

DEEP NETWORK DEVELOPMENT

Imre Molnár

PhD student, ELTE, AI Department

✉ imremolnar@inf.elte.hu

🌐 curiouspercibal.github.io

Tamás Takács

PhD student, ELTE, AI Department

✉ tamastheactual@inf.elte.hu

🌐 tamastheactual.github.io

Lecture 10.

Transformer Networks, Vision Transformers

Budapest, 11th November 2025

1 Natural Language Understanding

2 Attention Mechanism

3 Transformer Architecture

4 Vision Transformers

Recap

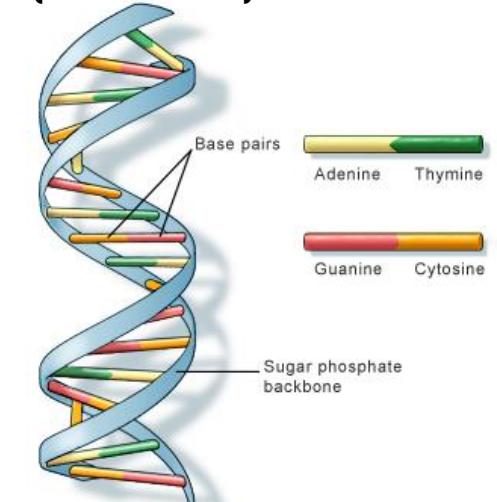
Sequential data

Text – sequence of words / characters

Speech – sequence of signals / acoustic features

Video – sequence of images (frames)

DNA – sequence of symbols (nucleotides)



... GTGCATCTGACTCCTGAGGAGAAG ...

DNA

... CACGTAGACTGAGGAGTCCTCTTC ...

↓ Transcription

... GUGCAUCUGACUCCUGAGGAGAAG ... RNA

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

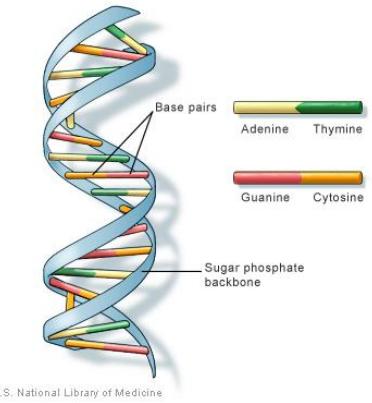
Translation

... V H L T P E E K ... Protein

Recap

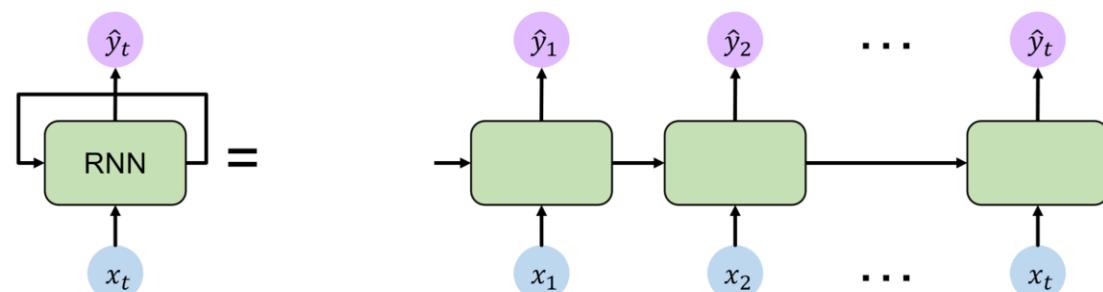
Key properties of sequential data

- Order
- Temporal information
- Context



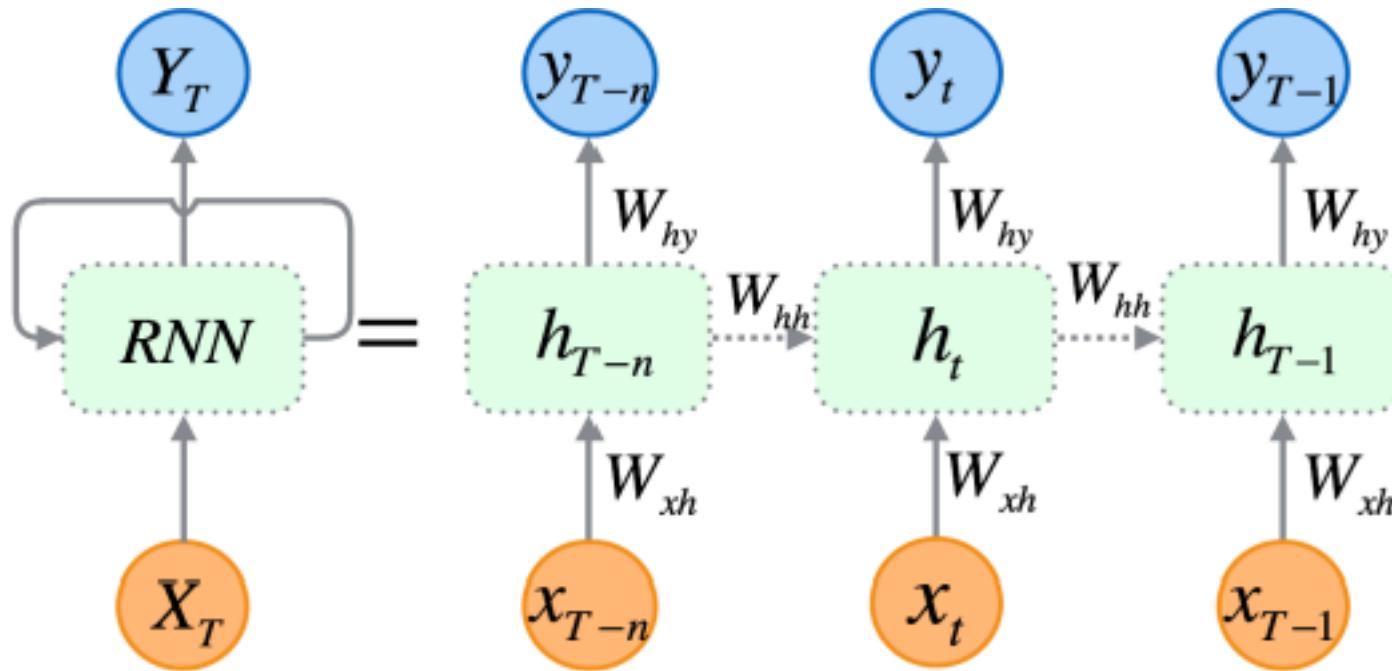
Key model properties:

- Handle variable length sequences
- Track long term dependencies
- Maintain the order of the input
- Share parameters across sequences



Recurrent Neural Network (review)

RNN (unrolled version)



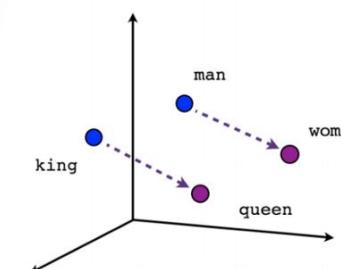
Embeddings: Word representation (review)

Featurized representation: Word Embedding

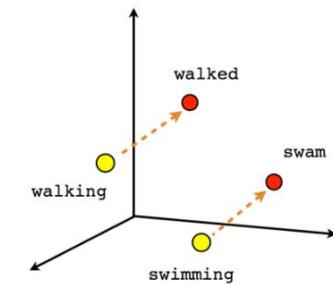
If we subtract man and woman, main difference is gender

We can compute word similarities

We can compute word analogies: man is to woman as king is to __



Male-Female



Verb tense

	Man (5391)	Woman (9853)	King (4914)	Queen (7151)	Apple (456)	Orange (6257)
Gender	-1	1	-0.95	0.97	0.00	0.01
Royal	0.01	0.02	0.93	0.95	-0.01	0.00
Age	0.03	0.02	0.7	0.68	0.03	-0.02
Food	0.04	0.01	0.02	0.01	0.95	0.97
...

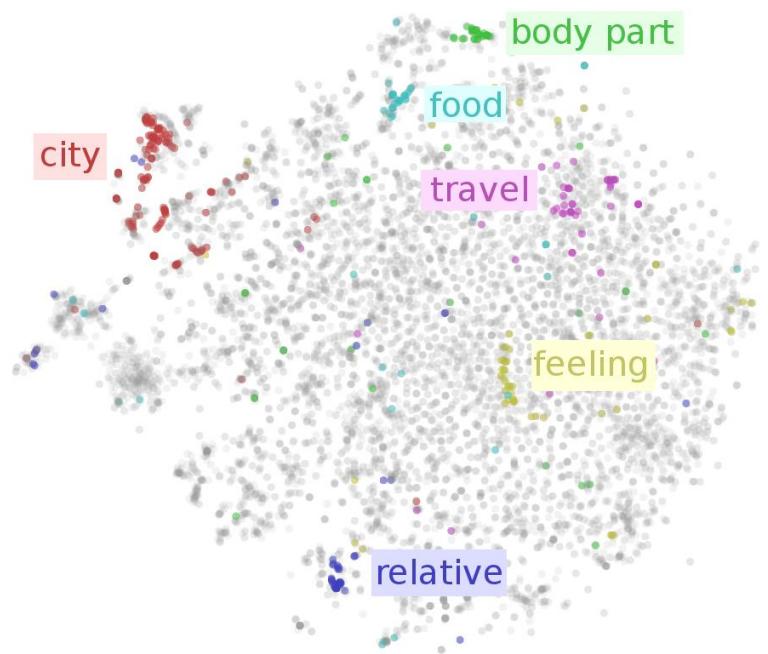
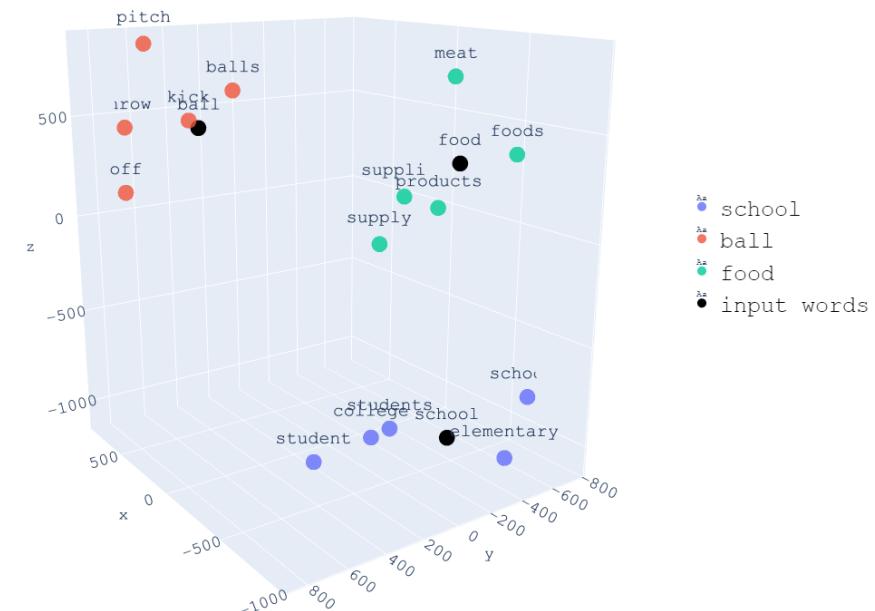
Embeddings: Word representation (review)

Featurized representation: Word Embedding

The word embeddings are learned with training.

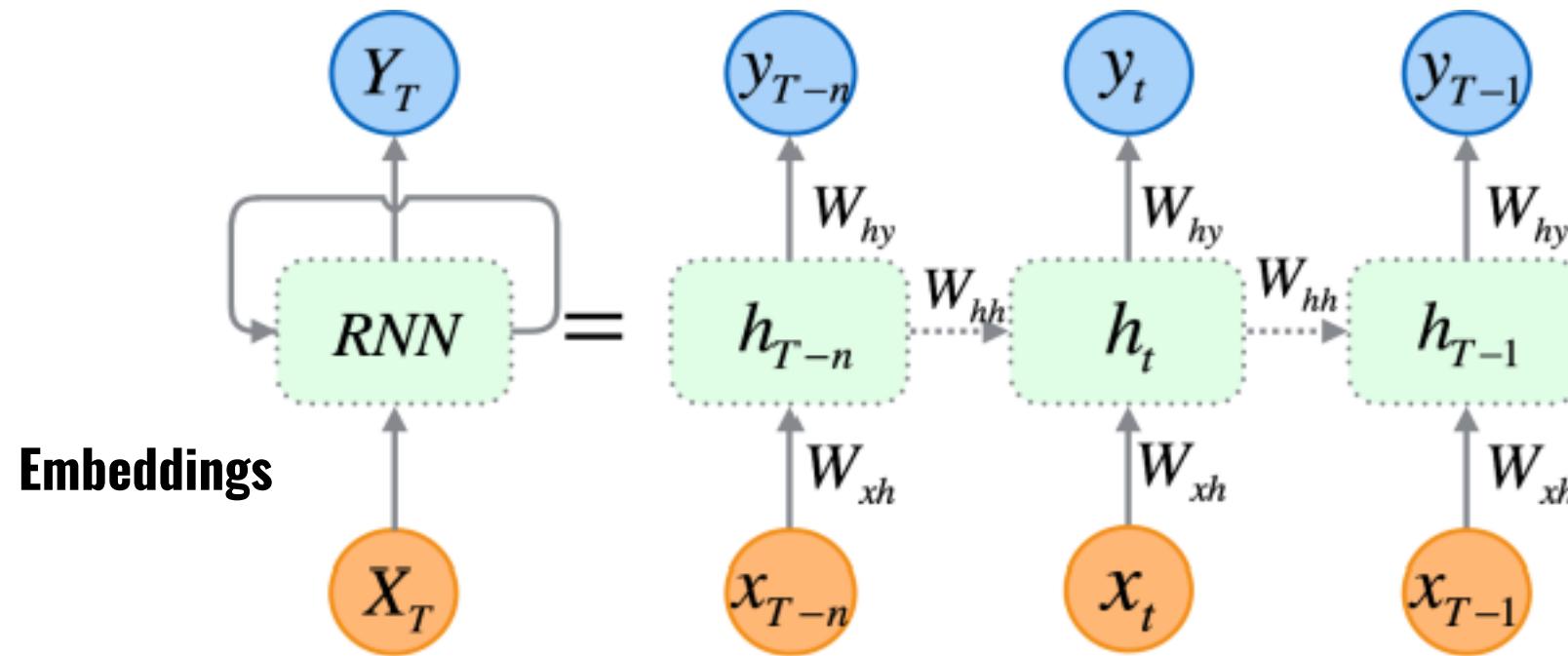
Therefore, in practice, the features aren't that understandable.

We can visualize lower representations of the embeddings with techniques such as T-SNE



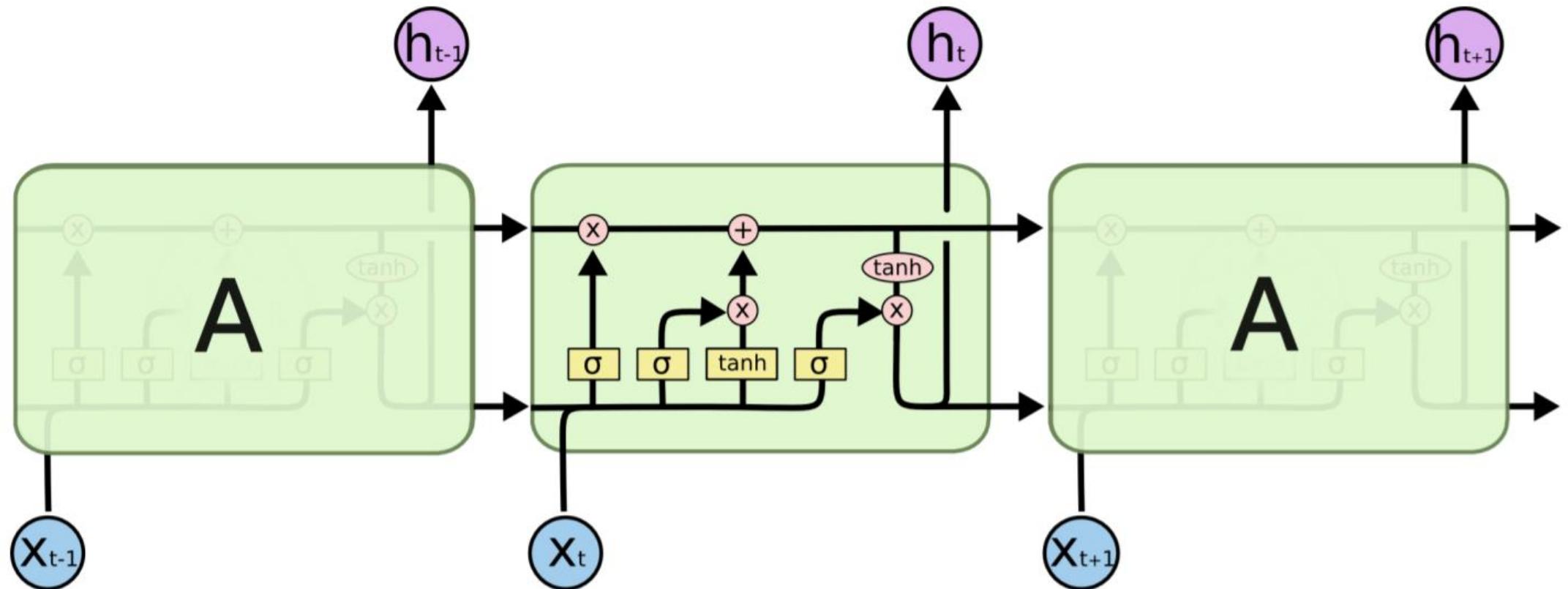
Embeddings: Word representation (review)

RNN (unrolled version)



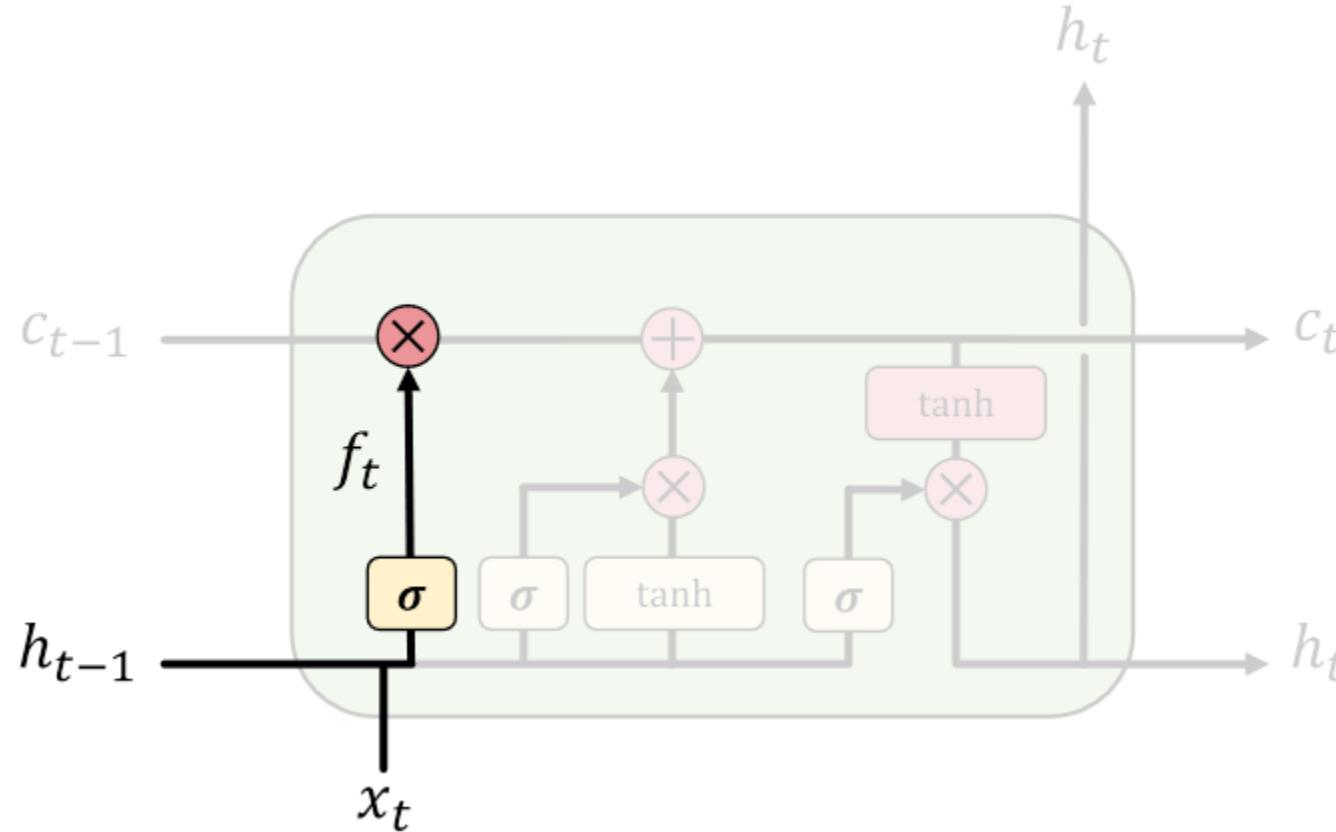
Long Short-Term Memory (LSTM) (review)

