

DEEP NETWORK DEVELOPMENT

Imre Molnár PhD student, ELTE, Al Department ⊠ imremolnar@inf.elte.hu ⊕ curiouspercibal.github.io Tamás Takács PhD student, ELTE, AI Department ⊠ <u>tamastheactual@inf.elte.hu</u> ⊕ tamastheactual.github.io

Lecture 10.

Vision Transformers

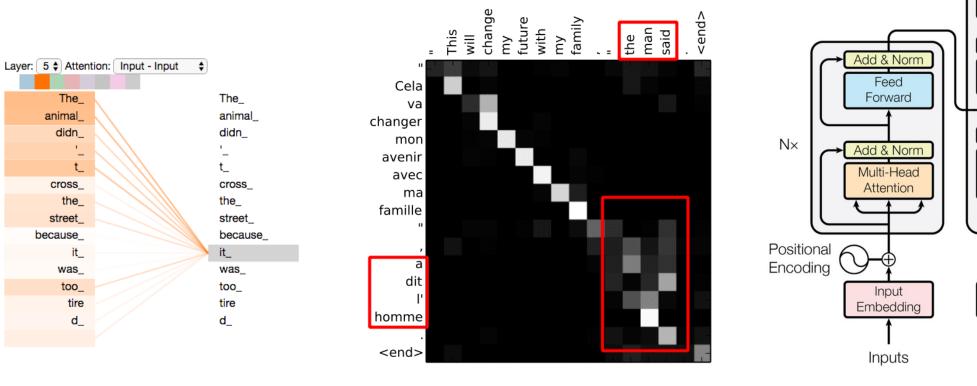
Budapest, 25th April 2025

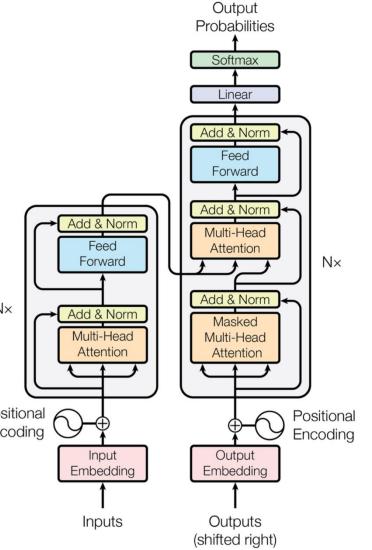
1 Transformer Network2 Vision Transformers

3 State of the Art

Previously on Lecture 9

- Attention, Self-Attention, Multi-Head Attention
- Transformers





Lecture 10.

Vision Transformers

Budapest, 25th April 2025

1 Transformer Network

2 Vision Transformers

3 State of the Art

TYPES OF Machine PAPER		TYPES OF ML / NLP PAPERS		
Baseline is all you need	We got more data and it works better	HERE'S A NEW TASK WHERE OUR MODELS DON'T SUCCEED JUST YET	NEVER MIND. TURNS OUT WITH SOME CLEVER TRICKS, WE ALREADY GET SUPER- HUMAN PERFORMANCE	VE COMBINED TWO WELL KNOWN TECHNIQUES IN AN UNSURPRISING WAY
We got more compute and it works better	Cherry-picked results look great	TRANSFORMERS ALSO WORK ON THIS TYPE OF DATA	A TASK-SPECIFIC IMPROVEMENT THAT MAY OR MAY NOT WORK ON YOUR DATA	THIS SIMPLE TRICK IS ALL YOU NEED
We figured out how deep learning generalizes this time, I swear	We plugged this lego block into this other one	NEURAL NETWORKS ARE LIKE THE BRAIN IN THIS SPECIFIC VAY, WHICH SLIGHTLY HELPS FOR OUR TASK	GOOD LUCK RUNNING A STATISTICAL SIGNIFICANCE TEST ON OUR RESULTS	CHECK OUT THESE NICE CHERRY-PICKED SAMPLES OF OUR MODEL
Results are 0.3% better than that other paper!	Are the results better than that other paper?	VE USED LOTS OF COMPUTE TO TRAIN A SLIGHTLY BETTER LANGUAGE MODEL	SOME THOUGHTS ON WHY THE WAY WE DO THINGS IS WRONG	DID YOU KNOW THAT OUR MODELS FAIL ON X?

