore Gate
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Long Short-Term Memory (LSTM) (review)
Previous Lecture

LSTM – Output Gate
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Long Short-Term Memory (LSTM)
Previous Lecture
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Long Short-Term Memory (LSTM) (review)
Previous Lecture

LSTM – a more complex network

Vanilla RNN:

LSTM:
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Gated Recurrent Unit (GRU) (review)
Previous Lecture
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Bidirectional RNN (review)
Previous Lecture
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Bidirectional RNN (review)
Previous Lecture
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Natural Language Understanding
1.  Natural Language Understanding

- Neural Machine Translation
- Textual entailment
- Question answering
- Semantic similarity assessment
- Text classification
- Etc…
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Machine Translation
1.  Natural Language Understanding

• Most of the proposed neural machine translation 
models belog to the a family of encode-decoders

• From probabilistic perspective:

𝑎𝑟𝑔𝑚𝑎𝑥𝑦𝑝 𝑦 𝑥)

• Which means finding a target y that maximizes the 
conditional probability of y given a source sentence x
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Machine Translation
1.  Natural Language Understanding

• In the encoder-decoder framework an encoder reads and 
reduces the input sentence (a sequence of vectors 𝐱 =
(𝑥1, … , 𝑥𝑇) ) into a vector 𝑐

• The approach for RNNs:

ℎ𝑡 = 𝑓(𝑥𝑡, ℎ𝑡−1)

𝑐 = 𝑞 ℎ1, … , ℎ𝑇𝑥

• Where 𝑞 is a nonlinear function, ℎ𝑡 is the hidden state at 
time 𝑡 

• If we choose 𝑓 as an LSTM then 𝑞 ℎ1, … , ℎ𝑇𝑥
= ℎ𝑇𝑥

 
• The decoder then predicts the next word 𝑦𝑡 given the 

context vector 𝑐 and all the previously predicted words 
{𝑦1, … , 𝑦𝑡−1}
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Machine Translation
1.  Natural Language Understanding

• The decoder then predicts the next word 𝑦𝑡 given the context vector 𝑐 and 
all the previously predicted words 𝑦1, … , 𝑦𝑡−1

• The predicted translation 𝐲 can be expressed as the joint probability of:

𝑝 𝐲 = ෑ

𝑡=1

𝑇

𝑝 𝑦𝑡 𝑦1, … , 𝑦𝑡−1 , 𝑐)

• where 𝐲 = {𝑦1, … , 𝑦𝑇𝑦
}

• Whit and RNN this is modelled as:

𝑝 𝑦𝑡 𝑦1, … , 𝑦𝑡−1 , 𝑐) = 𝑔(𝑦𝑡−1, 𝑠𝑡, 𝑐) 

• Where 𝑔 nonlinear multi layered function and 𝑠𝑡 is the hidden state
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Encoder – Decoder (Seq2Seq)
1.  Natural Language Understanding

Question : Answer
(sequence) : (sequence) 

Machine Translation
English : German
(sequence) : (sequence) 
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Encoder – Decoder (Seq2Seq)
1.  Natural Language Understanding

• The encoder and decoder are nothing more than stacked RNN layers, such as LSTM’s. The encoder processes the input and 
produces one compact representation, called z, from all the input timesteps. It can be regarded as a compressed format 
of the input.
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Encoder – Decoder (Seq2Seq)
1.  Natural Language Understanding

Problems with this approach
• The intermediate representation z cannot encode information from all the input timesteps. This is commonly known as the bottleneck 

problem. The vector z needs to capture all the information about the source sentence.
• In practice, how far we can see in the past (the so-called reference window) is finite. RNN’s tend to forget information from 

timesteps that are far behind.
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BLEU (bilingual evaluation understudy) [1]
1.  Natural Language Understanding

• BLEU is an algorithm for evaluating the quality of text which has 
been machine-translated from one natural language to another.