LSTM – a more complex network



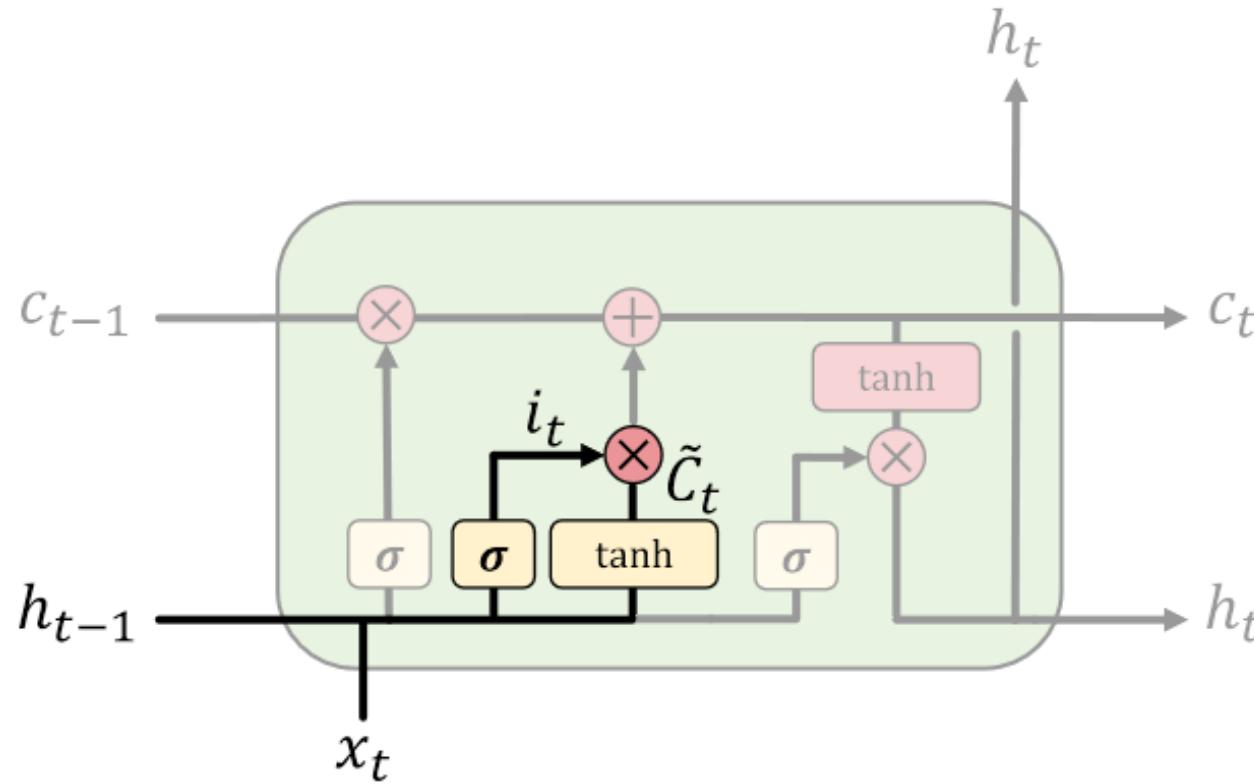
Long Short-Term Memory (LSTM) (review)

LSTM – Forget Gate



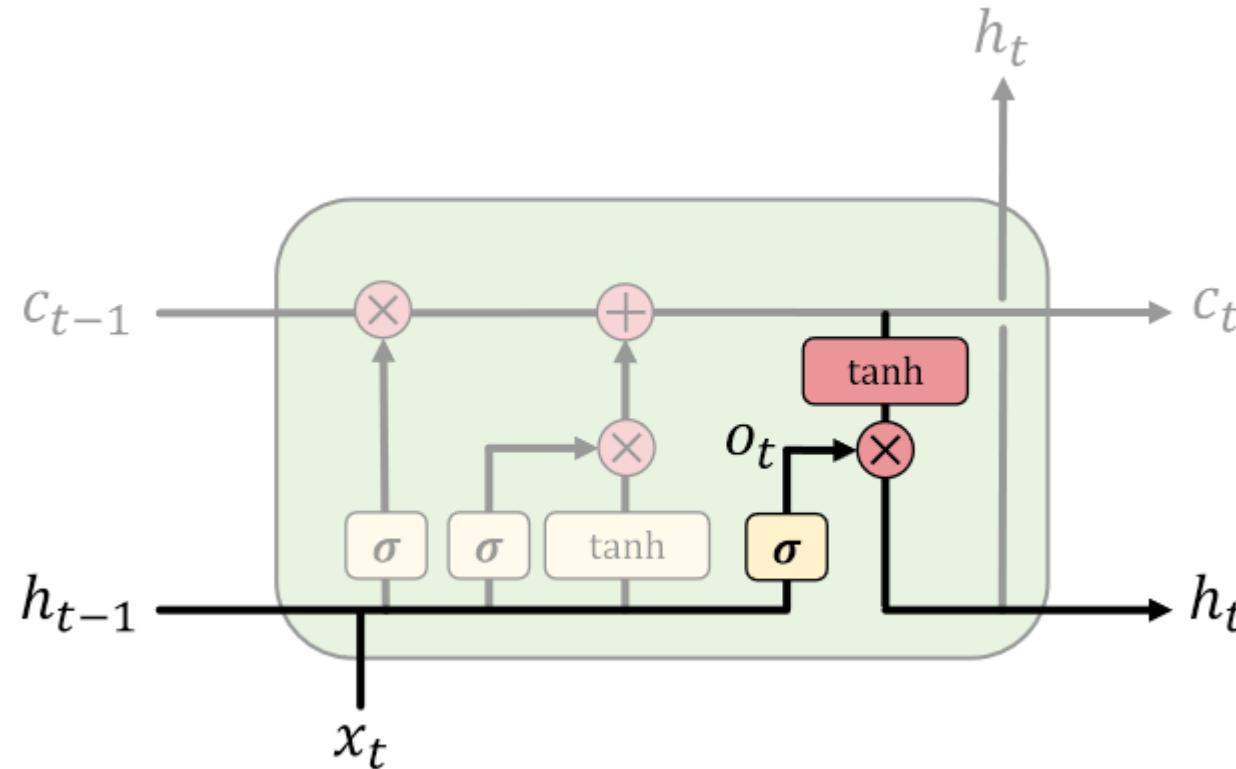
Long Short-Term Memory (LSTM) (review)

LSTM – Input / Ignore Gate

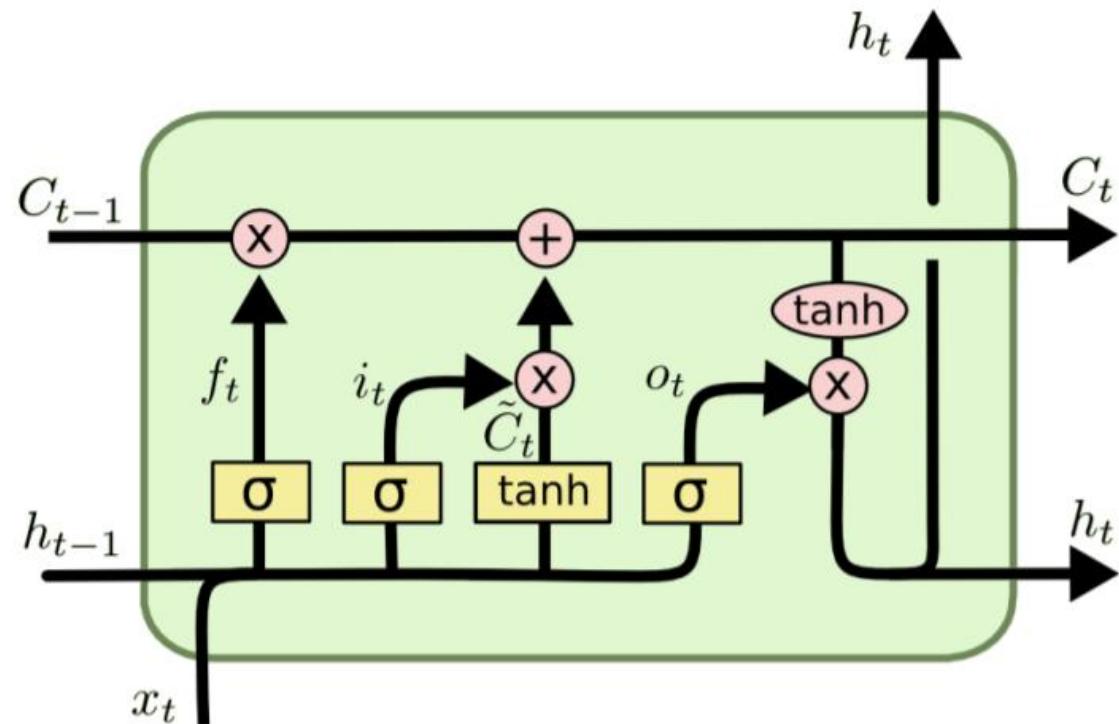


Long Short-Term Memory (LSTM) (review)

LSTM – Output Gate



Long Short-Term Memory (LSTM)

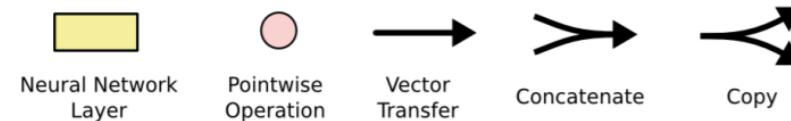


f – forget gate: Whether to erase cell

i – ignore gate: Whether to write to cell

\tilde{C} – “vanilla RNN”: How much to write to cell

o – output gate: How much to reveal cell



Gates:

$$i_t = \sigma(W_{hi}h_{t-1} + W_{xi}x_t + b_i)$$

$$f_t = \sigma(W_{hf}h_{t-1} + W_{xf}x_t + b_f)$$

$$o_t = \sigma(W_{ho}h_{t-1} + W_{xo}x_t + b_o)$$

$$\tilde{C}_t = \tanh(W_{hc}h_{t-1} + W_{xc}x_t + b_c)$$

Outputs:

$$C_t = f_t \circ C_{t-1} + i_t \circ \tilde{C}_t$$

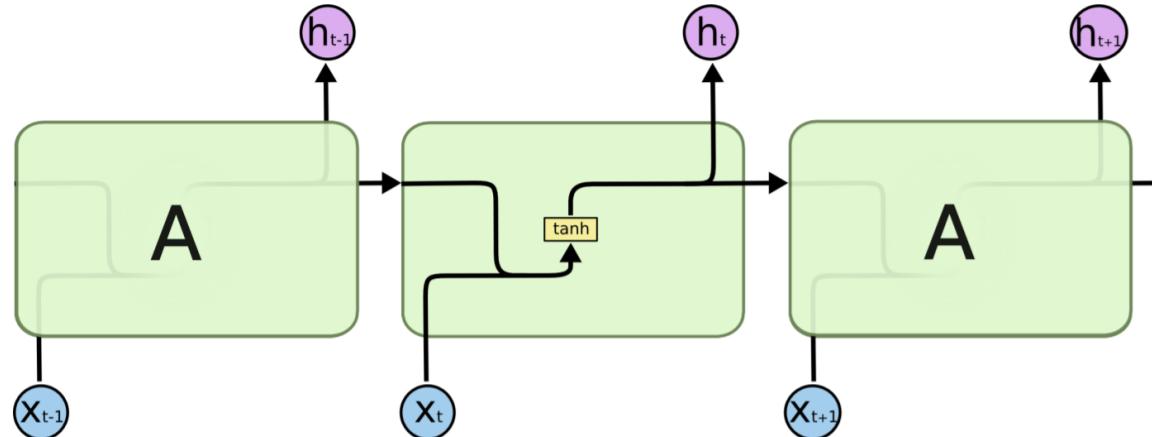
$$h_t = o_t \circ \tanh(\tilde{C}_t)$$

where \circ is element-wise multiplication operation

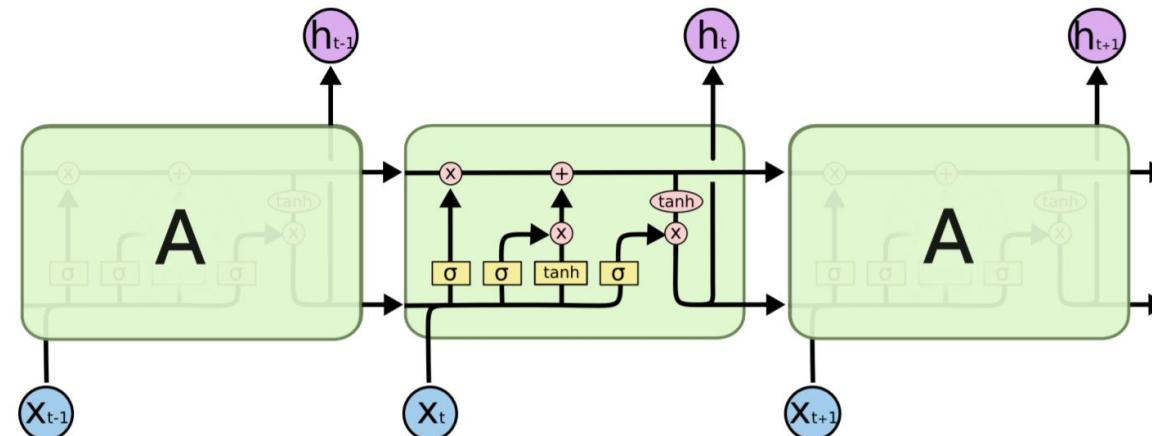
Long Short-Term Memory (LSTM) (review)

LSTM – a more complex network

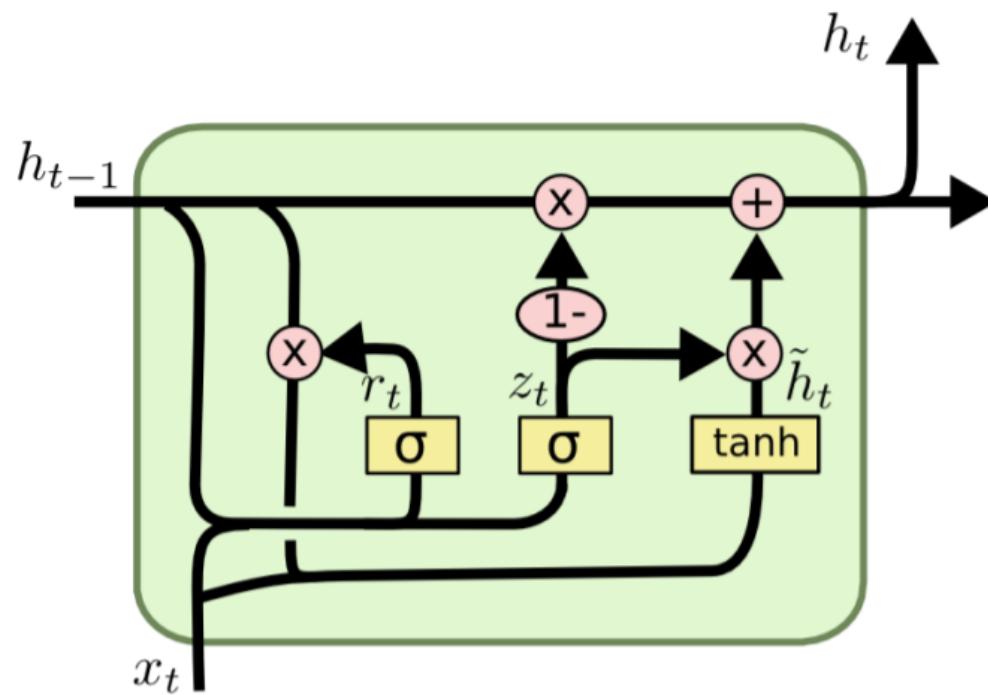
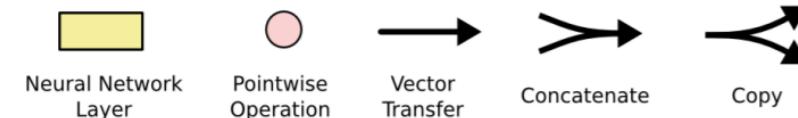
Vanilla RNN:



LSTM:



Gated Recurrent Unit (GRU) (review)



$$z_t = \sigma (W_z \cdot [h_{t-1}, x_t])$$

$$r_t = \sigma (W_r \cdot [h_{t-1}, x_t])$$

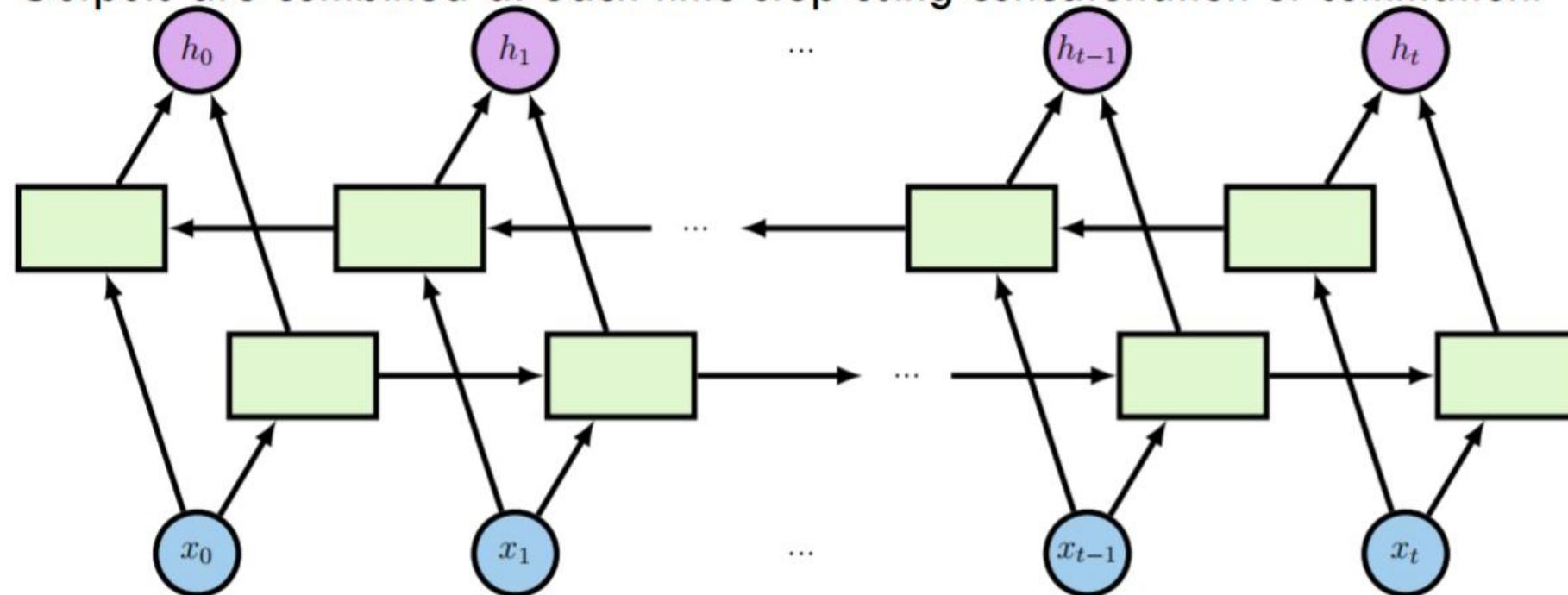
$$\tilde{h}_t = \tanh (W \cdot [r_t * h_{t-1}, x_t])$$

$$h_t = (1 - z_t) * h_{t-1} + z_t * \tilde{h}_t$$

Bidirectional RNN (review)

Idea: use 2 independent recurrent models together.