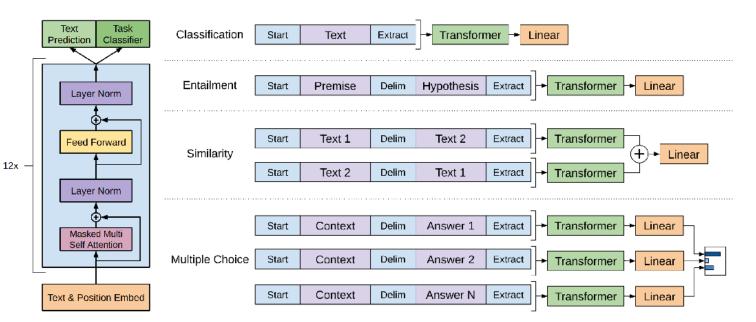
Generative Pre-trained Transformer (GPT) – June 2018

The original goal is Language Modelling (LM)

Uses Masked Self-Attention to limit the attention to the previous tokens only (left-to-right)

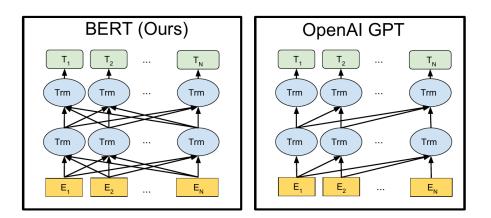
Two stage training:

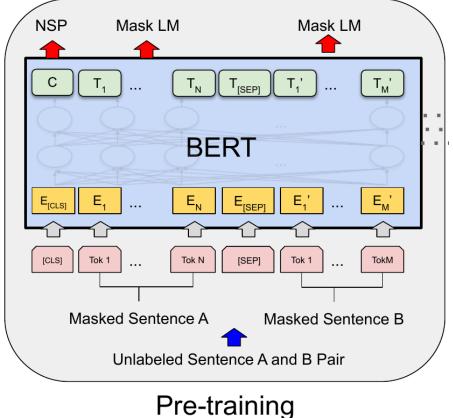
- 1. Unsupervised pre-training:
 - The goal is to predict the next token based on the previous tokens.
- 2. Supervised fine-tuning:
 - Predict the label (y) based on the input tokens



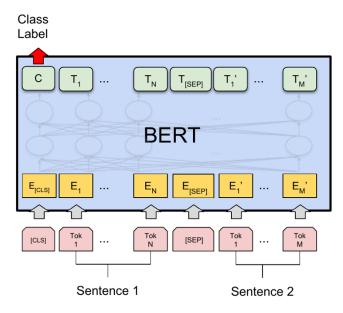
Bidirectional Encoder Representations from Transformers (BERT) – May 2019

- Compared to OpenAI GPT it uses a bidirectional self-attention
- Trained on 2 tasks at the same time during pre-training
 - 1. Masked LM (15% of the tokens are masked)
 - 2. Next Sentence Prediction
- A special [CLS] token is introduced at the beginning of each sequence.

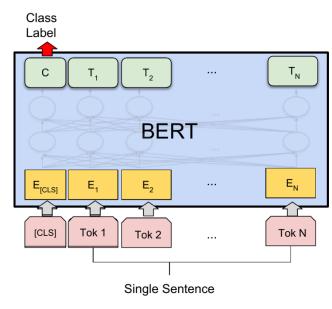




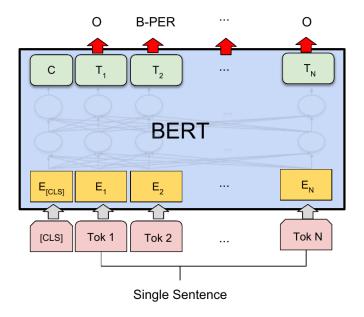
Bidirectional Encoder Representations from Transformers (BERT) – May 2019



(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG



(b) Single Sentence Classification Tasks: SST-2, CoLA



(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

Lecture 10.

