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Previously on Lecture 9
Recap

• Attention, Self-Attention, Multi-Head Attention
• Transformers
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Transformer Netwo rks



4/28/2025 Deep Network Development 6

Generative Pre-trained Transformer (GPT) – June 2018
Transformer Netwo rks

The original goal is Language Modelling (LM)

Uses Masked Self-Attention to limit the 
attention to the previous tokens only (left-to-
right) 

Two stage training:
1. Unsupervised pre-training:

• The goal is to predict the next token 
based on the previous tokens.

2. Supervised fine-tuning:
• Predict the label (y) based on the input 

tokens
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Bidirectional Encoder Representations from 
Transformers (BERT) – May 2019 

Transformer Netwo rks

• Compared to OpenAI GPT it uses a bidirectional self-attention
• Trained on 2 tasks at the same time during pre-training

1. Masked LM (15% of the tokens are masked)
2. Next Sentence Prediction

• A special [CLS] token is introduced at the beginning of each sequence.
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Bidirectional Encoder Representations from 
Transformers (BERT) – May 2019 

Transformer Netwo rks
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Introduction
Vision Transformers

• Jun 2021 – An Image is Worth 16x16 Words: Transformers for 
Image Recognition at Scale - arxiv.org/abs/2010.11929

• In vision, attention is either applied in conjunction with 
convolutional networks or used to replace certain 
components of convolutional networks while keeping their 
overall structure in place.

• Reliance on CNNs is not necessary and a pure transformer 
applied directly to sequences of image patches can perform 
very well on image classification tasks

• Transformers operate on a sequence of tokens
• How do we transform an image into tokens?

https://arxiv.org/abs/2010.11929
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Image Tokenization
Vision Transformers

1. Reshape images of 𝑥 ∈ ℝH×𝑊×C into 𝑁 =
𝐻𝑊

𝑃2
 patches

• (H, W) – image resolution
• C – number of channels
• (P, P) – patch resolution
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Image Tokenization
Vision Transformers

2. The Transformer uses constant latent vector size 𝐷 through 
all of its layers

• Flatten all the patches and apply a learnable linear 
projection (patch embeddings)
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Token Processing
Vision Transformers

3. Processing the tokens
• Prepend a learnable embedding to the patch embeddings
• Apply position embedding
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Encoder Block
Vision Transformers

4. Feeding the embedded patches to the Transformer Encoder
• Input the sequence of embedded patches 

([𝒛𝟎𝟎, 𝑧01, … , 𝑧0𝑁])
• At the end we get the image representation 

([𝒛𝑳𝟎, 𝑧𝐿1, … , 𝑧𝐿𝑁])
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Prediction Processing
Vision Transformers

5. Classification MLP head
• Attaching a classifier head to 𝑧𝐿0
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Overall
Vision Transformers
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Comparison with Convolutional Networks
Vision Transformers

• ViT has much less image-specific inductive bias
• features like edges, textures, and patterns 

are spatially localized and translationally 
invariant

• In CNNs, locality, two-dimensional neighbourhood 
structure, and translation equivariance are baked 
into the whole model

• Position embedding does not carry information 
about the 2D position of the patches
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Token-to-Token ViT (T2T-ViT) – Nov 2021
Vision Transformers

• Tokens-to-Token ViT: Training Vision 
Transformers from Scratch on ImageNet - 
arxiv.org/abs/2101.11986

• ViT achieves inferior performance to CNNs 
when trained on a midsize dataset
1. The tokenization fails to model the 

important local structure such as edges, 
lines, etc.