• It’s a metric, that measures the precision of n-grams (such as 
bigrams or trigrams) between the predicted translation and the 
reference translations

[1] https://towardsdatascience.com/foundations-of-nlp-explained-bleu-score-and-wer-metrics-1a5ba06d812b/ 

https://towardsdatascience.com/foundations-of-nlp-explained-bleu-score-and-wer-metrics-1a5ba06d812b/
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N-gram
1.  Natural Language Understanding

• It is just a fancy way of describing "a set of ‘n’ consecutive words in 
a sentence".

• For instance, in the sentence "The ball is blue", we could have n-
grams such as:
• 1-gram (unigram): "The", "ball", "is", "blue"
• 2-gram (bigram): "The ball", "ball is", "is blue"
• 3-gram (trigram): "The ball is", "ball is blue"
• 4-gram: "The ball is blue"

[1] https://towardsdatascience.com/foundations-of-nlp-explained-bleu-score-and-wer-metrics-1a5ba06d812b/ 

https://towardsdatascience.com/foundations-of-nlp-explained-bleu-score-and-wer-metrics-1a5ba06d812b/
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Precision
1.  Natural Language Understanding

• Let’s say, that we have:

• Target Sentence: He eats an apple
• Predicted Sentence: He ate an apple

• We would normally compute the Precision using the formula:

𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧 =
𝐍𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐜𝐨𝐫𝐫𝐞𝐜𝐭 𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐞𝐝 𝐰𝐨𝐫𝐝𝐬

𝐍𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐭𝐨𝐭𝐚𝐥 𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐞𝐝 𝐰𝐨𝐫𝐝𝐬 

• Here eats and ate count as different words
• Precision = 3 / 4

[1] https://towardsdatascience.com/foundations-of-nlp-explained-bleu-score-and-wer-metrics-1a5ba06d812b/ 

https://towardsdatascience.com/foundations-of-nlp-explained-bleu-score-and-wer-metrics-1a5ba06d812b/
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Precision
1.  Natural Language Understanding

• The issue is that only using precision allow us to cheat:

• Target Sentence: He eats an apple
• Predicted Sentence: He he he

• Precision = 3 / 3

[1] https://towardsdatascience.com/foundations-of-nlp-explained-bleu-score-and-wer-metrics-1a5ba06d812b/ 

https://towardsdatascience.com/foundations-of-nlp-explained-bleu-score-and-wer-metrics-1a5ba06d812b/
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Clipped Precision
1.  Natural Language Understanding

• Target Sentence 1: He eats a sweet apple
• Target Sentence 2: He is eating a tasty apple
• Predicted Sentence: He He He eats tasty fruit

1. We compare each word from the predicted sentence 
with all of the target sentences. 

2. If the word matches any target sentence, it is considered 
to be correct.

3. We limit the count for each correct word to the 
maximum number of times that that word occurs in the 
Target Sentence.

[1] https://towardsdatascience.com/foundations-of-nlp-explained-bleu-score-and-wer-metrics-1a5ba06d812b/ 

𝐂𝐥𝐢𝐩𝐩𝐞𝐝 𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧 =
𝐂𝐥𝐢𝐩𝐩𝐞𝐝 # 𝐨𝐟 𝐜𝐨𝐫𝐫𝐞𝐜𝐭 𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐞𝐝 𝐰𝐨𝐫𝐝𝐬

# 𝐨𝐟 𝐭𝐨𝐭𝐚𝐥 𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐞𝐝 𝐰𝐨𝐫𝐝𝐬 

Clipped Precision = 3 / 6

https://towardsdatascience.com/foundations-of-nlp-explained-bleu-score-and-wer-metrics-1a5ba06d812b/
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How is BLEU score calculated?
1.  Natural Language Understanding

• Target Sentence: The guard arrived late because it was raining
• Predicted Sentence: The guard arrived late because of the rain

[1] https://towardsdatascience.com/foundations-of-nlp-explained-bleu-score-and-wer-metrics-1a5ba06d812b/ 