Vision Transformers

Budapest, 25th April 2025

1 Transformer Network

2 Vision Transformers

3 State of the Art

Introduction

- Jun 2021 *An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale <u>arxiv.org/abs/2010.11929</u>*
- In vision, attention is either applied in conjunction with convolutional networks or used to replace certain components of convolutional networks while keeping their overall structure in place.
- Reliance on CNNs is not necessary and a pure transformer applied directly to sequences of image patches can perform very well on image classification tasks
- Transformers operate on a sequence of tokens
- How do we transform an image into tokens?

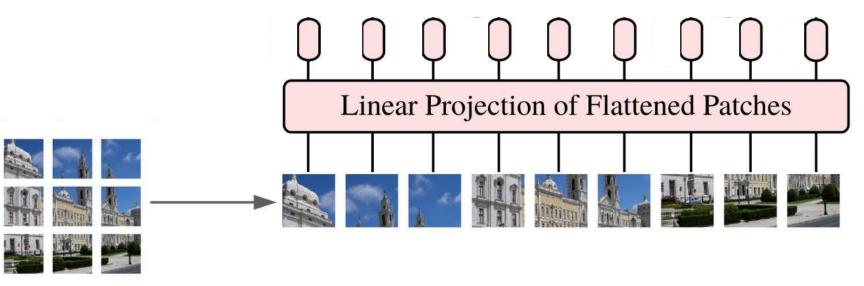
Image Tokenization

- 1. Reshape images of $x \in \mathbb{R}^{H \times W \times C}$ into $N = \frac{HW}{P^2}$ patches
 - (H, W) image resolution
 - C number of channels
 - (P, P) patch resolution

Image Tokenization

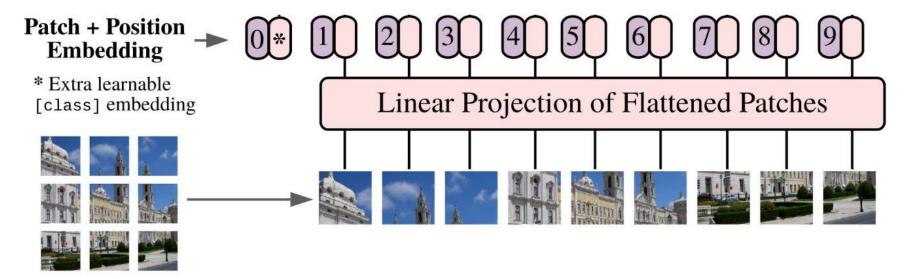
2. The Transformer uses constant latent vector size *D* through all of its layers

Flatten all the patches and apply a learnable linear projection (*patch embeddings*)



Token Processing

- 3. Processing the tokens
 - Prepend a learnable embedding to the patch embeddings
 - Apply position embedding



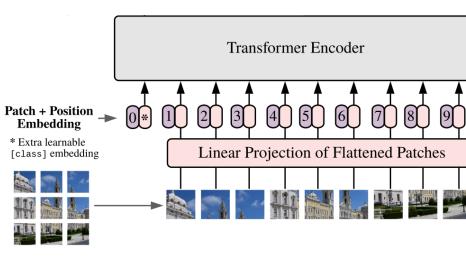
Vision Transformers

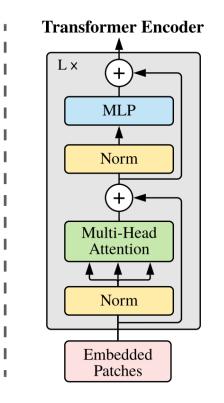
Encoder Block

4. Feeding the embedded patches to the Transformer Encoder

- Input the sequence of embedded patches $([z_0^0, z_0^1, \dots, z_0^N])$
- At the end we get the image representation $([z_L^0, z_L^1, ..., z_L^N])$

Vision Transformer (ViT)