- Input is fed in the proper time order to the first one, and in reverse time order to the second one.
- Outputs are combined at each time step using concatenation or summation.



Bidirectional RNN (review)

BIDIRECTIONAL RNN (BRNN)

A BRNN layer:

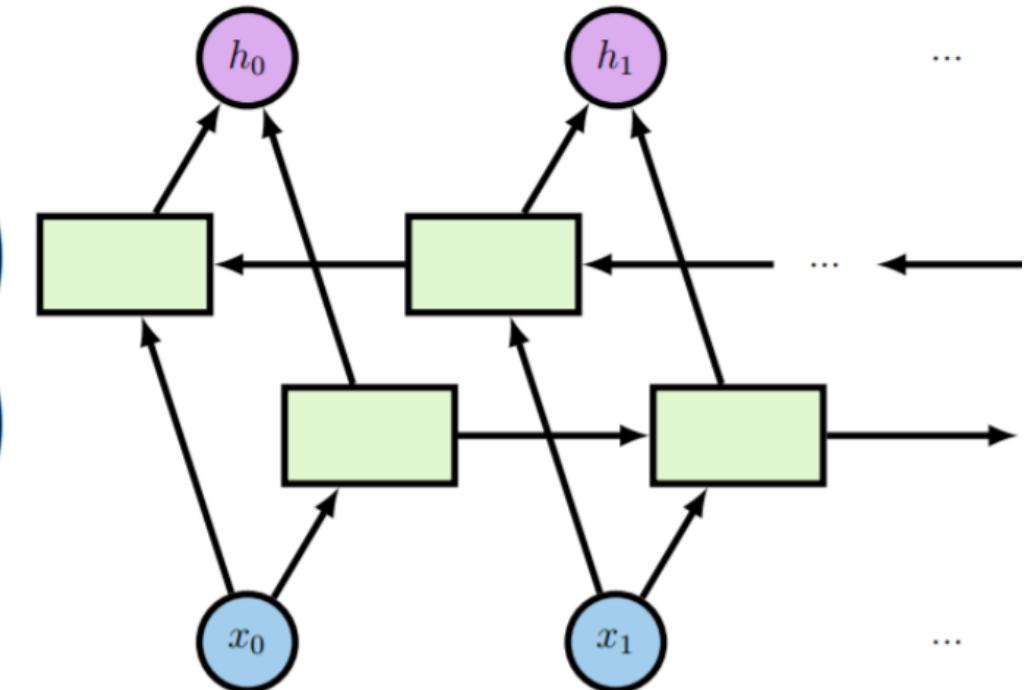
$$\overrightarrow{h}_{d,t}^{(n)} = \overrightarrow{g}_d \left(\overrightarrow{W}_d^h \overrightarrow{h}_{d,t-1}^{(n)} + \overrightarrow{W}_d^x \overrightarrow{h}_{d-1,t}^{(n)} + \overrightarrow{b}_d \right)$$

$$\overleftarrow{h}_{d,t}^{(n)} = \overleftarrow{g}_d \left(\overleftarrow{W}_d^h \overleftarrow{h}_{d,t+1}^{(n)} + \overleftarrow{W}_d^x \overleftarrow{h}_{d-1,t}^{(n)} + \overleftarrow{b}_d \right)$$

$$h_{d,t}^{(n)} = g_d \left(\overrightarrow{W}_d^h \overrightarrow{h}_{d,t}^{(n)} + \overleftarrow{W}_d^h \overleftarrow{h}_{d,t}^{(n)} + b_d \right)$$

Where

- “ \rightarrow ” means normal time order, while “ \leftarrow ” is associated with reverse time order
- $t = 1, \dots, T_n$;
- $\theta_d = \left\{ \overrightarrow{W}_d^h, \overrightarrow{W}_d^x, \overrightarrow{b}_d, \overleftarrow{W}_d^h, \overleftarrow{W}_d^x, \overleftarrow{b}_d, \overrightarrow{W}_d^h, \overleftarrow{W}_d^x, b_d \right\}$



Lecture 10.

Transformer Networks, Vision Transformers

Budapest, 11th November 2025

1 Natural Language Understanding

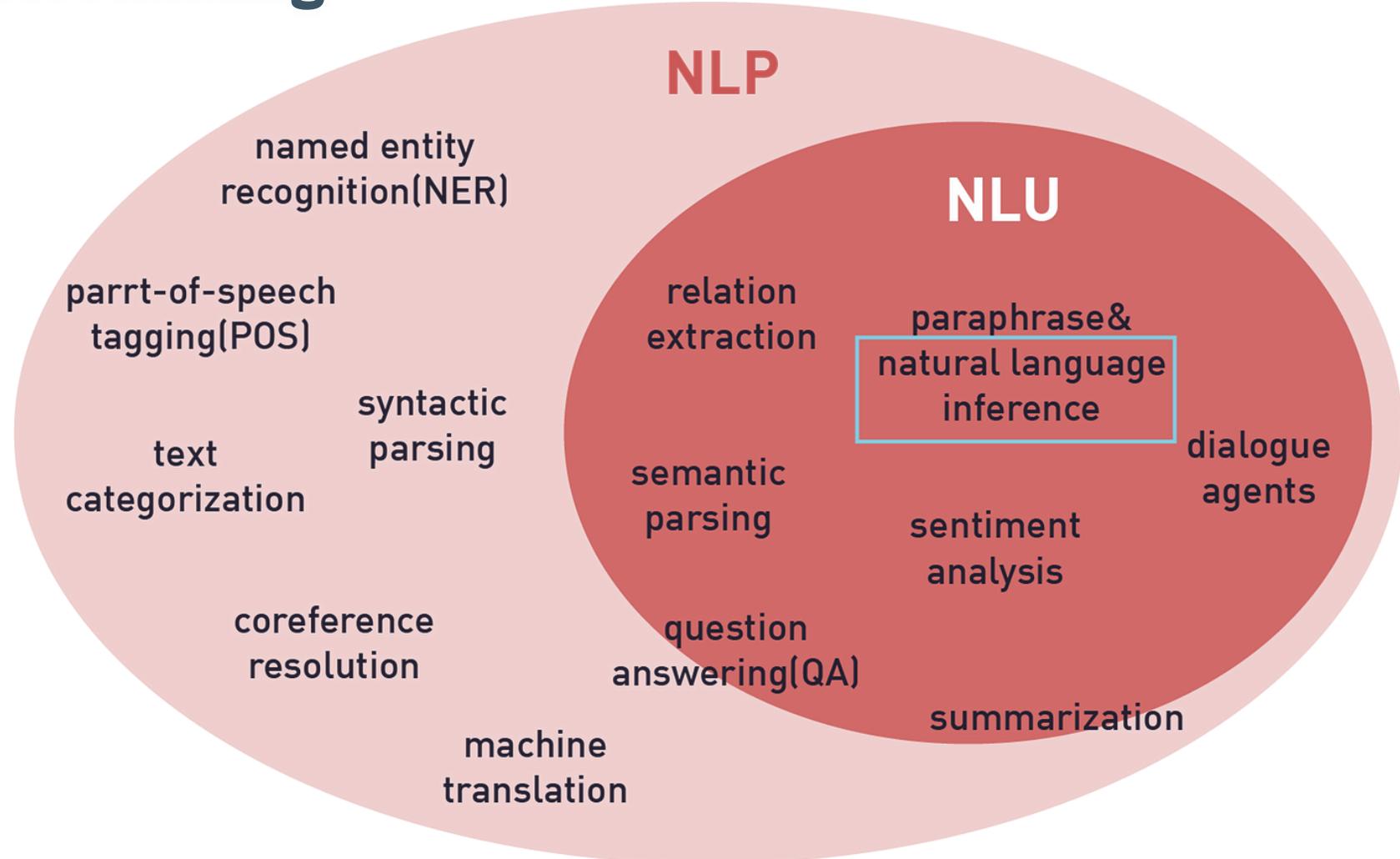
2 Attention Mechanism

3 Transformer Architecture

4 Vision Transformers

Natural Language Understanding

- Neural Machine Translation
- Textual entailment
- Question answering
- Semantic similarity assessment
- Text classification
- Etc...



Machine Translation

- Most of the proposed neural machine translation models belong to the family of **encode-decoders**
- From probabilistic perspective:

$$\operatorname{argmax}_y p(y | x)$$

- Which means finding a target **y** that maximizes the conditional probability of **y** given a source sentence **x**

Machine Translation

Machine Translation

- In the **encoder-decoder** framework an **encoder** reads and reduces the input sentence (a sequence of vectors $\mathbf{x} = (x_1, \dots, x_T)$) into a vector c
- The approach for RNNs:

$$h_t = f(x_t, h_{t-1})$$
$$c = q(\{h_1, \dots, h_{T_x}\})$$

- Where q is a nonlinear function, h_t is the hidden state at time t
- If we choose f as an LSTM then $q(\{h_1, \dots, h_{T_x}\}) = h_{T_x}$
- The decoder then predicts the next word y_t given the context vector c and all the previously predicted words $\{y_1, \dots, y_{t-1}\}$

Machine Translation

Machine Translation

- The **decoder** then predicts the next word y_t given the context vector c and all the previously predicted words $\{y_1, \dots, y_{t-1}\}$
- The predicted translation y can be expressed as the joint probability of:

$$p(\mathbf{y}) = \prod_{t=1}^T p(y_t | \{y_1, \dots, y_{t-1}\}, c)$$

- where $\mathbf{y} = \{y_1, \dots, y_{T_y}\}$
- With and RNN this is modelled as:

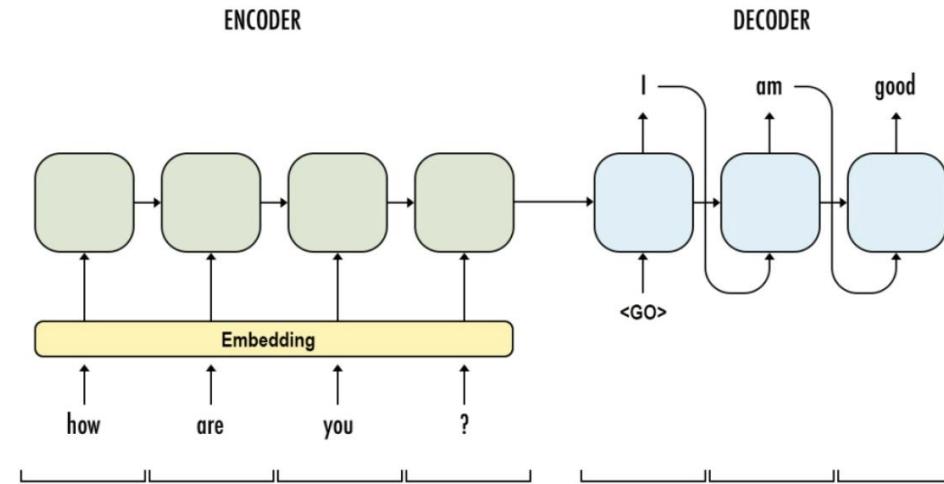
$$p(y_t | \{y_1, \dots, y_{t-1}\}, c) = g(y_{t-1}, s_t, c)$$

- Where g nonlinear multi layered function and s_t is the hidden state

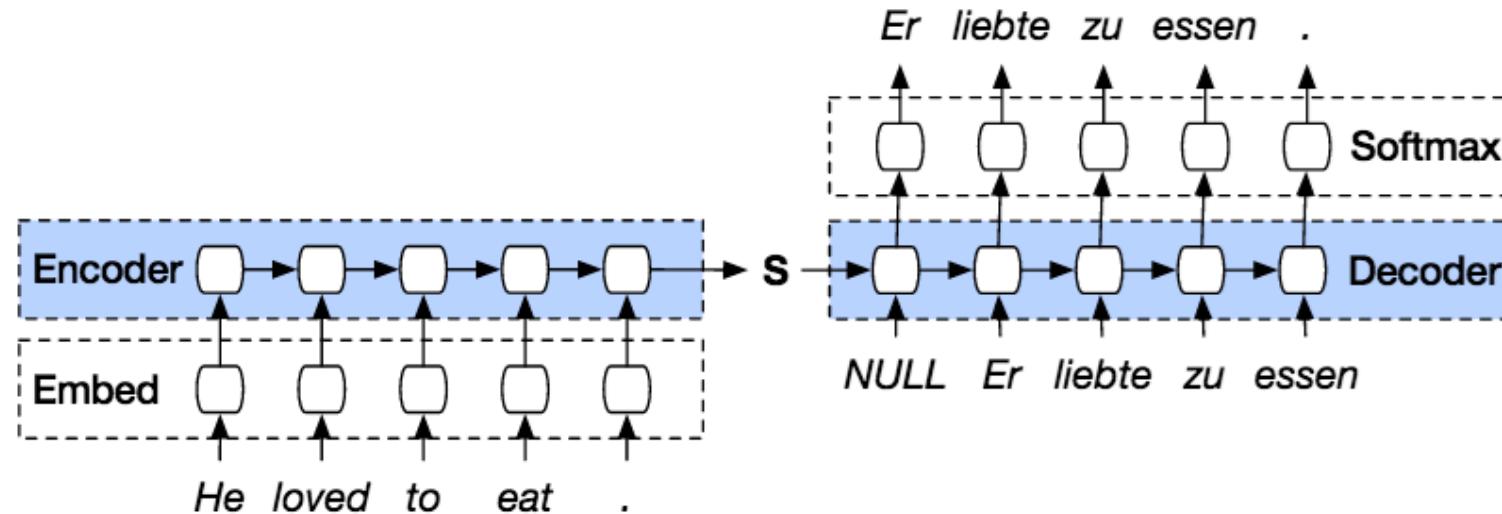
Machine Translation

Encoder – Decoder (Seq2Seq)

Question : Answer
(sequence) : (sequence)

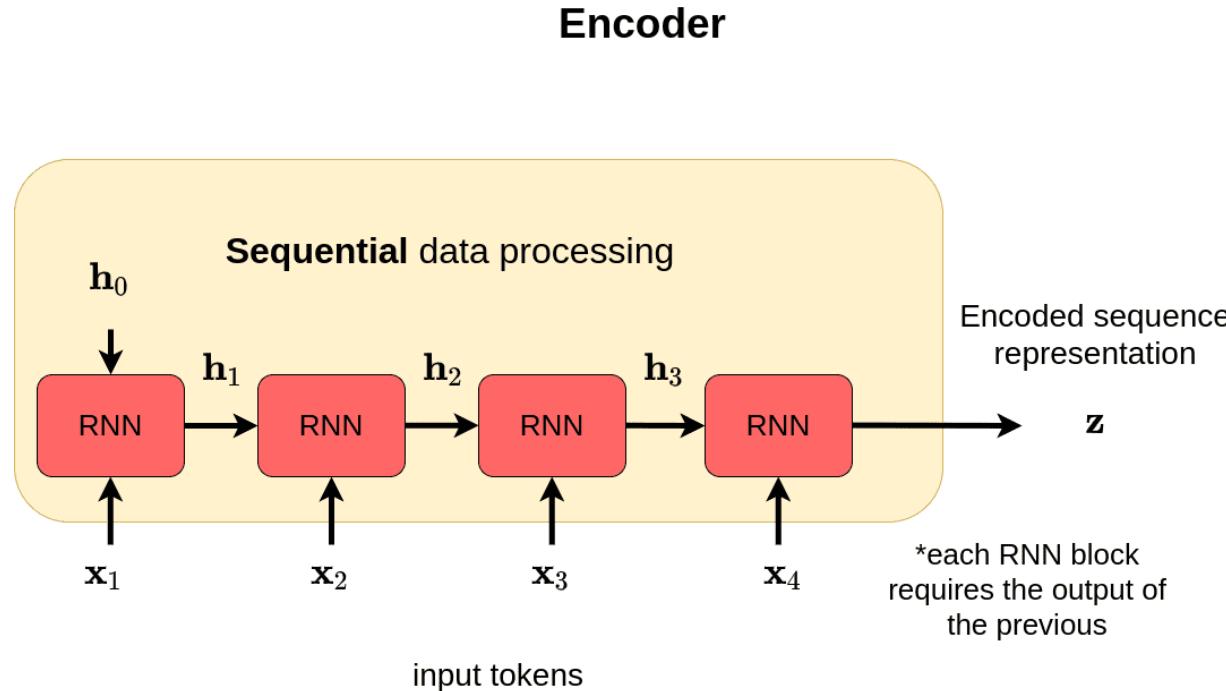


Machine Translation
English : German
(sequence) : (sequence)



Encoder – Decoder (Seq2Seq)

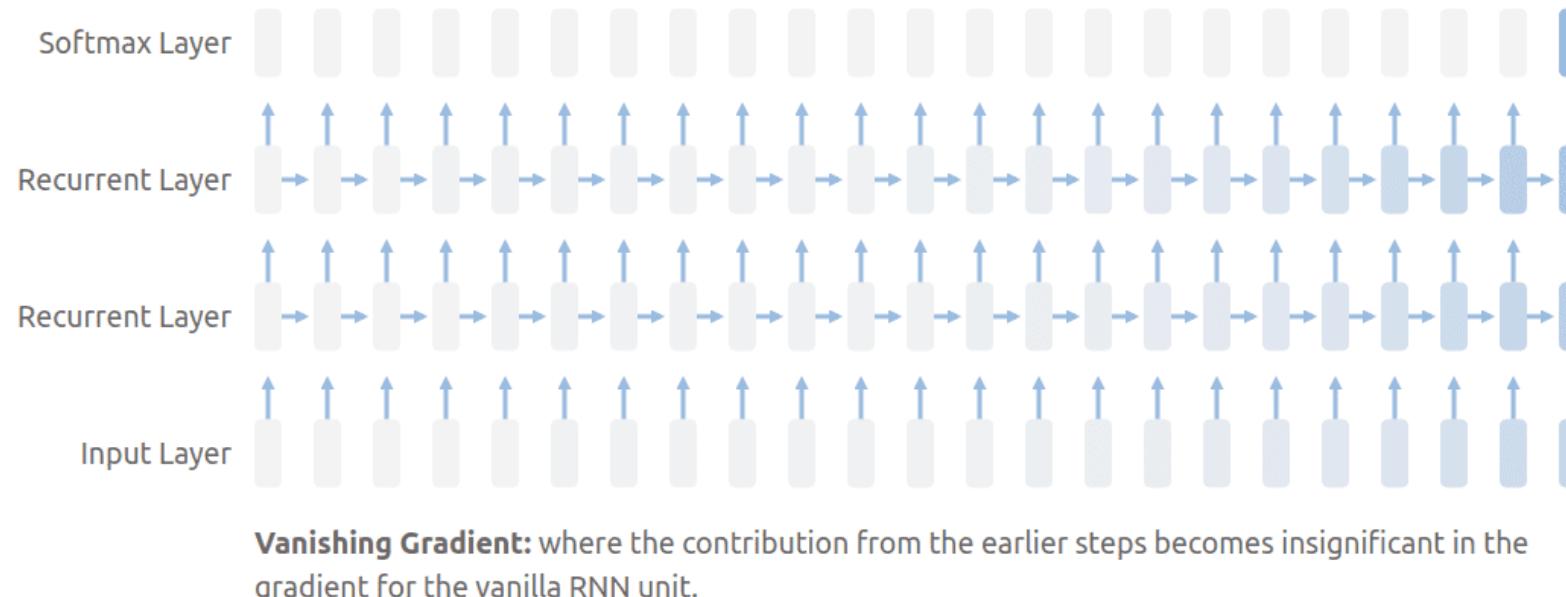
- The encoder and decoder are nothing more than stacked RNN layers, such as LSTM's. The encoder processes the input and produces one compact representation, called z , from all the input timesteps. It can be regarded as a compressed format of the input.