2. The redundant attention backbone leads 
to limited feature richness

https://arxiv.org/abs/2101.11986
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Token-to-Token ViT (T2T-ViT)
Vision Transformers
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Token-to-Token ViT (T2T-ViT)
Vision Transformers

1. A layer-wise “Token-to-token module”
2. An efficient “T2T-ViT backbone”

• The generated tokens are reordered like an “image”
• Then areas closer together are grouped together into a new 

token
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Token-to-Token ViT (T2T-ViT)
Vision Transformers

• While “vanilla” ViT requires a large dataset 
and more tuneable parameters to beat the 
“state-of-the-art” (JFT-300M) CNN models

• T2T-ViT requires smaller datasets and less 
tuneable parameter
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DEtection TRansformer (DETR) – May 2020
State of  the Art

End-to-End Object Detection with Transformers - 
arxiv.org/abs/2005.12872

Simple architecture:
1. CNN backbone
2. Encoder-Decoder Transformer
3. Feed Forward Network

https://arxiv.org/abs/2005.12872
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Segment Anything Model (SAM) – Apr 2023
State of  the Art

• MAE pre-trained ViT-H/16 as an image encoder
• The mask decoder is a modified transformer
• Prompt encoder from CLIP
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Masked Autoencoders (MAE) – Dec 2021 
State of  the Art

The task is to reconstruct the signal given its partial observation
• High masking (75% of the image is masked) eliminates 

redundancy
• The reconstruction is much harder since the missing part cannot 

be reconstructed by extrapolation (like in image inpainting)

ViT encoder:
- Only operates on the visible parts (no <MASK> tokens)

MAE decoder:
- Input: Encoded visible tokens and mask tokens
- Each mask token is a shared learned vector
- Positional encoding



And many more
State of  the Art 
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- SAM-2, 
- GPT-2, GPT-3, GPT-4
- DALL-E, ViT-VQGAN, 
- SORA
- Oasis



Summary
Summary
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GPT: 
- Left-to-right approach, 
- Language Modelling and next token prediction
BERT: 
- Bidirectional Multihead Self Attention and masking
- Same architecture for all to language modelling tasks
Vision Transformers:
- Image – Patch – Linear Projection – Token
- Fails to capture local structures such as edges, texture 

and patterns
- Positional embedding does not provide information about 

locality
Token-to-Token ViT:
- Token reorganization to counter missing locality

DETR:
- Convolutional Feature extraction – Transformer
- Detects N objects at the same time
Segment Anything Model (SAM):
- Segmentation based on user input
Masked Autoencoders (MAE):
- Asymmetric design
- Unique challenge



Books:
• Courville, Goodfellow, Bengio: Deep Learning 

Freely available: https://www.deeplearningbook.org/ 
• Zhang, Aston and Lipton, Zachary C. and Li, Mu and Smola, Alexander J.: Dive into Deep Learning
    Freely available: https://d2l.ai/ 

Courses:
• Deep Learning specialization by Andrew NG
• https://www.coursera.org/specializations/deep-learning 
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Resources
Summary

https://www.deeplearningbook.org/
https://d2l.ai/
https://www.coursera.org/specializations/deep-learning


• Attention Is All You Need - arxiv.org/abs/1706.03762
• Improving Language Understanding by Generative Pre-Training - openai.com/index/language-unsupervised/
• BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding - arxiv.org/abs/1810.04805
• An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale - arxiv.org/abs/2010.11929
• Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet  - arxiv.org/abs/2101.11986
• medium.com/autonomous-agents/convnets-vs-vision-transformers-mathematical-deep-dive-c7908220e7b3
• medium.com/towards-data-science/vision-transformers-explained-a9d07147e4c8
• End-to-End Object Detection with Transformers - arxiv.org/abs/2005.12872
• Segment Anything – arxiv.org/abs/2304.02643
• Masked Autoencoders Are Scalable Vision Learners - arxiv.org/abs/2111.06377

Further Links + Resources
Summary
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https://arxiv.org/abs/1706.03762
https://openai.com/index/language-unsupervised/
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2101.11986
https://medium.com/autonomous-agents/convnets-vs-vision-transformers-mathematical-deep-dive-c7908220e7b3
https://medium.com/towards-data-science/vision-transformers-explained-a9d07147e4c8
https://arxiv.org/abs/2005.12872
https://arxiv.org/abs/2304.02643
https://arxiv.org/abs/2111.06377


That’s all for today!
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