Precision 1-gram:   𝒑𝟏 =
𝟓

𝟖
Precision 2-gram:   𝒑𝟐 =

𝟒

𝟕

Precision 3-gram:   𝒑𝟑 =
𝟑

𝟔 Precision 4-gram:   𝒑𝟐 =
𝟐

𝟓

https://towardsdatascience.com/foundations-of-nlp-explained-bleu-score-and-wer-metrics-1a5ba06d812b/
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How is BLEU score calculated?
1.  Natural Language Understanding

Geometric Average Precision (GAP)
• We combine these precision scores using the following formula

𝐆𝐀𝐏 𝑁 =  ෑ

𝑛=1

𝑁

𝑝𝑛
𝑤

• We usually use 𝑁 = 4 and uniform weights 𝑤 =
1

𝑁

• In case of 𝑁 = 4 the Geometric Average Precision:

𝐆𝐀𝐏 𝑁 = 𝑝1

1

4 ⋅ 𝑝2

1

4 ⋅ 𝑝3

1

4 ⋅ 𝑝1

1

4 

[1] https://towardsdatascience.com/foundations-of-nlp-explained-bleu-score-and-wer-metrics-1a5ba06d812b/ 

https://towardsdatascience.com/foundations-of-nlp-explained-bleu-score-and-wer-metrics-1a5ba06d812b/
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How is BLEU score calculated?
1.  Natural Language Understanding

Brevity Penalty
• The Brevity Penalty penalizes sentences that are too short.

𝐁𝐫𝐞𝐯𝐢𝐭𝐲𝐏𝐞𝐧𝐚𝐥𝐭𝐲 =  ൝
1,  if 𝑐 > 𝑟

𝑒(1−
𝑟
𝑐),  if 𝑐 ≤ 𝑟

• 𝑐 is the predicted length -> number of words in the predicted sentence
• 𝑟 is the target length -> number of words in the target sentence (length 

closes to prediction length)

• In the previous example 𝑐 = 8 and 𝑟 = 8

[1] https://towardsdatascience.com/foundations-of-nlp-explained-bleu-score-and-wer-metrics-1a5ba06d812b/ 

https://towardsdatascience.com/foundations-of-nlp-explained-bleu-score-and-wer-metrics-1a5ba06d812b/
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How is BLEU score calculated?
1.  Natural Language Understanding

• To get the BLEU score we multiply the Brevity Penalty with the 
Geometric Average of the Precision Scores

𝐁𝐋𝐄𝐔 𝑁 = 𝐁𝐫𝐞𝐯𝐢𝐭𝐲𝐏𝐞𝐧𝐚𝐥𝐭𝐲 ⋅ 𝐆𝐀𝐏(𝑁)

• BLEU Score can be computed for different values of N. 
• BLEU-1 uses the unigram Precision score
• BLEU-2 uses the geometric average of unigram and bigram 

precision
• BLEU-3 uses the geometric average of unigram, bigram, and 

trigram precision
• and so on.

[1] https://towardsdatascience.com/foundations-of-nlp-explained-bleu-score-and-wer-metrics-1a5ba06d812b/ 

https://towardsdatascience.com/foundations-of-nlp-explained-bleu-score-and-wer-metrics-1a5ba06d812b/


Deep Network Development

Lecture 8.

Natural Language 
Understanding1 Attention Mechanism2

Attent ion  Mechanism
Budapest, 4 th Apr i l  2025

Transformer Architecture3



4/28/2025 Deep Network Development 37

Introduction to Attention Mechanism
2.  Attent ion Mechanism

• All the information from the encoder is 
represented in the z vector (context)

• However, as seen previously, information from 
earlier timestamps is not preserved

• Can we create a better context vector? 
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Introduction to Attention Mechanism
2.  Attent ion Mechanism

• In the new approach, we define each conditional probability 
as:

𝑝 𝑦𝑖 𝑦1, … , 𝑦𝑖−1 , 𝑐) = 𝑔(𝑦𝑖−1, 𝑠𝑖, 𝑐𝑖) 

• Where 𝑠𝑖 is an RNN hidden state for time 𝑖, computed by

𝑠𝑖 = 𝑓(𝑠𝑖−1, 𝑦𝑖−1, 𝑐𝑖)

• Note that here we produce a distinct context vector 𝑐𝑖 for 
each target word 𝑦𝑖
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Introduction to Attention Mechanism (review)
2.  Attent ion Mechanism

• The core idea is that the context vector 𝑐𝑖 should have access to all parts of the input sequence instead of just the last 
one.