Encoder – Decoder (Seq2Seq)

Problems with this approach

- The intermediate representation z cannot encode information from all the input timesteps. This is commonly known as the **bottleneck problem**. The vector z needs to capture all the information about the source sentence.
- In practice, how far we can see in the past (the so-called reference window) is finite. RNN's tend to **forget information** from timesteps that are far behind.



Lecture 10.

Transformer Networks, Vision Transformers

Budapest, 11th November 2025

1 Natural Language Understanding

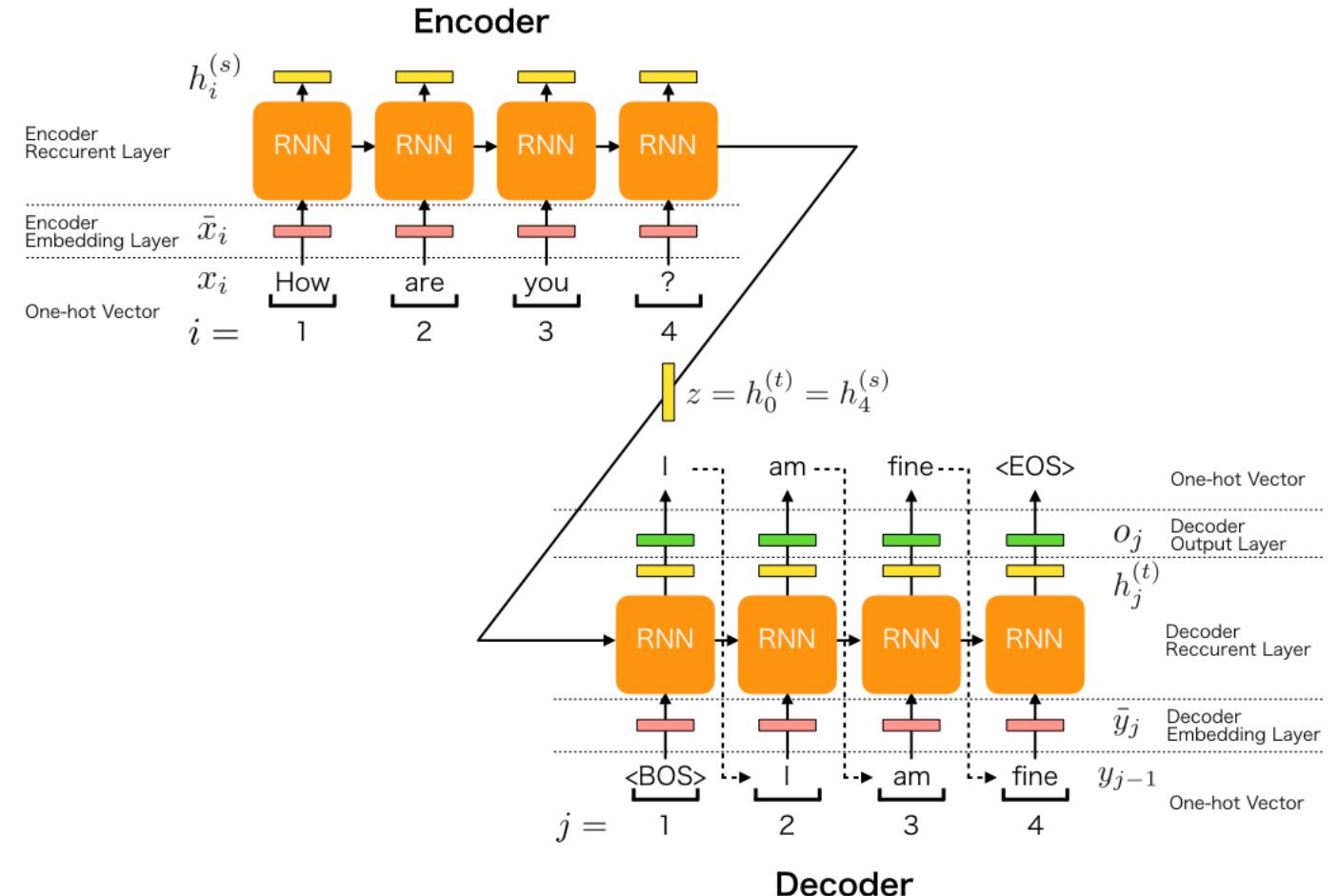
2 Attention Mechanism

3 Transformer Architecture

4 Vision Transformers

Introduction to Attention Mechanism

- All the information from the encoder is represented in the z vector (context)
- However, as seen previously, information from earlier timestamps is not preserved
- Can we create a better context vector?



Introduction to Attention Mechanism

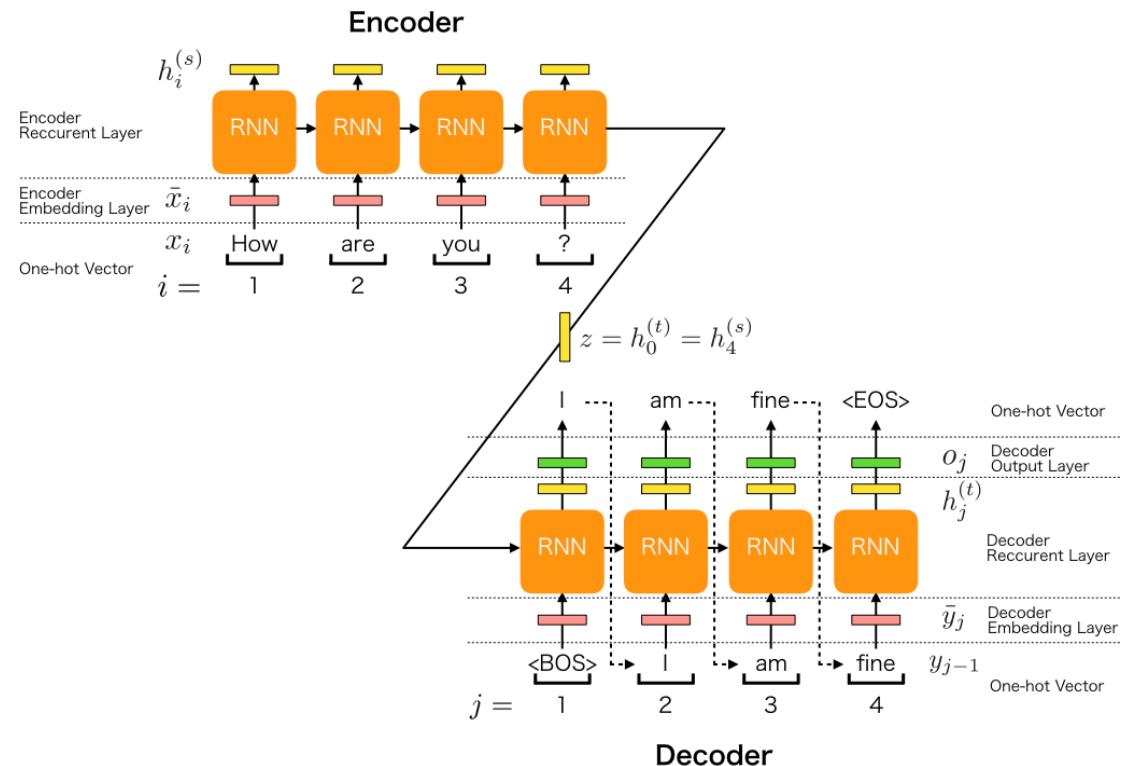
- In the new approach, we define each conditional probability as:

$$p(y_i | \{y_1, \dots, y_{i-1}\}, c) = g(y_{i-1}, s_i, c_i)$$

- Where s_i is an RNN hidden state for time i , computed by

$$s_i = f(s_{i-1}, y_{i-1}, c_i)$$

- Note that here we produce a distinct context vector c_i for each target word y_i



Introduction to Attention Mechanism (review)

- The core idea is that the context vector c_i should have access to all parts of the input sequence instead of just the last one.
- In other words, we need to form a **direct connection** with each timestamp. We can look at all the different words at the same time and learn to “pay attention” to the correct ones depending on the task at hand.
- In the encoder-decoder:
 - Given the hidden states of the encoder at each time step $h = \{h_1, \dots, h_{T_x}\}$
 - Given the previous state in the decoder y_{i-1}
 - We define an attention network that gives the attention scores for the current state of the decoder

$$e_{ij} = \text{attention}_{\text{net}}(y_{i-1}, \mathbf{h}) \in \mathbb{R}^n$$

- We convert this scores into probabilities

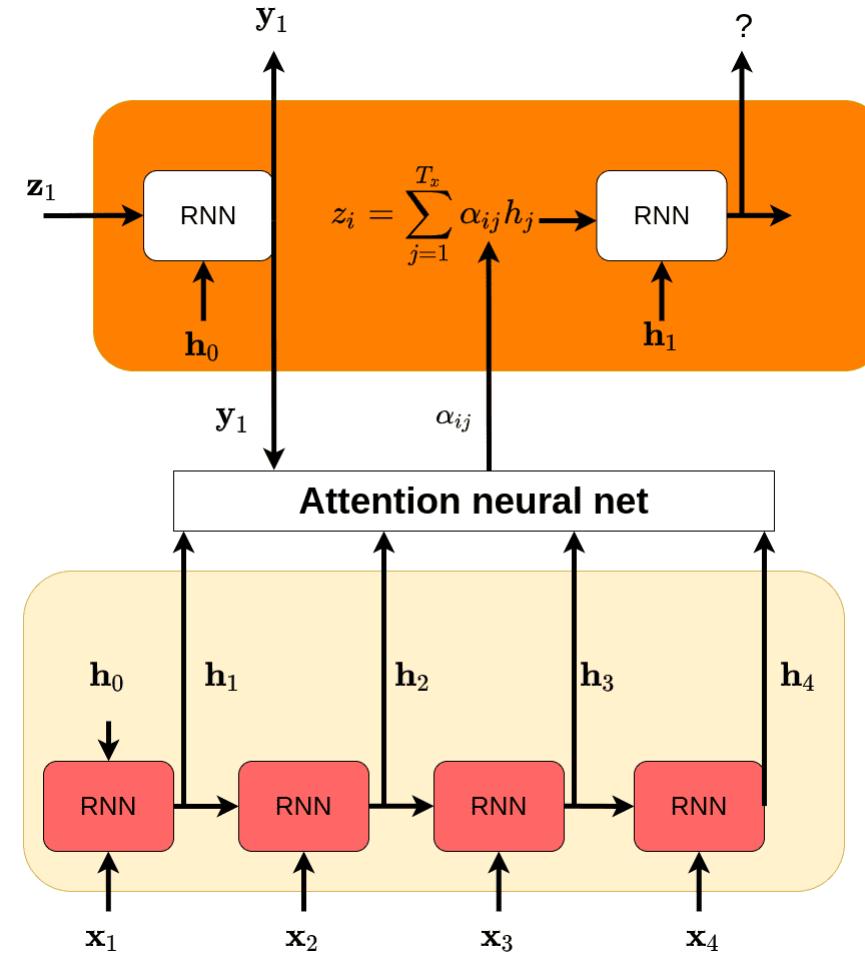
$$\alpha_{ij} = \frac{\exp(e_{ij})}{\sum_{k=1}^{T_x} \exp(e_{ik})}$$

- Finally, we get our new context vector z :

$$c_i = \sum_{j=1}^{T_x} \alpha_{ij} h_j$$

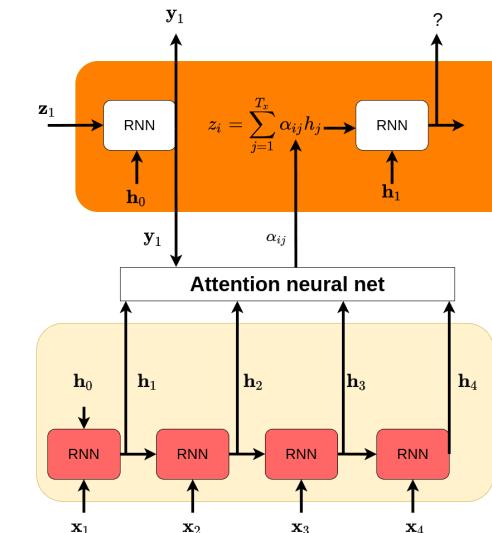
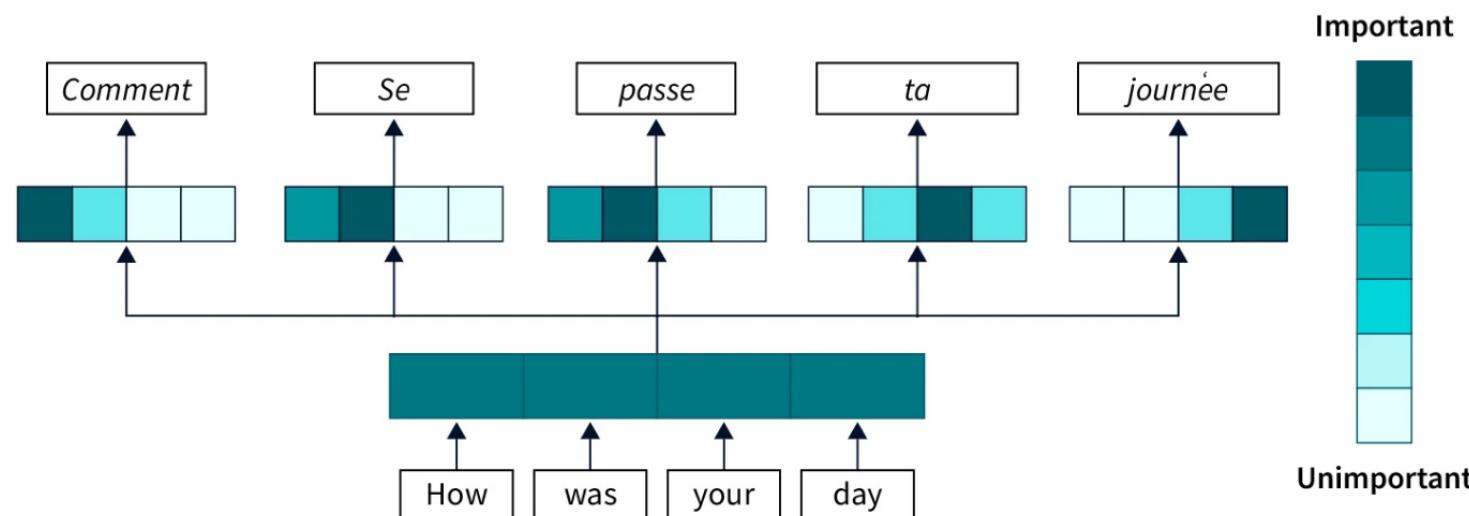
Introduction to Attention Mechanism (review)

- Attention mechanism helps creating a better context vector
- It learns which information from the encoder is relevant for the decoder

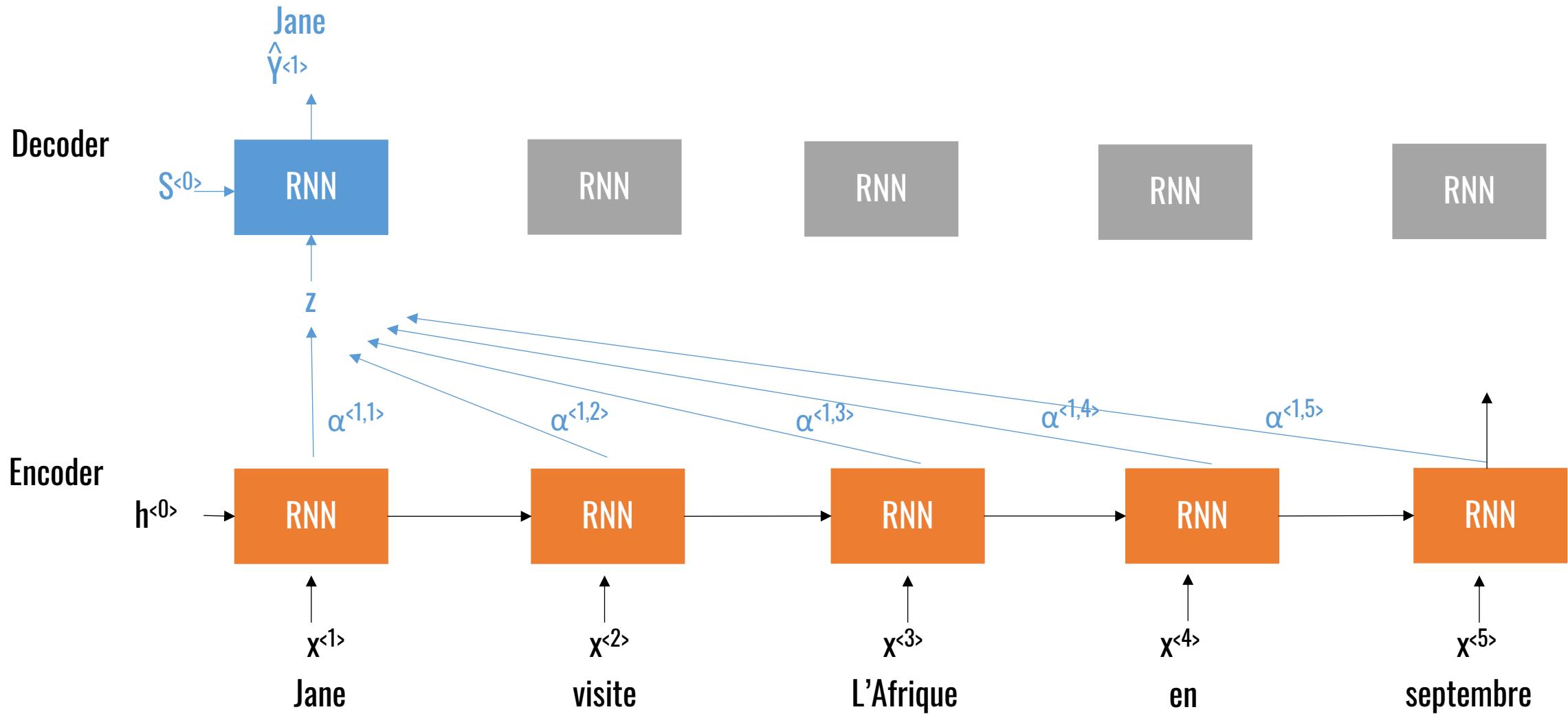


Introduction to Attention Mechanism (review)