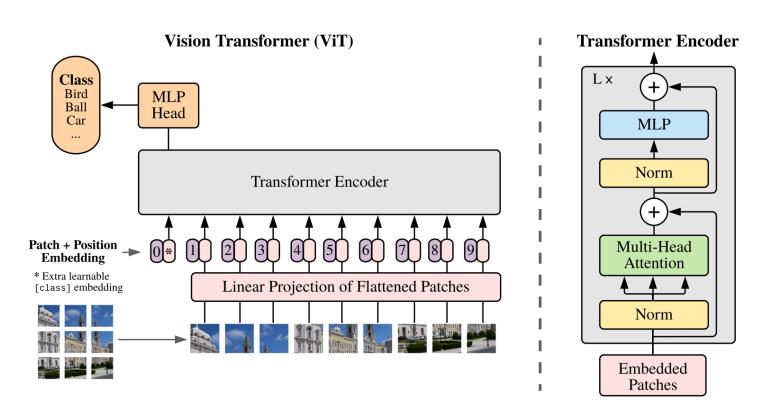




Prediction Processing

5. Classification MLP head

• Attaching a classifier head to z_L^0



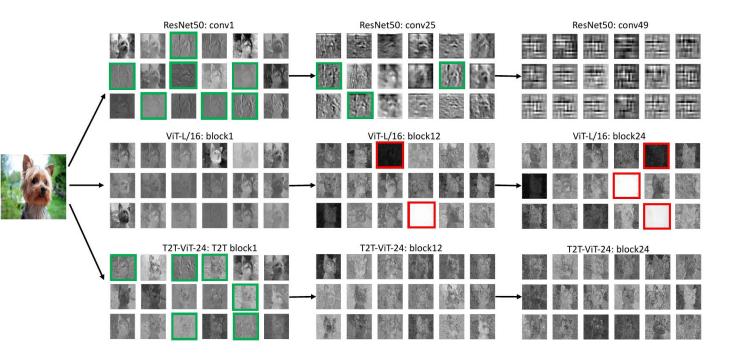
Overall

Comparison with Convolutional Networks

- ViT has much less image-specific inductive bias
 - features like edges, textures, and patterns are spatially localized and translationally invariant
- In CNNs, locality, two-dimensional neighbourhood structure, and translation equivariance are baked into the whole model
- Position embedding does not carry information about the 2D position of the patches

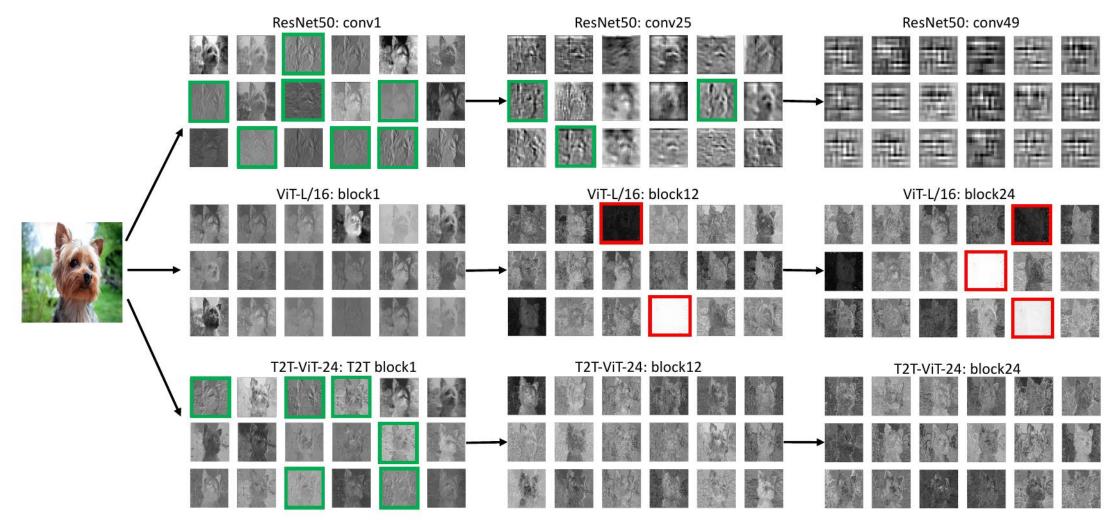
Token-to-Token ViT (T2T-ViT) – Nov 2021

- Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet -<u>arxiv.org/abs/2101.11986</u>
- ViT achieves inferior performance to CNNs when trained on a midsize dataset
 - The tokenization fails to model the important local structure such as edges, lines, etc.
 - 2. The redundant attention backbone leads to limited feature richness