• In other words, we need to form a direct connection with each timestamp. We can look at all the different words at 
the same time and learn to “pay attention“ to the correct ones depending on the task at hand.

• In the encoder-decoder:
• Given the hidden states of the encoder at each time step ℎ = {ℎ1, … , ℎ𝑇𝑥

}

• Given the previous state in the decoder 𝑦𝑖−1

• We define an attention network that gives the attention scores for the current state of the decoder 

• We convert this scores into probabilities

• Finally, we get our new context vector z:

𝛼𝑖𝑗 =
exp(𝑒𝑖𝑗)

σ
𝑘=1
𝑇𝑥 exp(𝑒𝑖𝑘)

𝑐𝑖 = 

𝑗=1

𝑇𝑥

𝛼𝑖𝑗ℎ𝑗

𝑒𝑖𝑗 = attentionnet 𝑦𝑖−1, 𝐡 ∈ ℝ𝑛
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Introduction to Attention Mechanism (review)
2.  Attent ion Mechanism

• Attention mechanism helps creating a better 
context vector

• It learns which information from the encoder is 
relevant for the decoder
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Introduction to Attention Mechanism (review)
2.  Attent ion Mechanism

• Attention mechanism helps creating a better 
context vector

• It learns which information from the encoder is 
relevant for the decoder
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Attention Mechanism (review)
2.  Attent ion Mechanism

Jane visite L’Afrique en septembre

RNN
Encoder

Decoder

RNN RNN RNN RNN

RNN

x<1> x<2> x<3> x<4> x<5>

S<0>

Jane
Y<1>

z

α<1,1> α<1,2> α<1,3> α<1,4> α<1,5>

RNN RNN RNN RNN

h<0>

⌃
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Attention Mechanism (review)
2.  Attent ion Mechanism

Jane visite L’Afrique en septembre

RNN
Encoder

Decoder

RNN RNN RNN RNN

RNN

x<1> x<2> x<3> x<4> x<5>

S<0>

Jane
Y<1>

z

α<1,1> α<1,2> α<1,3> α<1,4> α<1,5>

RNN RNN RNN RNN

h<0>

⌃

𝛼𝑖𝑗 =  amount of “attention” 𝑦𝑖 should pay to ℎ∗
 

𝛼𝑖𝑗 =
exp(𝑒𝑖𝑗)

σ
𝑘=1
𝑇𝑥 exp(𝑒𝑖𝑘)

𝑐𝑖 = 

𝑗=1

𝑇𝑥

𝛼𝑖𝑗ℎ𝑗𝑒𝑖𝑗 = attentionnet 𝑦𝑖−1, 𝐡 ∈ ℝ𝑛
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Attention Mechanism (review)
2.  Attent ion Mechanism

Jane visite L’Afrique en septembre

RNN
Encoder

Decoder

RNN RNN RNN RNN

RNN

x<1> x<2> x<3> x<4> x<5>

S<0>

z

α<1,1> α<1,2> α<1,3> α<1,4> α<1,5>

RNN RNN RNN RNN

α<2,1> α<2,2>
α<2,3> α<2,4> α<2,5>

h<0>

z

y<2>
visits

SAME FOR THE OTHERS …
Jane
Y<1>⌃ ⌃
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How does Attention work?
2.  Attent ion Mechanism
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Attention Mechanism
2.  Attent ion Mechanism

Several ways to calculate the scores
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Transformers [1]
3.  Transformer Archi tecture

• Multi-Head Attention

• Self-Attention

[1] Vaswani, Ashish et al. “Attention is All you Need.” (2017)
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Transformer Attention
3.  Transformer Archi tecture

• Feature-based attention: The Key, Value, and Query
• Key-value-query concepts come from information retrieval systems. 
• Example of searching for a video on YouTube:

• When you search (query) for a particular video, the search engine will map your query against a set of keys (video title, 
description, etc.) associated with possible stored videos. Then the algorithm will present you the best-matched videos (values). 
This is the foundation of content/feature-based lookup.