- Attention mechanism helps creating a better context vector
- It learns which information from the encoder is relevant for the decoder



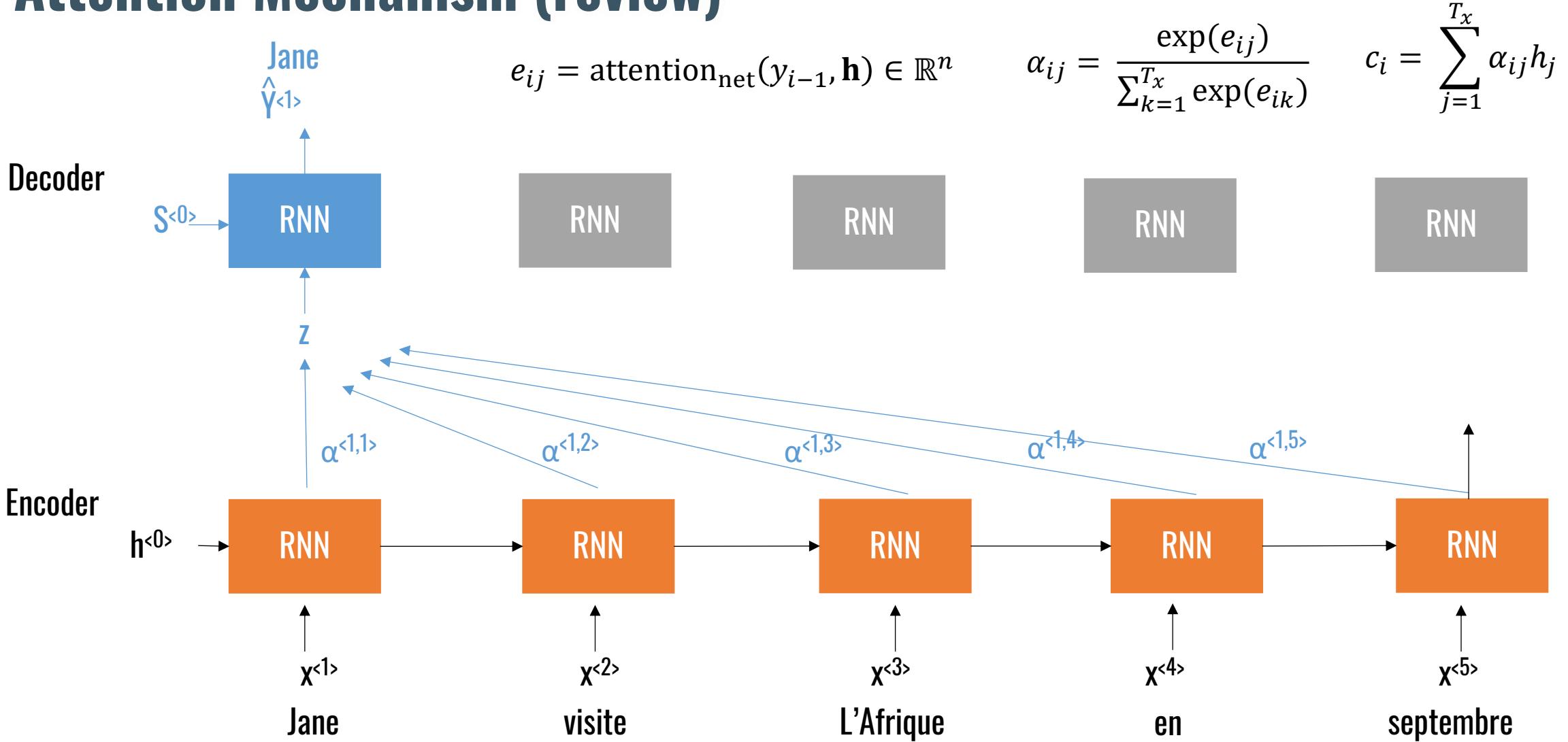
Attention Mechanism (review)



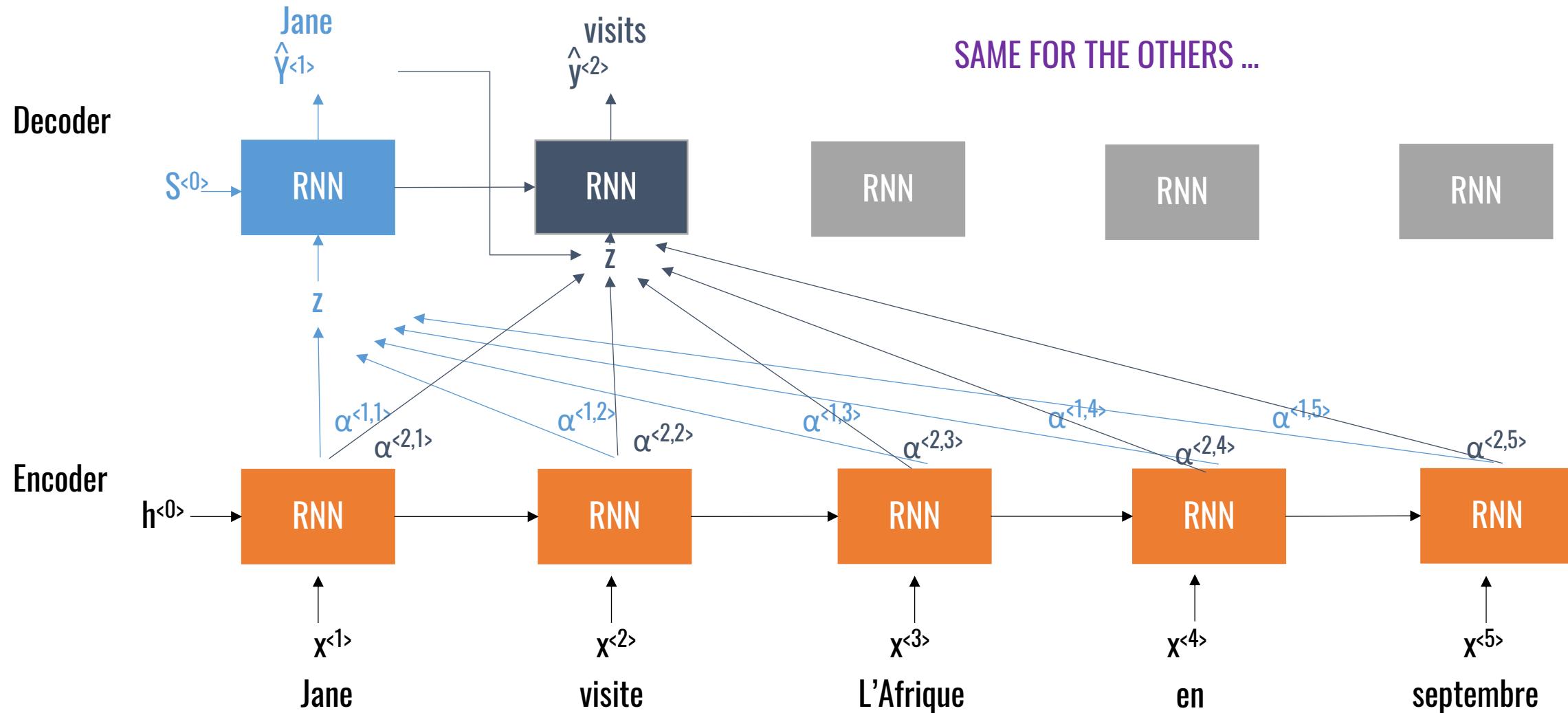
2. Attention Mechanism

α_{ij} = amount of “attention” y_i should pay to h_*

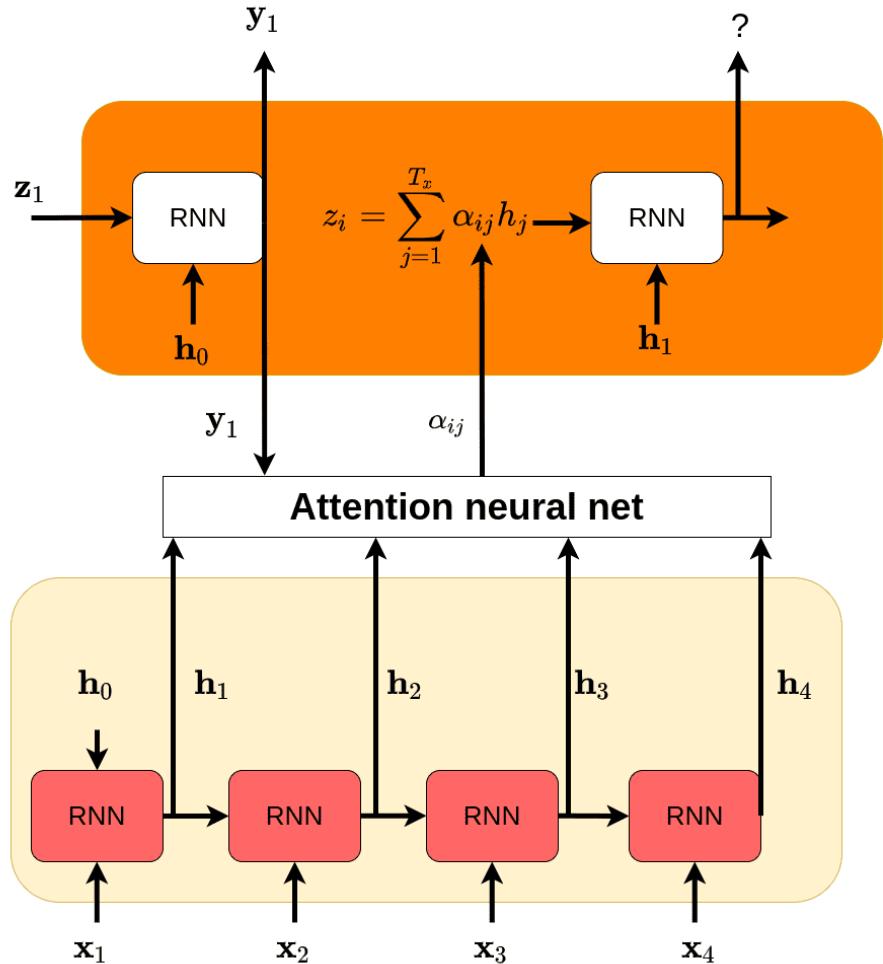
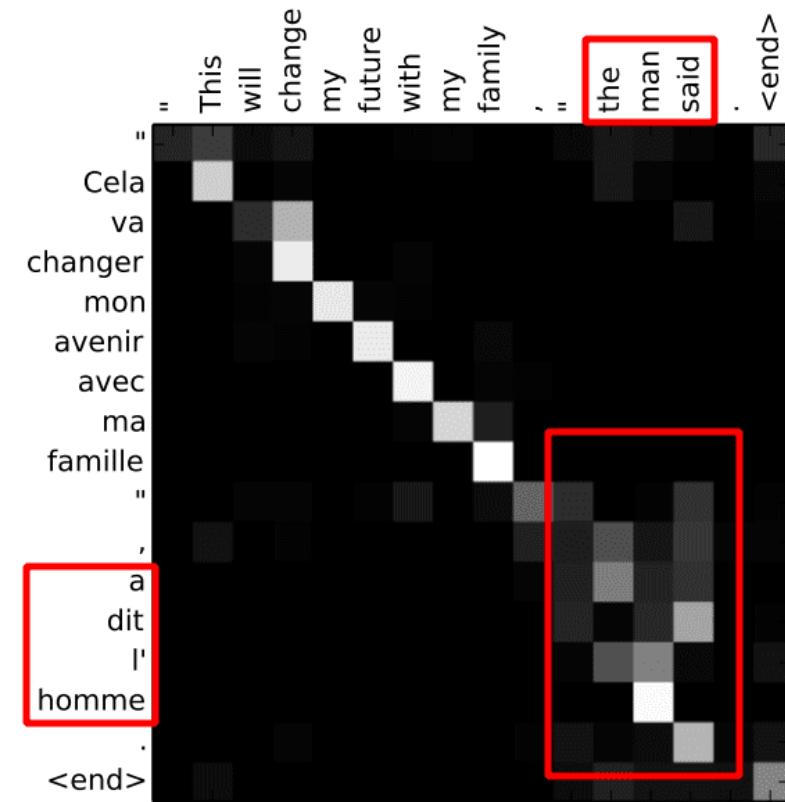
Attention Mechanism (review)



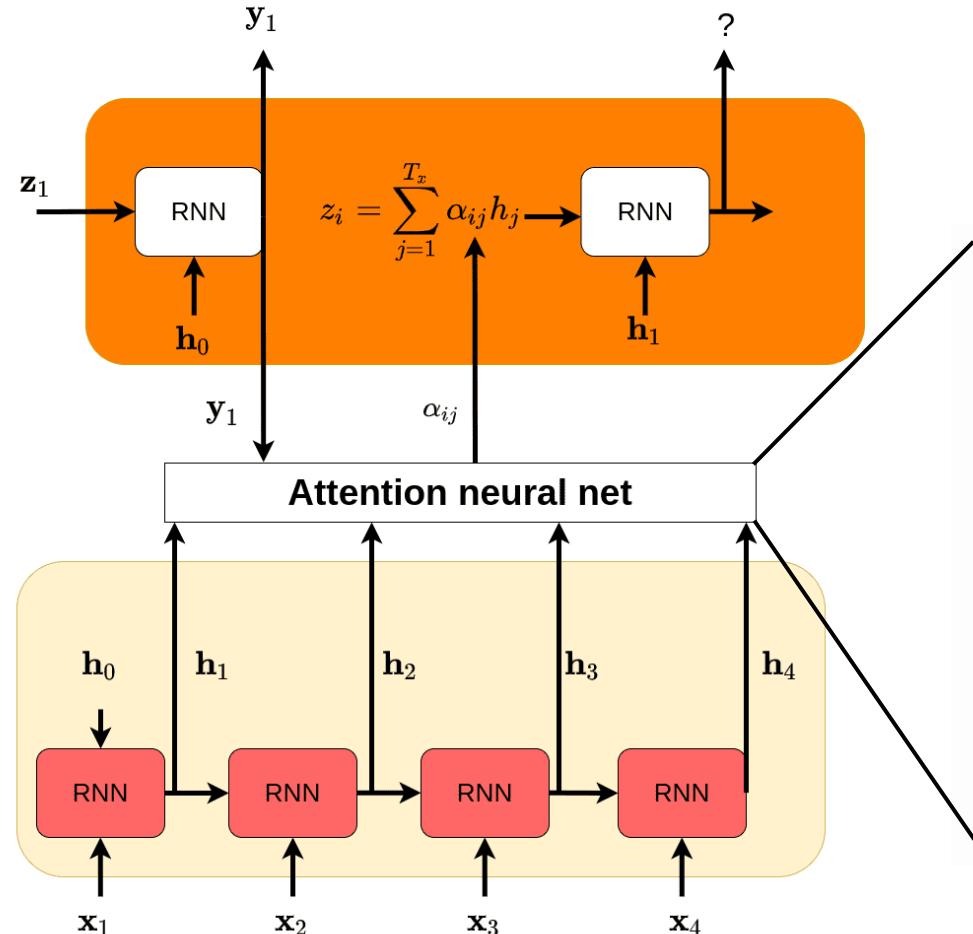
Attention Mechanism (review)



How does Attention work?



Attention Mechanism



Several ways to calculate the scores

Name	Alignment score function	Citation
Content-base attention	$\text{score}(\mathbf{s}_t, \mathbf{h}_i) = \text{cosine}[\mathbf{s}_t, \mathbf{h}_i]$	Graves2014
Additive(*)	$\text{score}(\mathbf{s}_t, \mathbf{h}_i) = \mathbf{v}_a^\top \tanh(\mathbf{W}_a[\mathbf{s}_t; \mathbf{h}_i])$	Bahdanau2015
Location-Base	$\alpha_{t,i} = \text{softmax}(\mathbf{W}_a \mathbf{s}_t)$ Note: This simplifies the softmax alignment to only depend on the target position.	Luong2015
General	$\text{score}(\mathbf{s}_t, \mathbf{h}_i) = \mathbf{s}_t^\top \mathbf{W}_a \mathbf{h}_i$ where \mathbf{W}_a is a trainable weight matrix in the attention layer.	Luong2015
Dot-Product	$\text{score}(\mathbf{s}_t, \mathbf{h}_i) = \mathbf{s}_t^\top \mathbf{h}_i$	Luong2015
Scaled Dot-Product(^)	$\text{score}(\mathbf{s}_t, \mathbf{h}_i) = \frac{\mathbf{s}_t^\top \mathbf{h}_i}{\sqrt{n}}$ Note: very similar to the dot-product attention except for a scaling factor; where n is the dimension of the source hidden state.	Vaswani2017

Lecture 10.