Vision Transformers

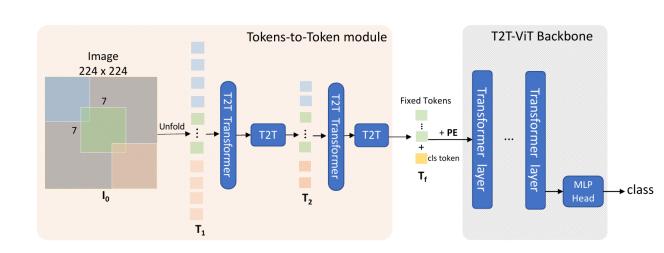
Token-to-Token ViT (T2T-ViT)

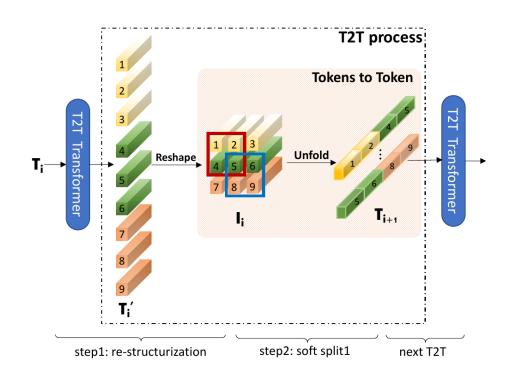


Vision Transformers

Token-to-Token ViT (T2T-ViT)

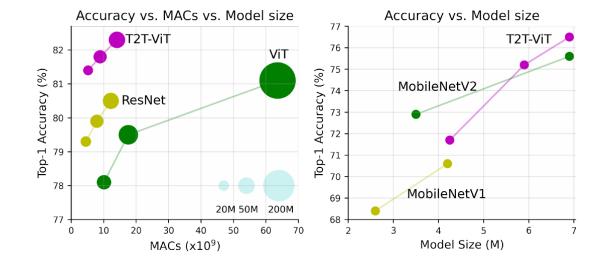
- 1. A layer-wise "Token-to-token module"
- 2. An efficient "T2T-ViT backbone"
- The generated tokens are reordered like an "image"
- Then areas closer together are grouped together into a new token





Token-to-Token ViT (T2T-ViT)

- While "vanilla" ViT requires a large dataset and more tuneable parameters to beat the "state-of-the-art" (**JFT-300M**) CNN models
- T2T-ViT requires smaller datasets and less tuneable parameter



Lecture 10.

Vision Transformers

Budapest, 25th April 2025

1 Transformer Network2 Vision Transformers

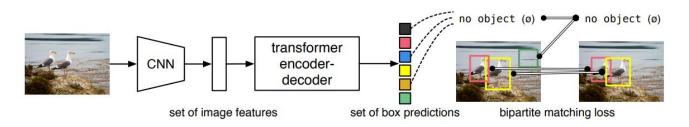
3 State of the Art

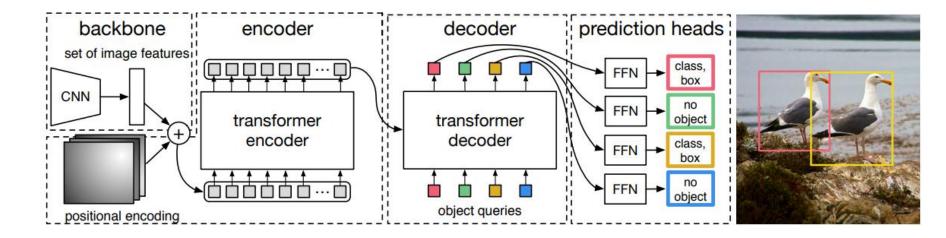
DEtection TRansformer (DETR) – May 2020

End-to-End Object Detection with Transformers - <u>arxiv.org/abs/2005.12872</u>

Simple architecture:

- 1. CNN backbone
- 2. Encoder-Decoder Transformer
- 3. Feed Forward Network





Segment Anything Model (SAM) – Apr 2023

- MAE pre-trained ViT-H/16 as an image encoder
- The mask decoder is a modified transformer
- Prompt encoder from CLIP