• Bringing this idea closer to the transformer’s attention we have something like this:
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Transformer Attention
3.  Transformer Archi tecture



4/28/2025 Deep Network Development 54

Self-Attention
3.  Transformer Archi tecture

Self-attention: the key component of the Transformer architecture
• We can also define the attention of the same sequence, called self-attention. Instead of looking for an 

input-output sequence association/alignment, we are now looking for scores between the 
elements of the sequence

https://click.linksynergy.com/deeplink?id=r24KwW5qbBo&mid=40328&murl=https%3A%2F%2Fwww.coursera.org%2Flecture%2Fattention-models-in-nlp%2Ftransformer-decoder-rDLol


4/28/2025 Deep Network Development 55

Visualizing Self-Attention
3.  Transformer Archi tecture
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Self-Attention
3.  Transformer Archi tecture
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Summary
3.  Transformer Archi tecture

1. Attention
• How does the input elements relate to the output (what part of the input is 

relevant for the output)
• Helps the model in focusing on the most relevant information
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Summary
3.  Transformer Archi tecture

2. Self-Attention
• How do the different elements of the input relate to each 

other (what part of the input is relevant in understanding the 
other parts of the input)

• Helps in capturing dependencies and contextual information 
within the input
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Summary
3.  Transformer Archi tecture

3. Multi-Head Attention
• Repeating self-attention multiple times to better 

understand the input (multiple ways of deciding the 
relationship between the parts of the input)

• Looks at the input from different perspectives 
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Transformer
3.  Transformer Archi tecture
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Transformer
3.  Transformer Archi tecture
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Transformer
3.  Transformer Archi tecture
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Transformer
3.  Transformer Archi tecture
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Transformer
3.  Transformer Archi tecture
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Transformer
3.  Transformer Archi tecture
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Transformer
3.  Transformer Archi tecture
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Transformer
3.  Transformer Archi tecture
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Transformer
3.  Transformer Archi tecture



4/28/2025 Deep Network Development 82

Transformer
3.  Transformer Archi tecture
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Transformer
3.  Transformer Archi tecture
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Transformer
3.  Transformer Archi tecture
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Transformer
3.  Transformer Archi tecture
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Transformer
3.  Transformer Archi tecture

<SOS> Jane visits Africa in September
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Transformer
3.  Transformer Archi tecture

• When you convert a sequence into a set (tokenization), you lose the 
notion of order.

• Positional encoding is a set of small constants, which are added to the 
word embedding vector before the first self-attention layer.

• So if the same word appears in a different position, the actual 
representation will be slightly different, depending on where it 
appears in the input sentence.

• They use a sinusoidal function for the positional encoding. The sine 
function tells the model to pay attention to a particular wavelength.
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Transformer
3.  Transformer Archi tecture

Add & Norm

Add & Norm

Add & Norm

Add & Norm

Add & Norm

<SOS> Jane visits Africa in September



4/28/2025 Deep Network Development 89

Transformer
3.  Transformer Archi tecture
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Transformer
3.  Transformer Archi tecture
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Transformer Encoder
3.  Transformer Archi tecture

Summary: the Transformer encoder
To process a sentence, we need these 3 steps:
1. Word embeddings of the input sentence are computed simultaneously.
2. Positional encodings are then applied to each embedding resulting in word vectors that also include positional information.
3. The word vectors are passed to the first encoder block.