Transformer Networks, Vision Transformers

Budapest, 11th November 2025

1 Natural Language Understanding

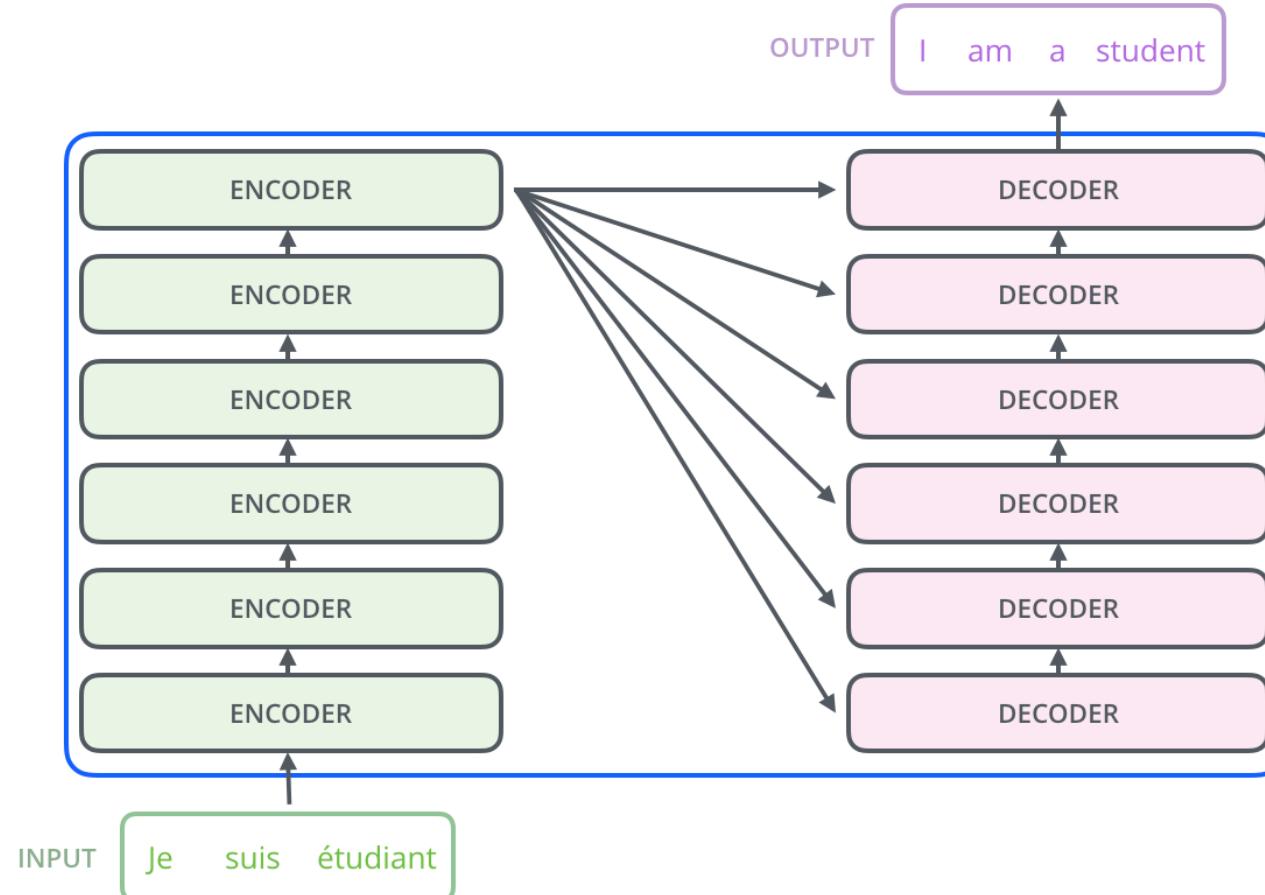
2 Attention Mechanism

3 Transformer Architecture

4 Vision Transformers

Transformers [1]

- Multi-Head Attention
- Self-Attention

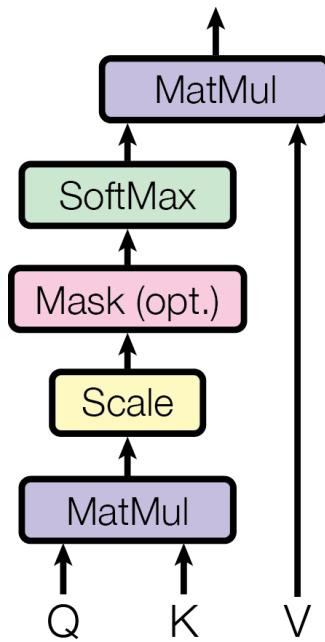


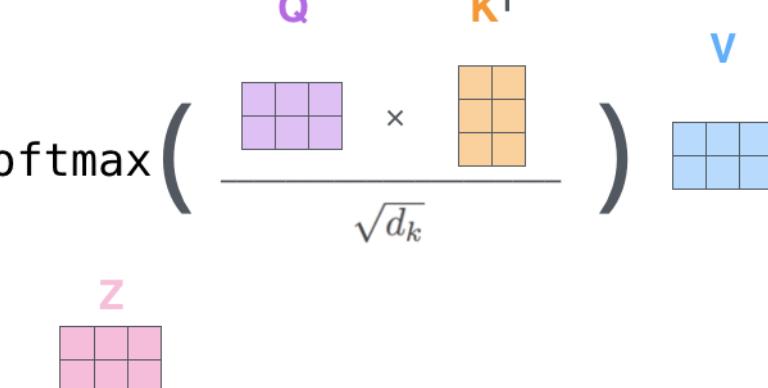
[1] Vaswani, Ashish et al. "Attention is All you Need." (2017)

Transformer Attention

- **Feature-based attention: The Key, Value, and Query**
- Key-value-query concepts come from **information retrieval systems**.
- Example of searching for a video on YouTube:
 - When you search (**query**) for a particular video, the search engine will map your **query** against a set of **keys** (video title, description, etc.) associated with possible stored videos. Then the algorithm will present you the best-matched videos (**values**).
This is the foundation of content/feature-based lookup.
- Bringing this idea closer to the transformer's attention we have something like this:

Transformer Attention



$$\text{softmax}\left(\frac{Q \times K^T}{\sqrt{d_k}} \right) = Z$$


The diagram shows the softmax calculation. It consists of a fraction where the numerator is the product of a query matrix Q (purple) and a key matrix K^T (orange). The denominator is the square root of the dimension d_k . The result is labeled Z . Below the fraction, the equals sign is followed by a pink matrix Z , which represents the attention weights.

Self-Attention

Self-attention: the key component of the Transformer architecture

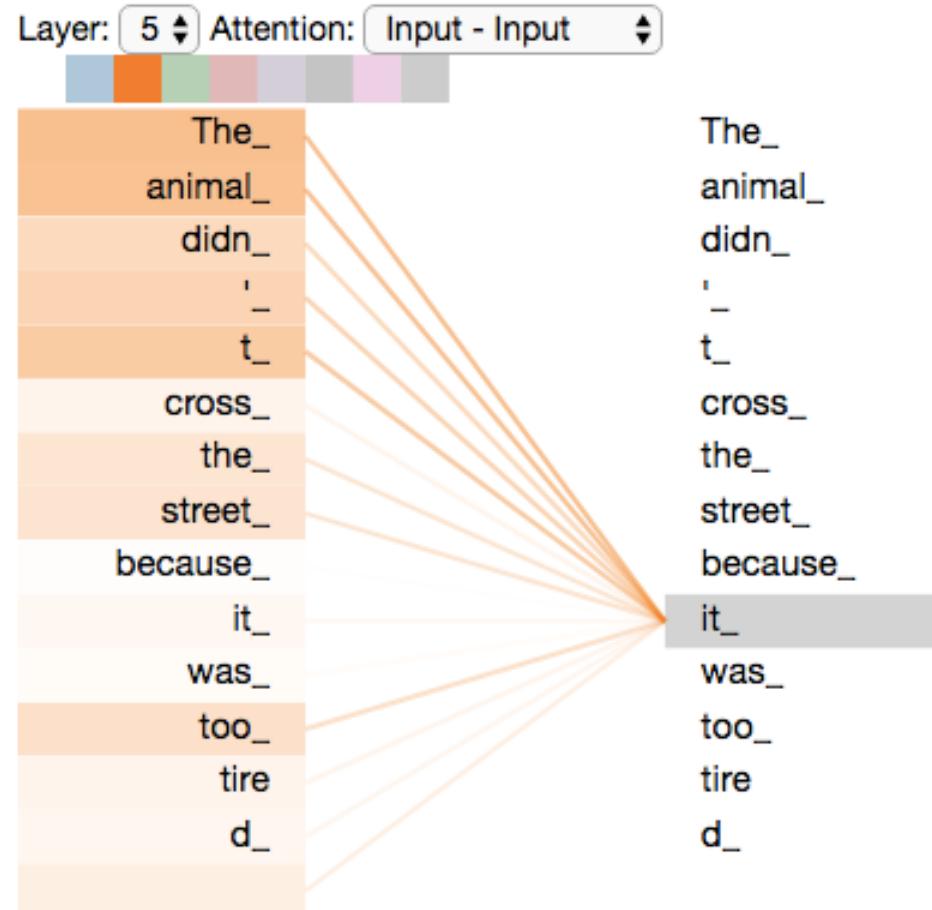
- We can also define the attention of the same sequence, called self-attention. Instead of looking for an input-output sequence association/alignment, **we are now looking for scores between the elements of the sequence**

Self-attention
Probability score matrix

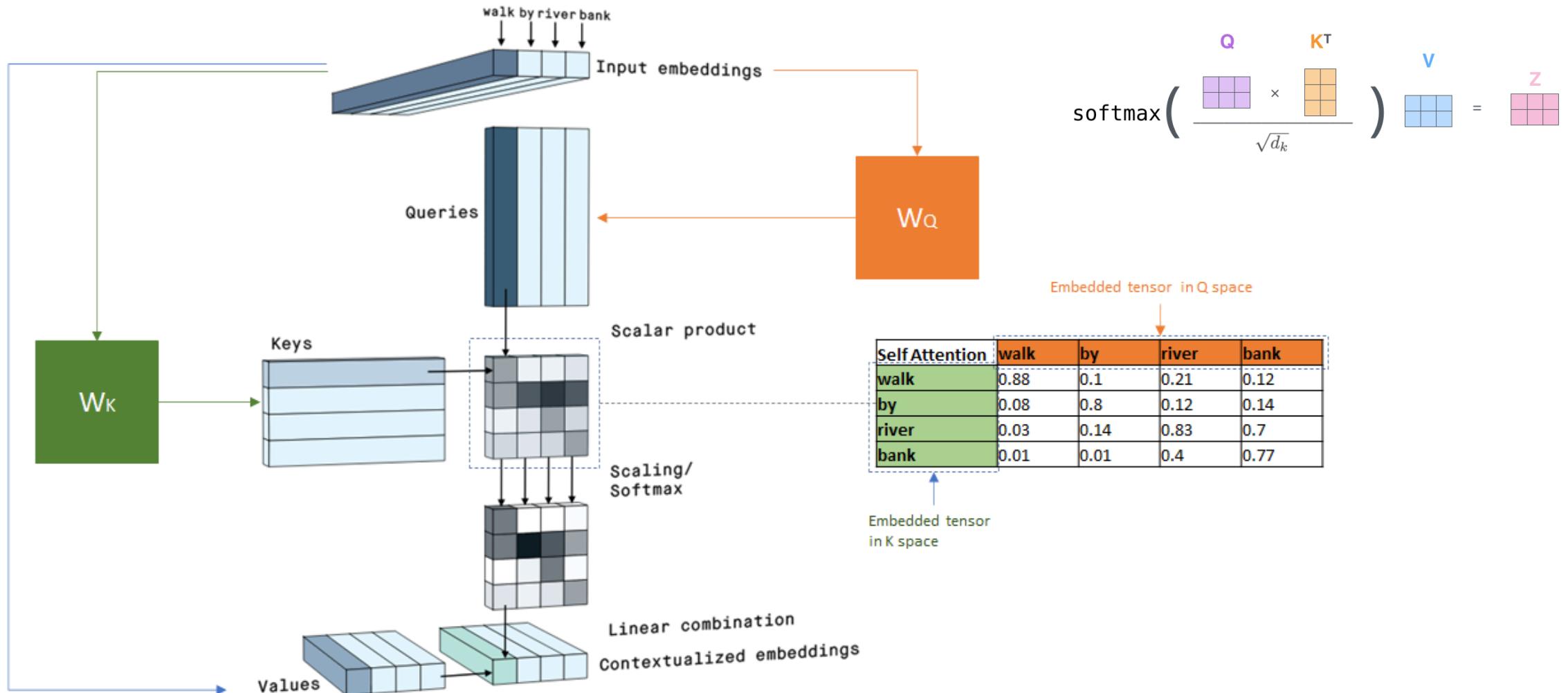
	Hello	I	love	you
Hello	0.8	0.1	0.05	0.05
I	0.1	0.6	0.2	0.1
love	0.05	0.2	0.65	0.1
you	0.2	0.1	0.1	0.6

Softmax(Attention)
equation

Self-Attention

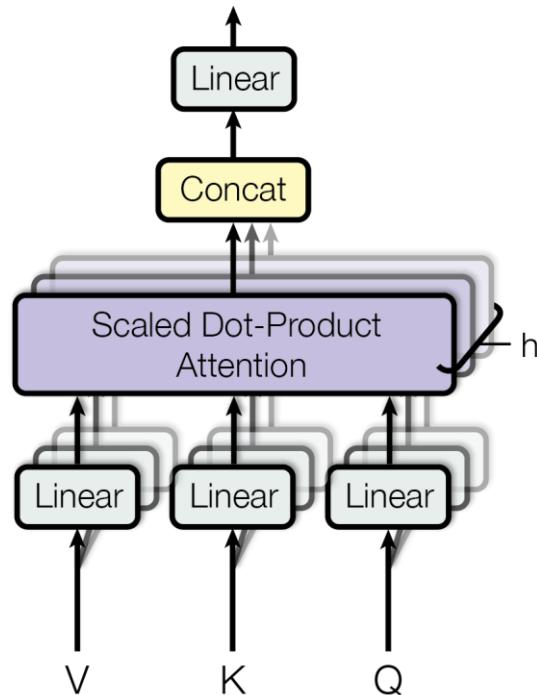
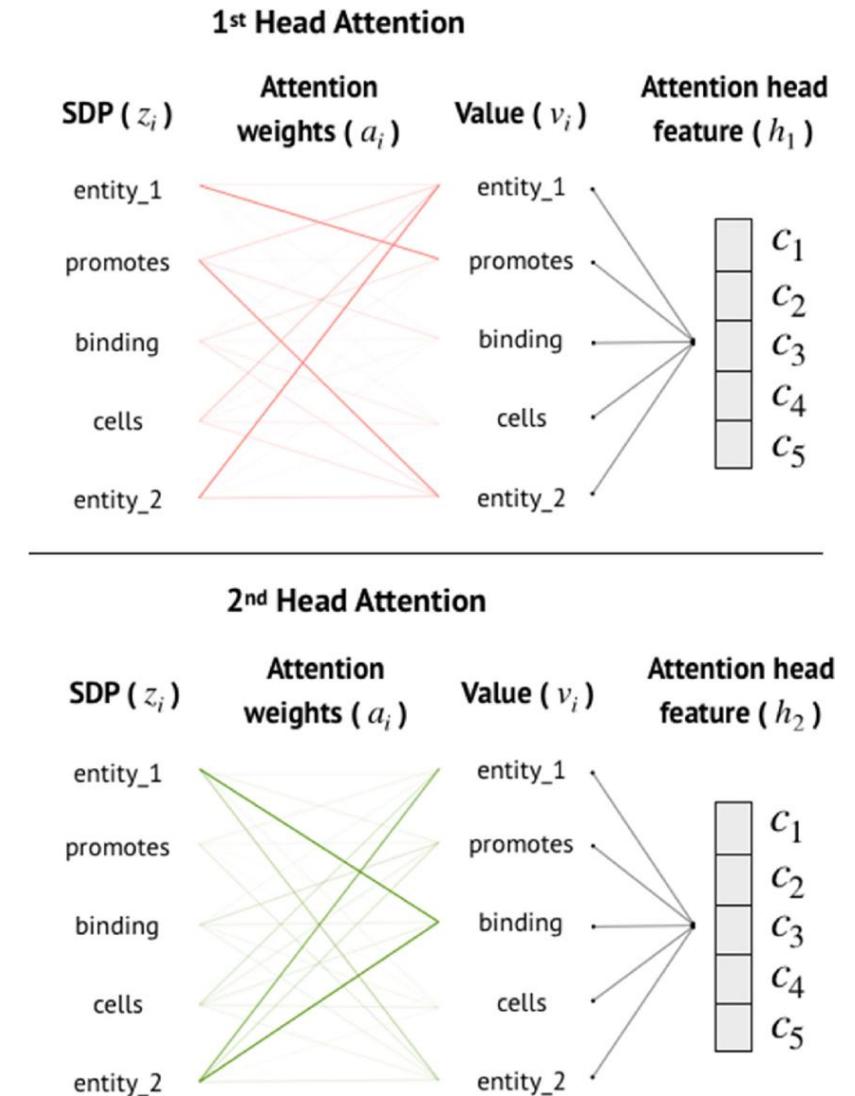


Visualizing Self-Attention



Multi-Head Attention

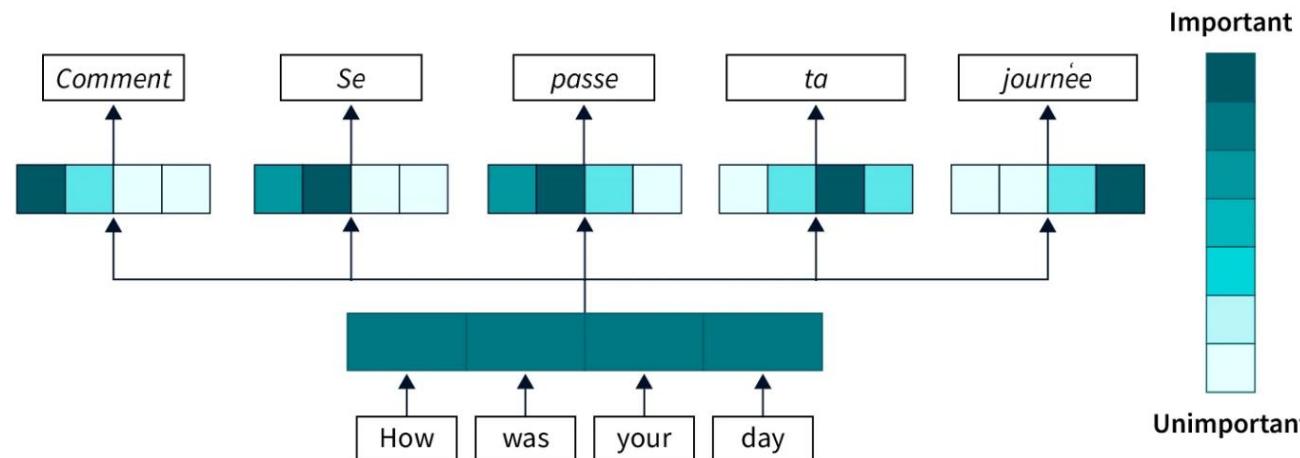
- Repeating self-attention multiple times to better understand the input (multiple ways of deciding the relationship between the parts of the input)
 - Looks at the input from different perspectives



Summary

1. Attention

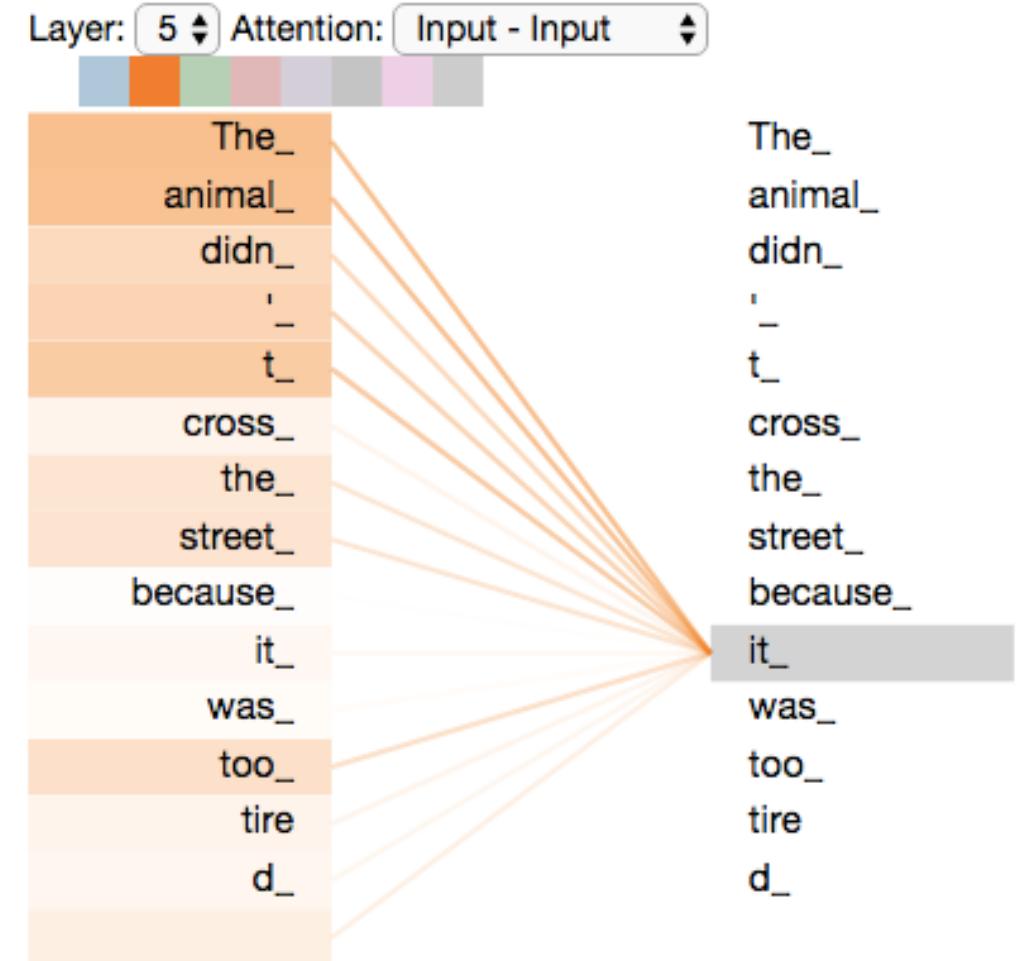
- How does the input elements relate to the output (what part of the input is relevant for the output)
 - Helps the model in focusing on the most relevant information