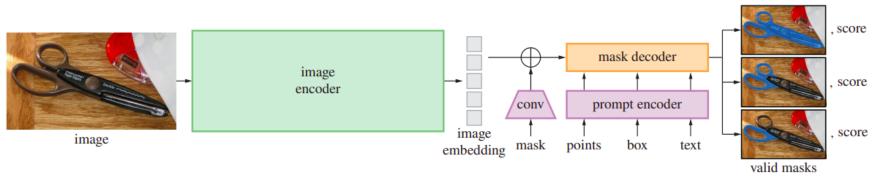


Figure 4: Segment Anything Model (SAM) overview. A heavyweight image encoder outputs an image embedding that can then be efficiently queried by a variety of input prompts to produce object masks at amortized real-time speed. For ambiguous prompts corresponding to more than one object, SAM can output multiple valid masks and associated confidence scores.

Masked Autoencoders (MAE) – Dec 2021

The task is to reconstruct the signal given its partial observation

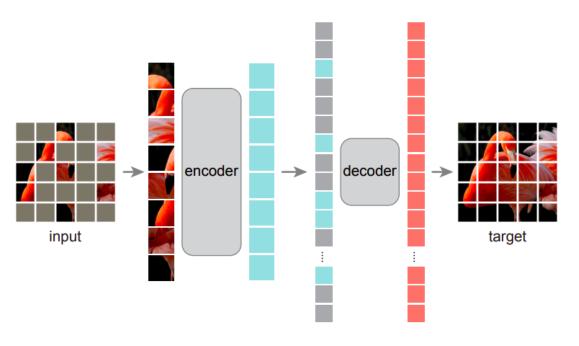
- High masking (75% of the image is masked) eliminates redundancy
- The reconstruction is much harder since the missing part cannot be reconstructed by extrapolation (like in image inpainting)

ViT encoder:

Only operates on the visible parts (no <MASK> tokens)

MAE decoder:

- Input: Encoded visible tokens and mask tokens
- Each mask token is a shared learned vector
- Positional encoding



And many more

- SAM-2,
- GPT-2, GPT-3, GPT-4
- DALL-E, VIT-VQGAN,
- SORA
- Oasis

Summary

GPT:

- Left-to-right approach,
- Language Modelling and next token prediction

BERT:

- Bidirectional Multihead Self Attention and masking
- Same architecture for all to language modelling tasks

Vision Transformers:

- Image Patch Linear Projection Token
- Fails to capture local structures such as edges, texture and patterns
- Positional embedding does not provide information about locality

Token-to-Token ViT:

- Token reorganization to counter missing locality

ELTE EÓTVÖS LORÁND UNIVERSITY

DETR:

- **Convolutional Feature extraction Transformer**
- Detects N objects at the same time

Segment Anything Model (SAM):

- Segmentation based on user input

Masked Autoencoders (MAE):

- Asymmetric design
- Unique challenge

Resources

Books:

- Courville, Goodfellow, Bengio: Deep Learning
 Freely available: <u>https://www.deeplearningbook.org/</u>
- Zhang, Aston and Lipton, Zachary C. and Li, Mu and Smola, Alexander J.: Dive into Deep Learning Freely available: <u>https://d2l.ai/</u>

Courses:

- Deep Learning specialization by Andrew NG
- <u>https://www.coursera.org/specializations/deep-learning</u>

Further Links + Resources

- Attention Is All You Need <u>arxiv.org/abs/1706.03762</u>
- Improving Language Understanding by Generative Pre-Training *<u>openai.com/index/language-unsupervised/</u>*
- BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding <u>arxiv.org/abs/1810.04805</u>
- An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale <u>arxiv.org/abs/2010.11929</u>
- Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet <u>arxiv.org/abs/2101.11986</u>
- <u>medium.com/autonomous-agents/convnets-vs-vision-transformers-mathematical-deep-dive-c7908220e7b3</u>
- <u>medium.com/towards-data-science/vision-transformers-explained-a9d07147e4c8</u>
- End-to-End Object Detection with Transformers <u>arxiv.org/abs/2005.12872</u>
- Segment Anything <u>arxiv.org/abs/2304.02643</u>
- Masked Autoencoders Are Scalable Vision Learners <u>arxiv.org/abs/2111.06377</u>

That's all for today!