Each block consists of the following layers in the same order:
1. A multi-head self-attention layer to find correlations between each word
2. A normalization layer
3. A residual connection around the previous two sublayers
4. A linear layer
5. A second normalization layer
6. A second residual connection
Note that the above block can be replicated several times to form the Encoder. In the original paper, the encoder composed of 6 identical blocks.
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Transformer Decoder
3.  Transformer Archi tecture

Transformer decoder: what is different?
The decoder consists of all the aforementioned components plus two novel ones. As before:
1. The output sequence is fed in its entirety and word embeddings are computed
2. Positional encoding are again applied
3. And the vectors are passed to the first Decoder block

Each decoder block includes:
1. A Masked multi-head self-attention layer
2. A normalization layer followed by a residual connection
3. A new multi-head attention layer (known as Encoder-Decoder attention)
4. A second normalization layer and a residual connection
5. A linear layer and a third residual connection
The decoder block appears again 6 times. The final output is transformed through a final linear layer and the output probabilities are calculated with the standard softmax 
function.
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Transformer [1]
3.  Transformer Archi tecture

[1] Vaswani, Ashish et al. “Attention is All you Need.” (2017)
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Transformer Architectures
3.  Transformer Archi tecture
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Transformer Netwo rks



4/28/2025 Deep Network Development 97

Generative Pre-trained Transformer (GPT) – June 2018
Transformer Netwo rks

The original goal is Language Modelling (LM)

Uses Masked Self-Attention to limit the 
attention to the previous tokens only (left-to-
right) 

Two stage training:
1. Unsupervised pre-training:

• The goal is to predict the next token 
based on the previous tokens.

2. Supervised fine-tuning:
• Predict the label (y) based on the input 

tokens
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Generative Pre-trained Transformer (GPT) – June 2018
Transformer Netwo rks
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Bidirectional Encoder Representations from 
Transformers (BERT) – May 2019 

Transformer Netwo rks

• Compared to OpenAI GPT it uses a bidirectional self-attention
• Trained on 2 tasks at the same time during pre-training

1. Masked LM (15% of the tokens are masked)
2. Next Sentence Prediction

• A special [CLS] token is introduced at the beginning of each sequence.
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Bidirectional Encoder Representations from 
Transformers (BERT) – May 2019 

Transformer Netwo rks



Further Links + Resources
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• https://theaisummer.com/attention/  
• https://theaisummer.com/transformer/ 
• https://jalammar.github.io/illustrated-transformer/   
• https://nlp.seas.harvard.edu/annotated-transformer/ !!!!
• https://www.youtube.com/watch?v=bCz4OMemCcA 
• Coursera Deep Learning Specialization 

Please read this:
• Beam search: https://towardsdatascience.com/foundations-of-nlp-explained-visually-beam-search-how-it-works-1586b9849a24  
• BLEU score: https://cloud.google.com/translate/automl/docs/evaluate#bleu  

https://theaisummer.com/attention/
https://theaisummer.com/transformer/
https://jalammar.github.io/illustrated-transformer/
https://nlp.seas.harvard.edu/annotated-transformer/
https://www.youtube.com/watch?v=bCz4OMemCcA
https://towardsdatascience.com/foundations-of-nlp-explained-visually-beam-search-how-it-works-1586b9849a24
https://cloud.google.com/translate/automl/docs/evaluate


Resources

https://www.deeplearningbook.org/

https://d2l.ai/

https://www.coursera.org/specializations/deep-learning

Books:
• Courville, Goodfellow, Bengio: Deep Learning 

Freely available: https://www.deeplearningbook.org/ 
• Zhang, Aston and Lipton, Zachary C. and Li, Mu and Smola, Alexander J.: Dive into Deep Learning
    Freely available: https://d2l.ai/ 

Courses:
• Deep Learning specialization by Andrew NG
• https://www.coursera.org/specializations/deep-learning 
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https://www.deeplearningbook.org/
https://d2l.ai/
https://www.coursera.org/specializations/deep-learning


That’s all for today!
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