Summary

2. Self-Attention

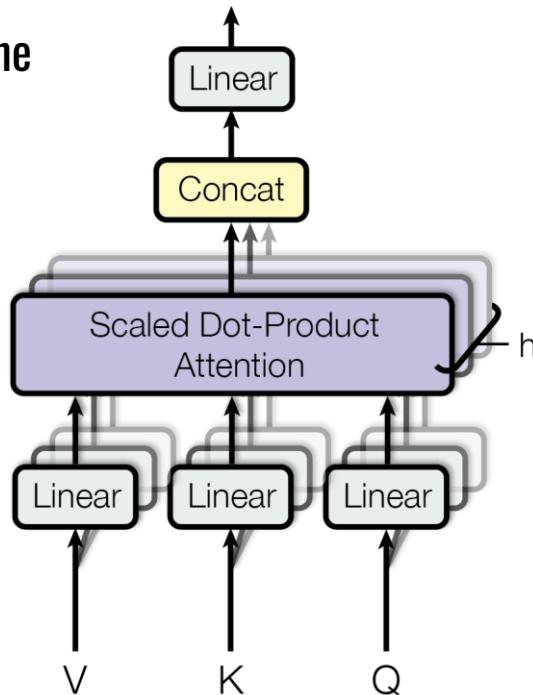
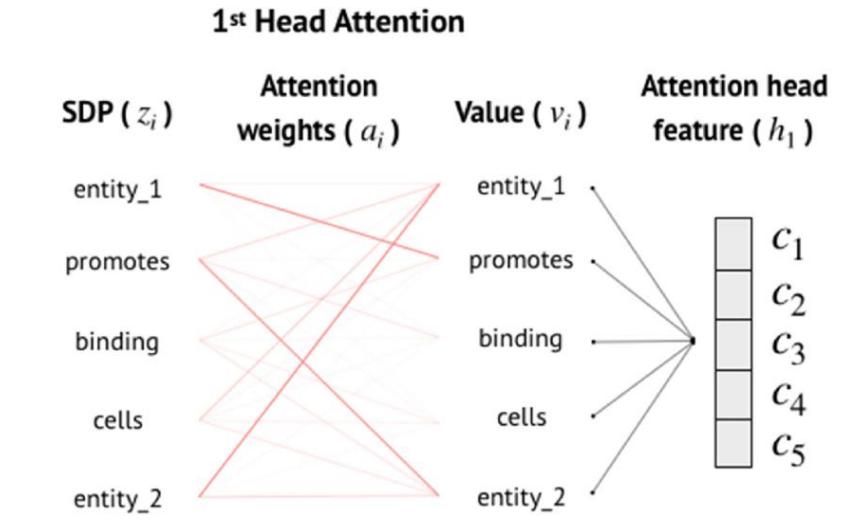
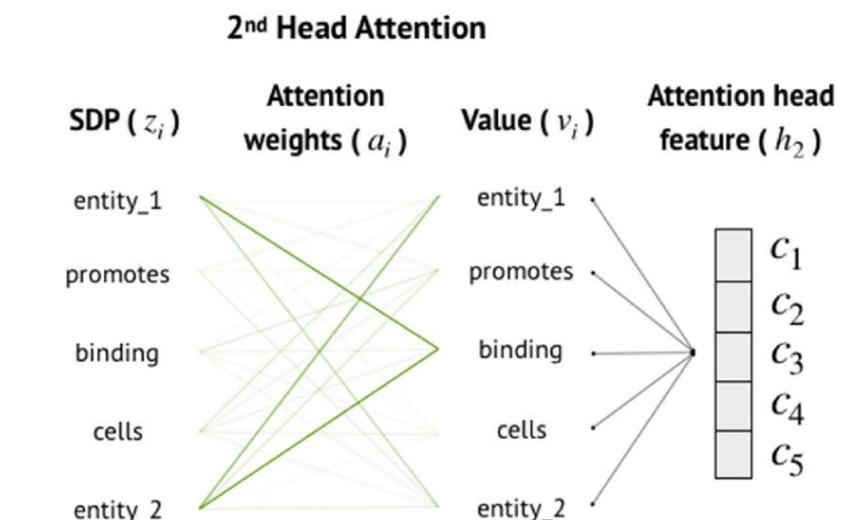
- How do the different elements of the input relate to each other (what part of the input is relevant in understanding the other parts of the input)
 - Helps in capturing dependencies and contextual information within the input



Summary

3. Multi-Head Attention

- Repeating self-attention multiple times to better understand the input (multiple ways of deciding the relationship between the parts of the input)
 - Looks at the input from different perspectives

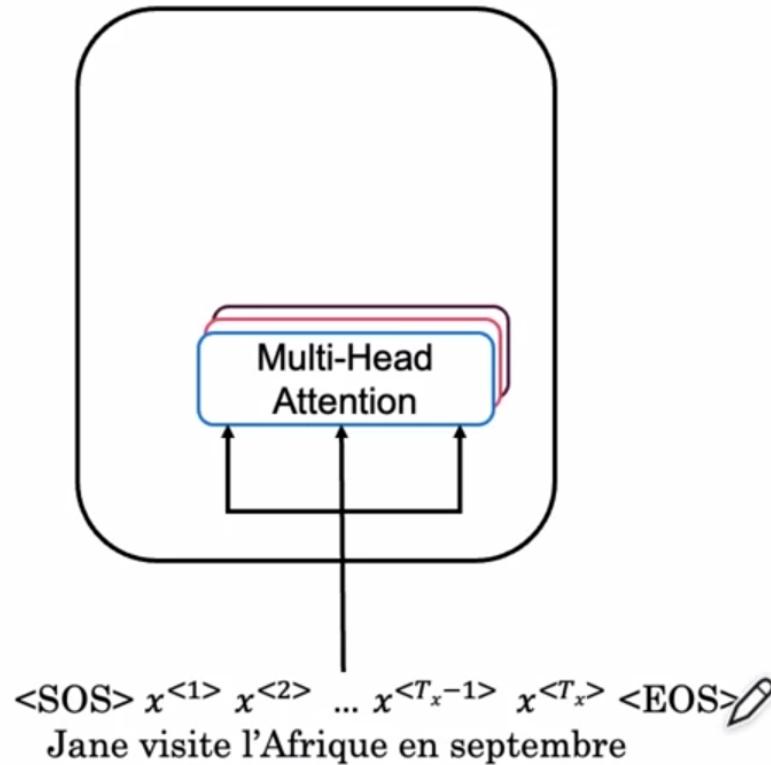


Transformer

$\langle \text{SOS} \rangle \ x^{<1>} \ x^{<2>} \ \dots \ x^{<T_x-1>} \ x^{<T_x>} \ \langle \text{EOS} \rangle$
Jane visite l'Afrique en septembre

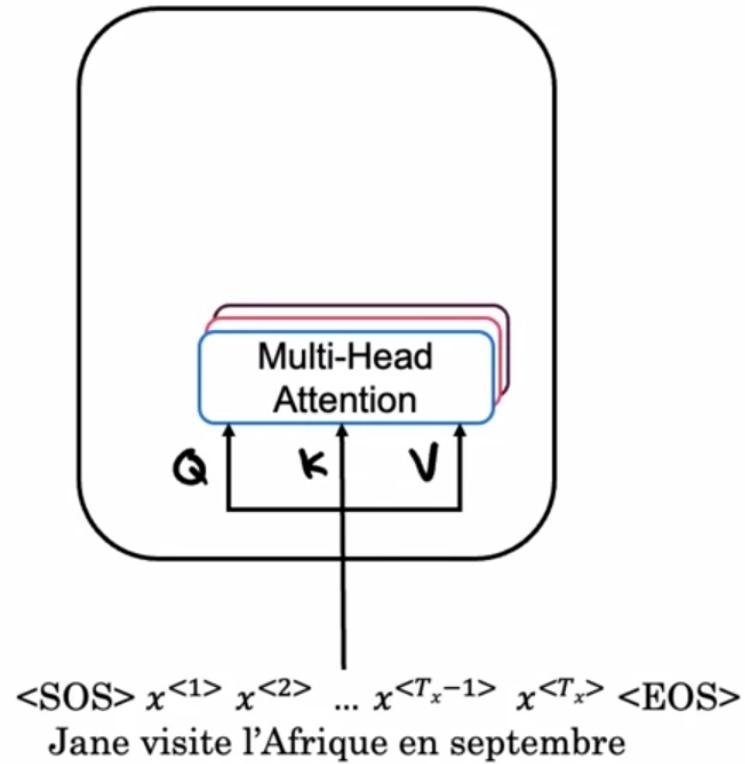
Transformer

Encoder



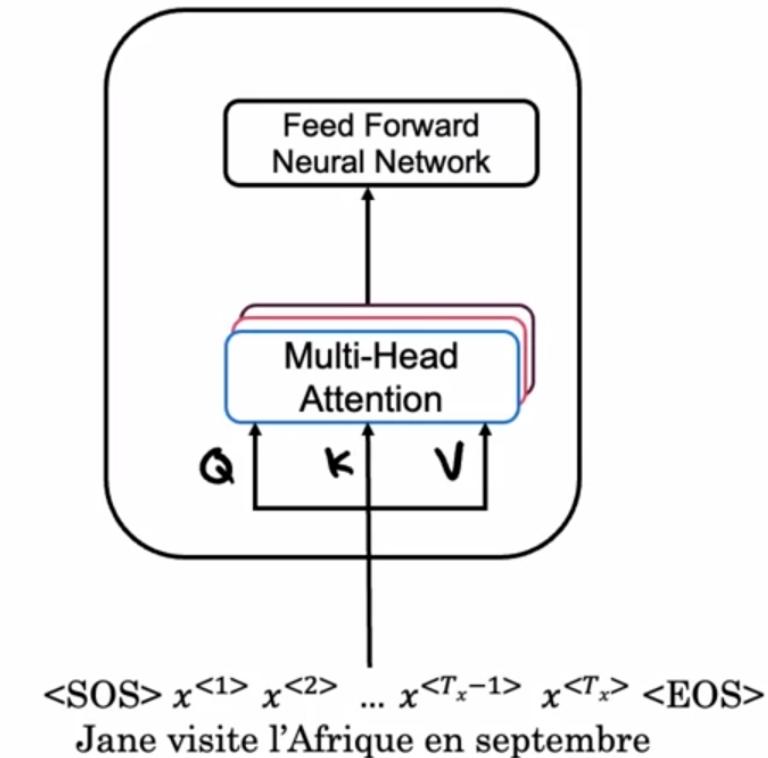
Transformer

Encoder



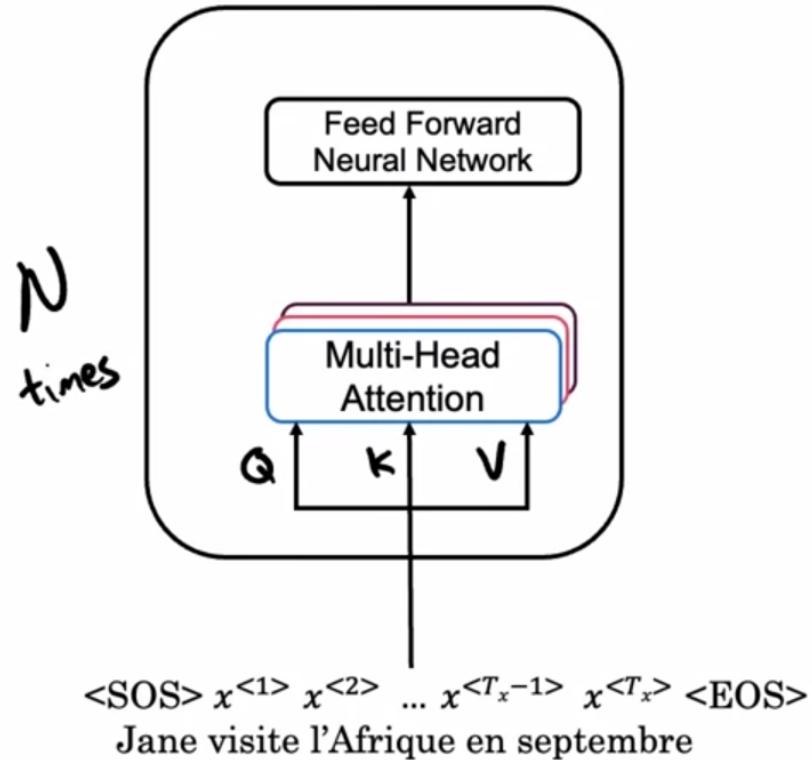
Transformer

Encoder



Transformer

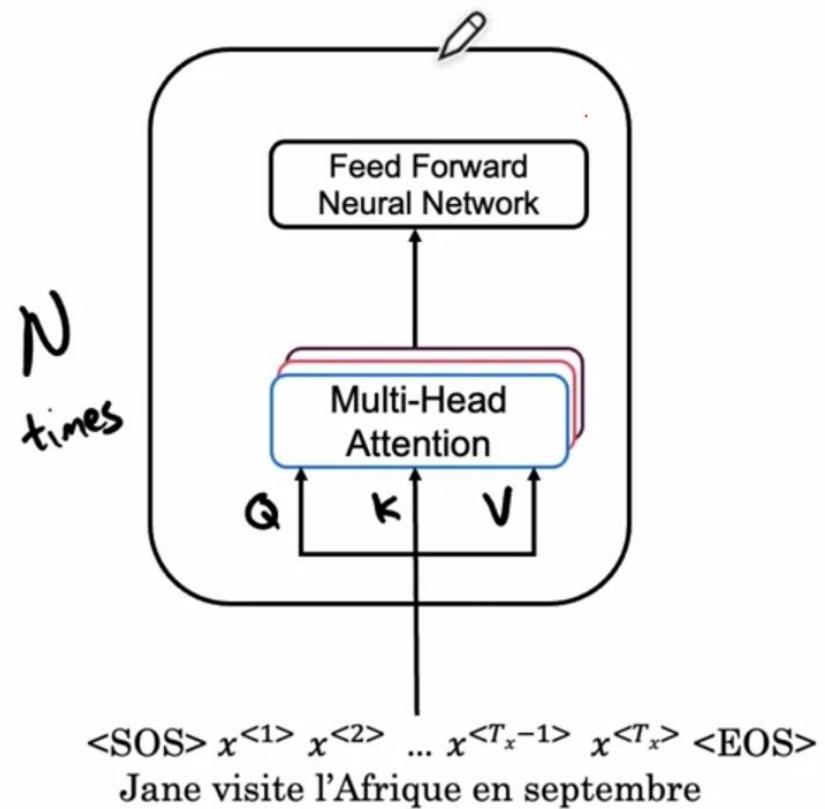
Encoder



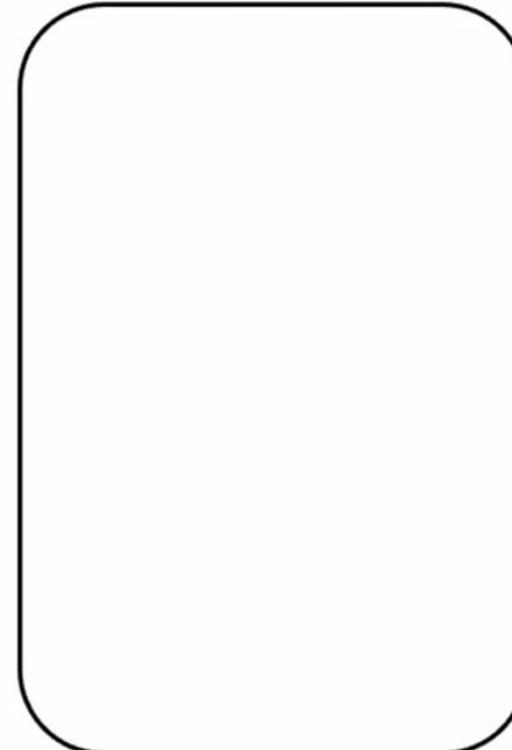
Transformer

$\langle \text{SOS} \rangle$

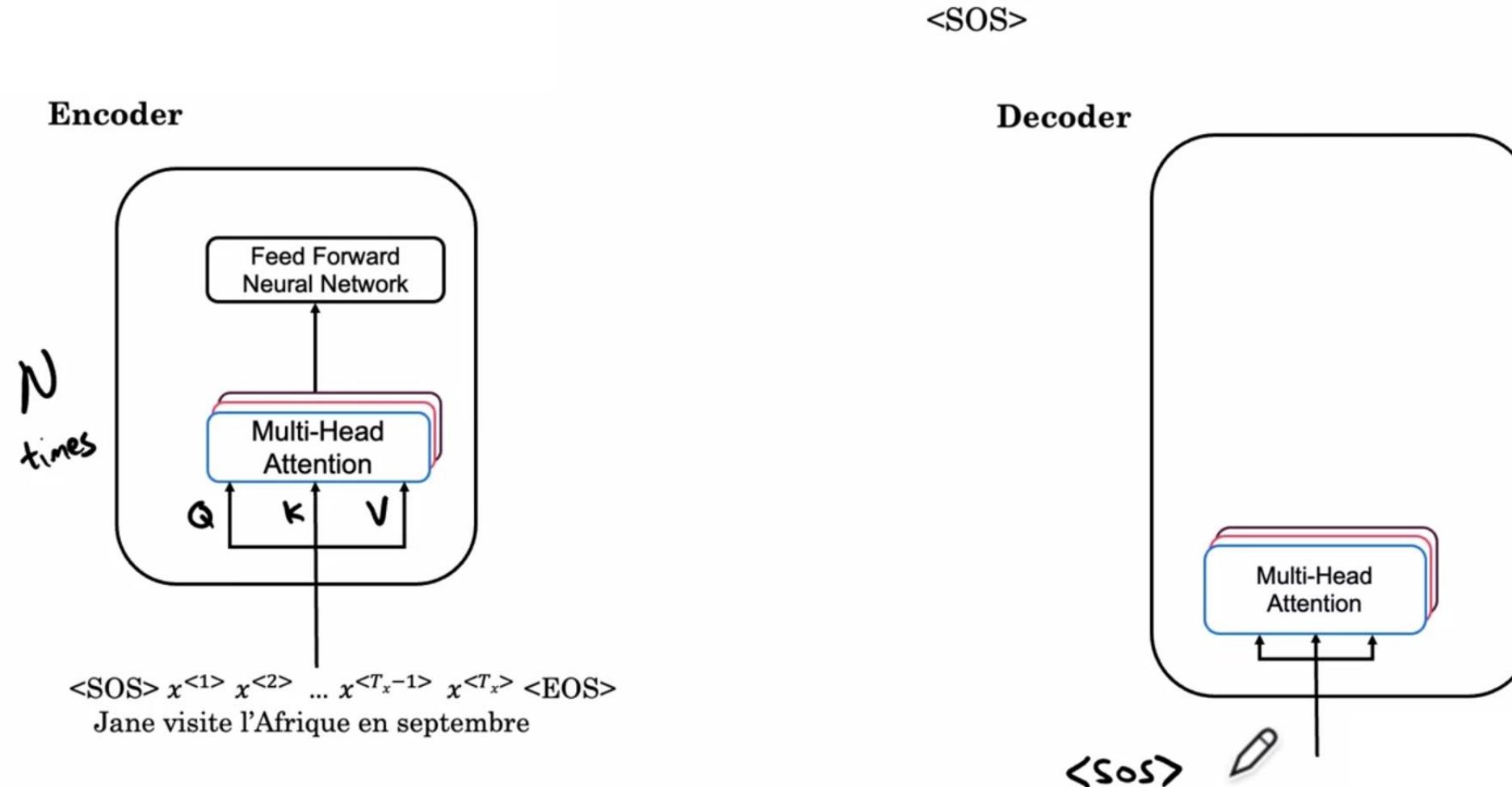
Encoder



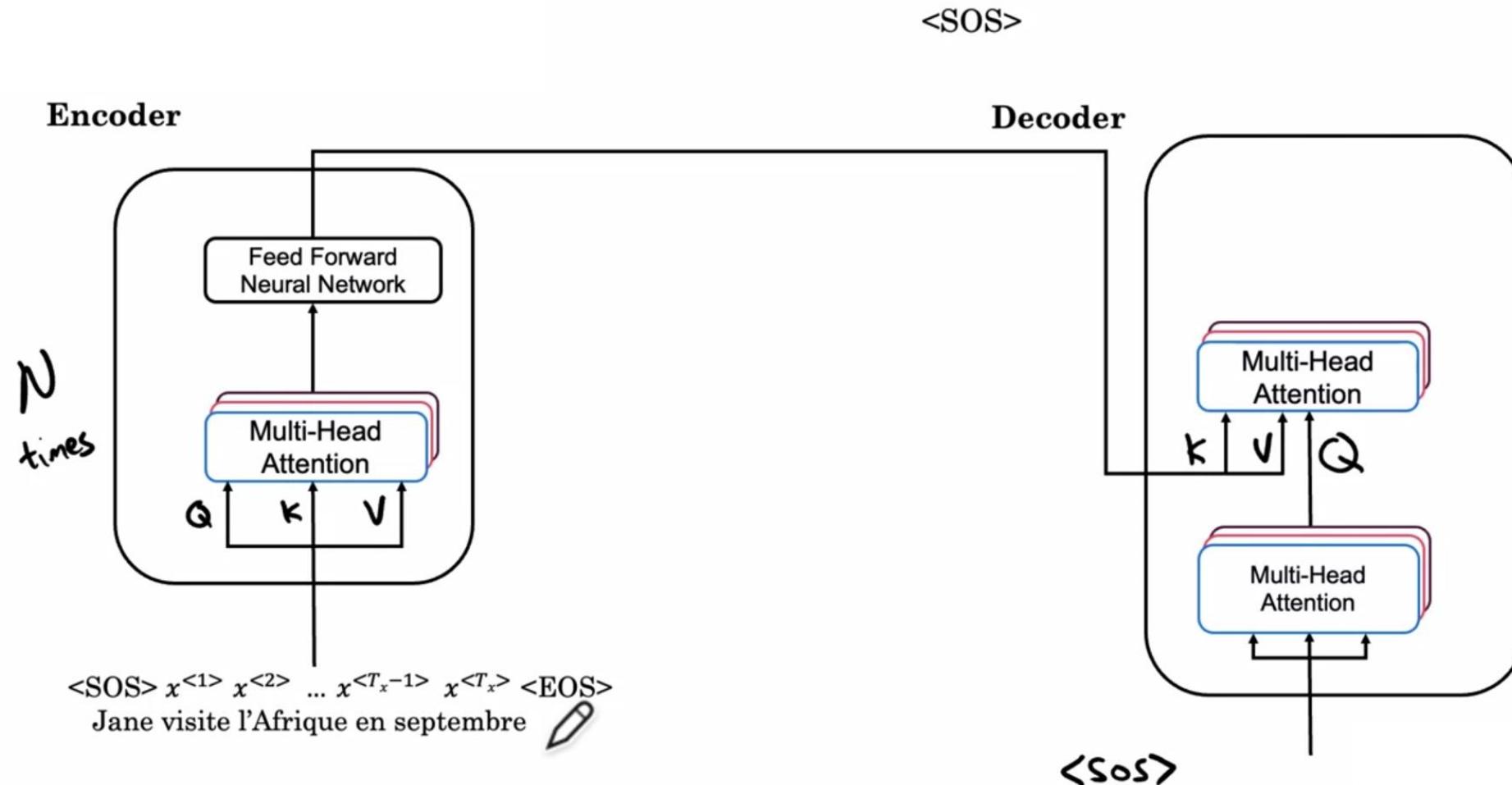
Decoder



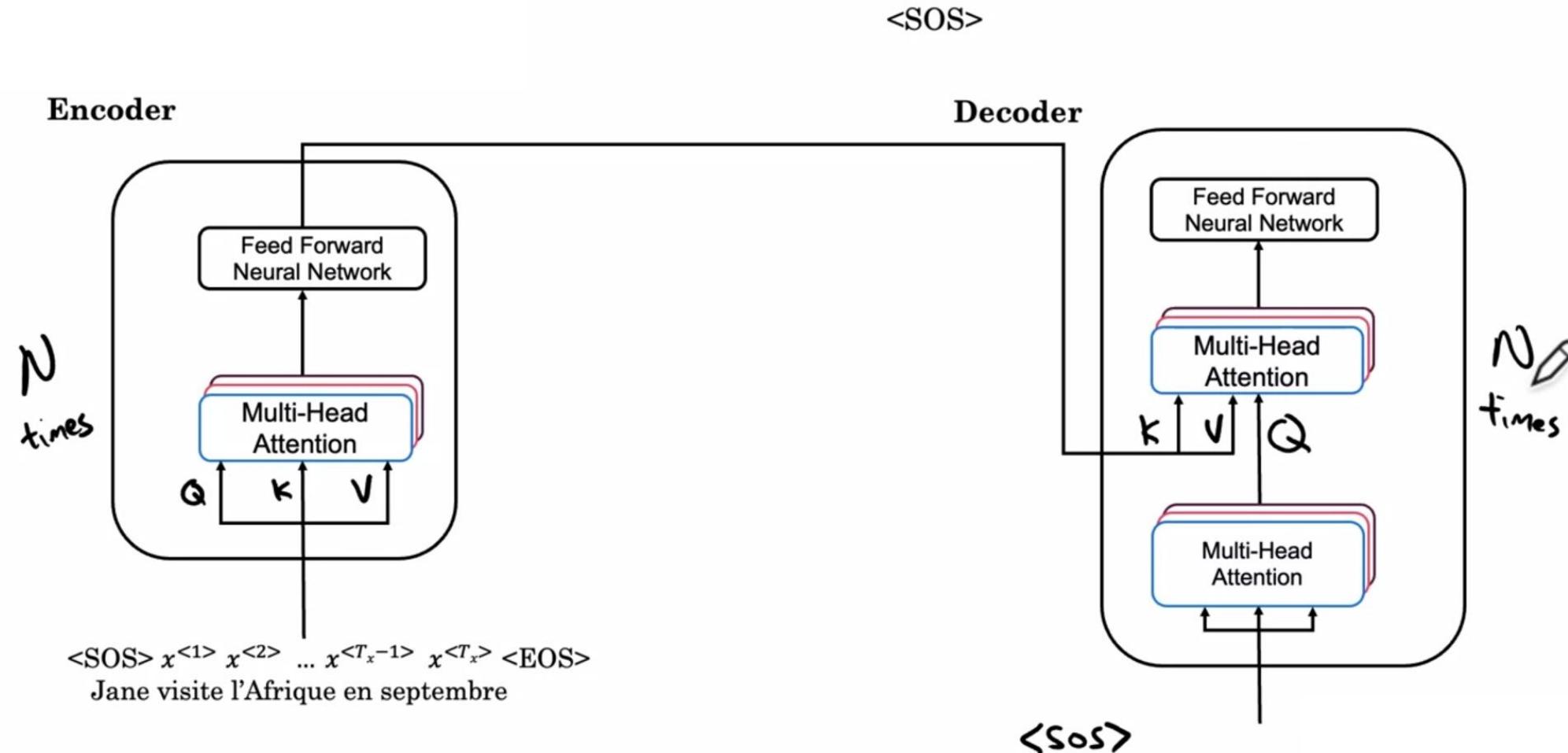
Transformer



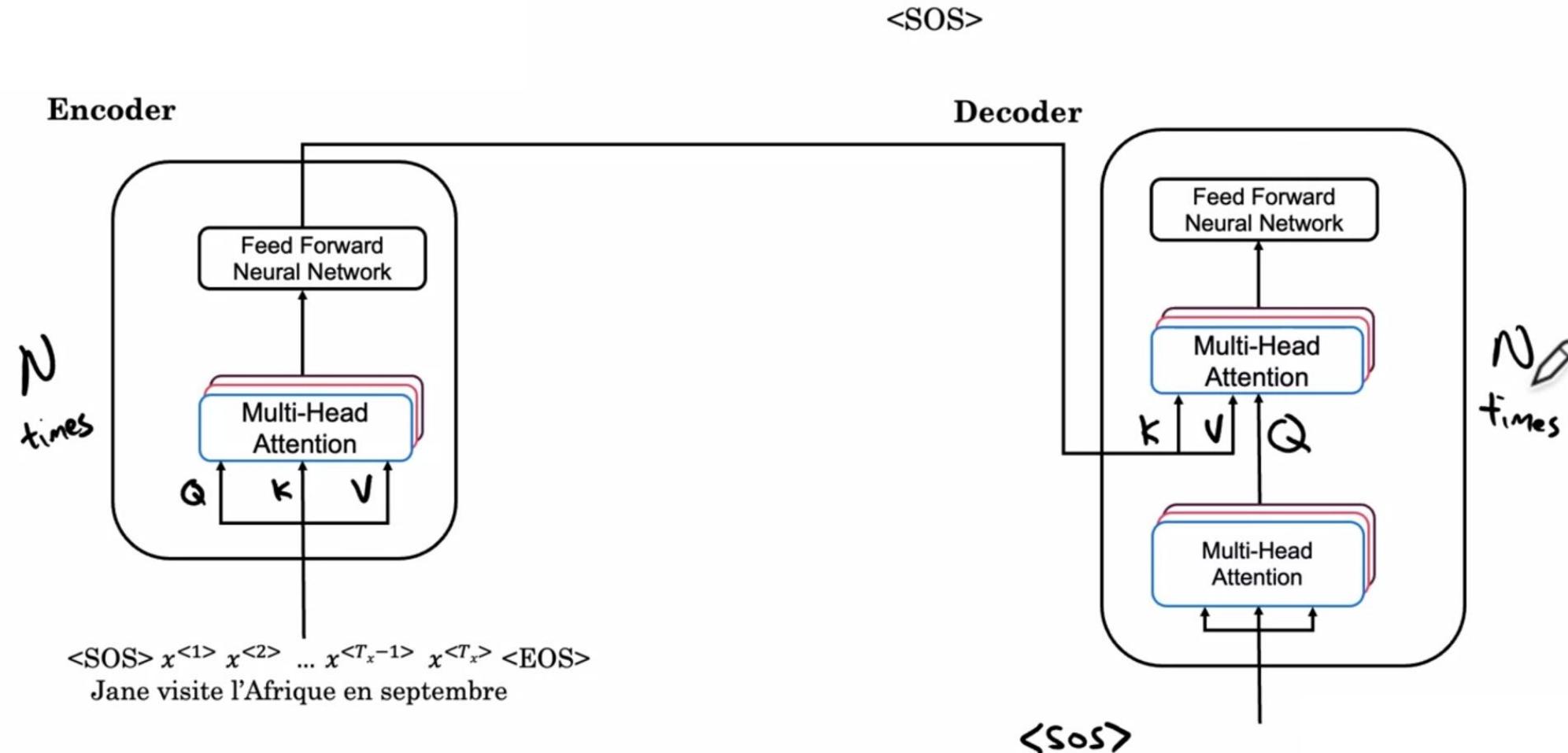
Transformer



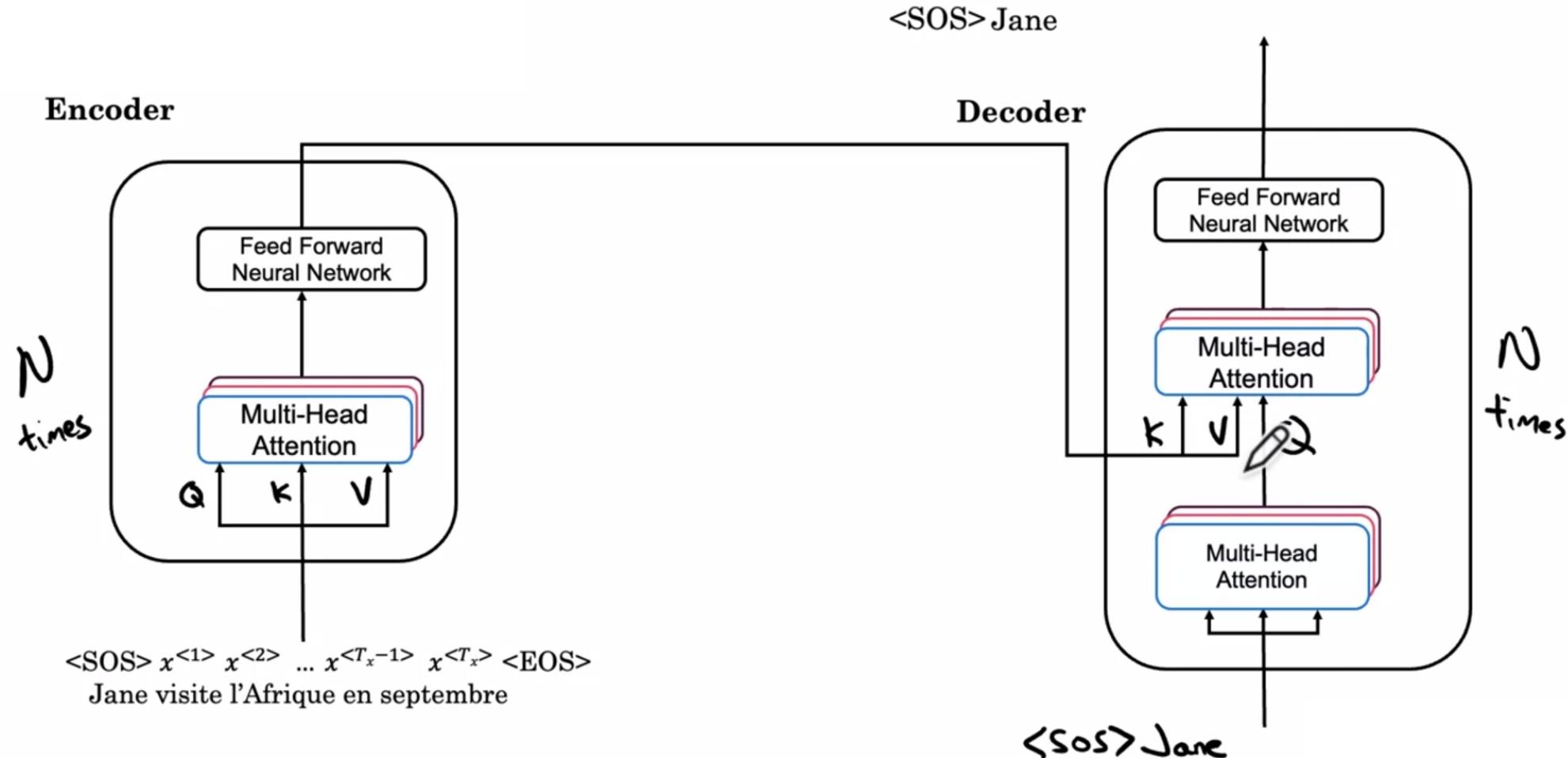
Transformer



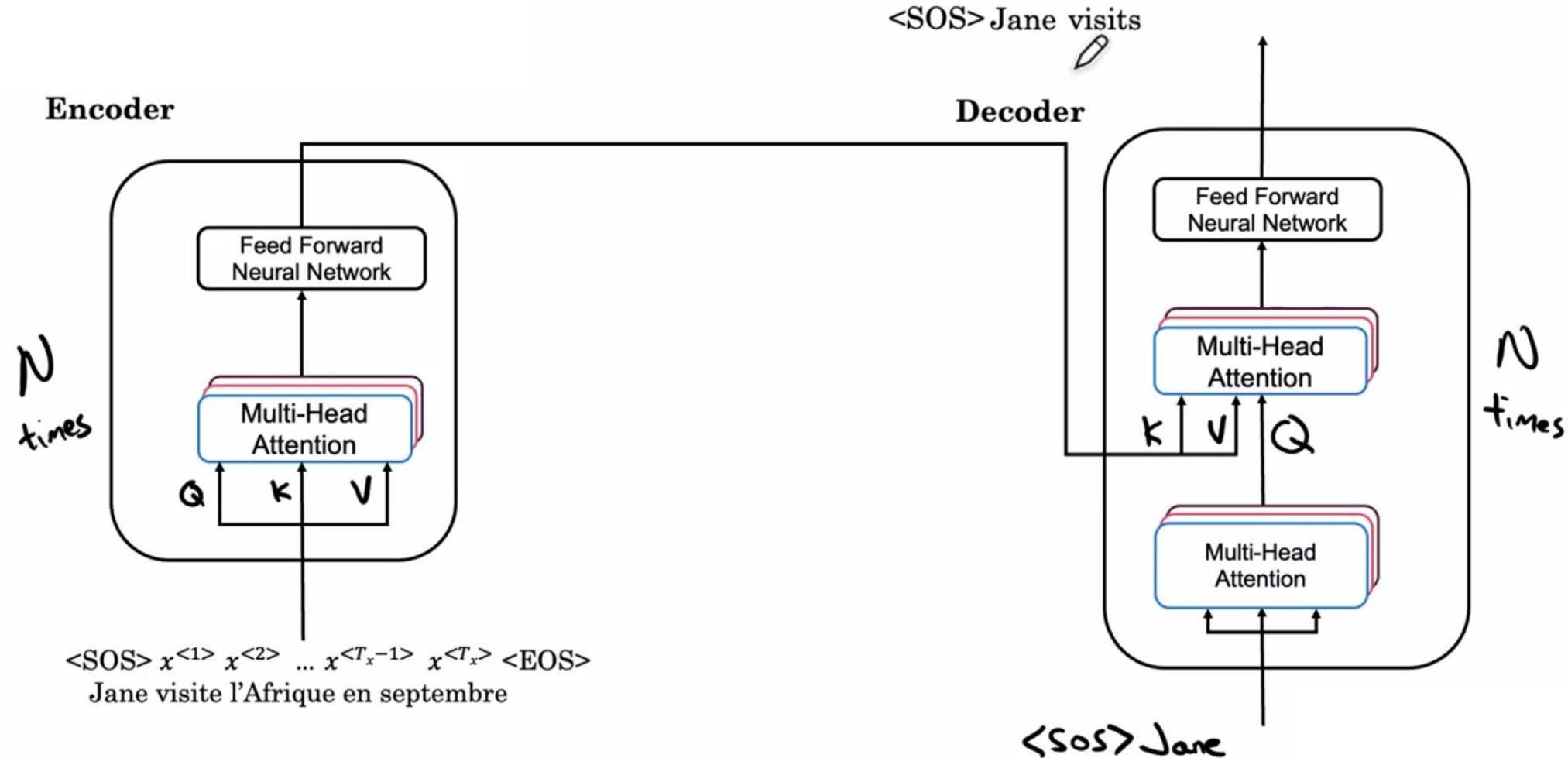
Transformer



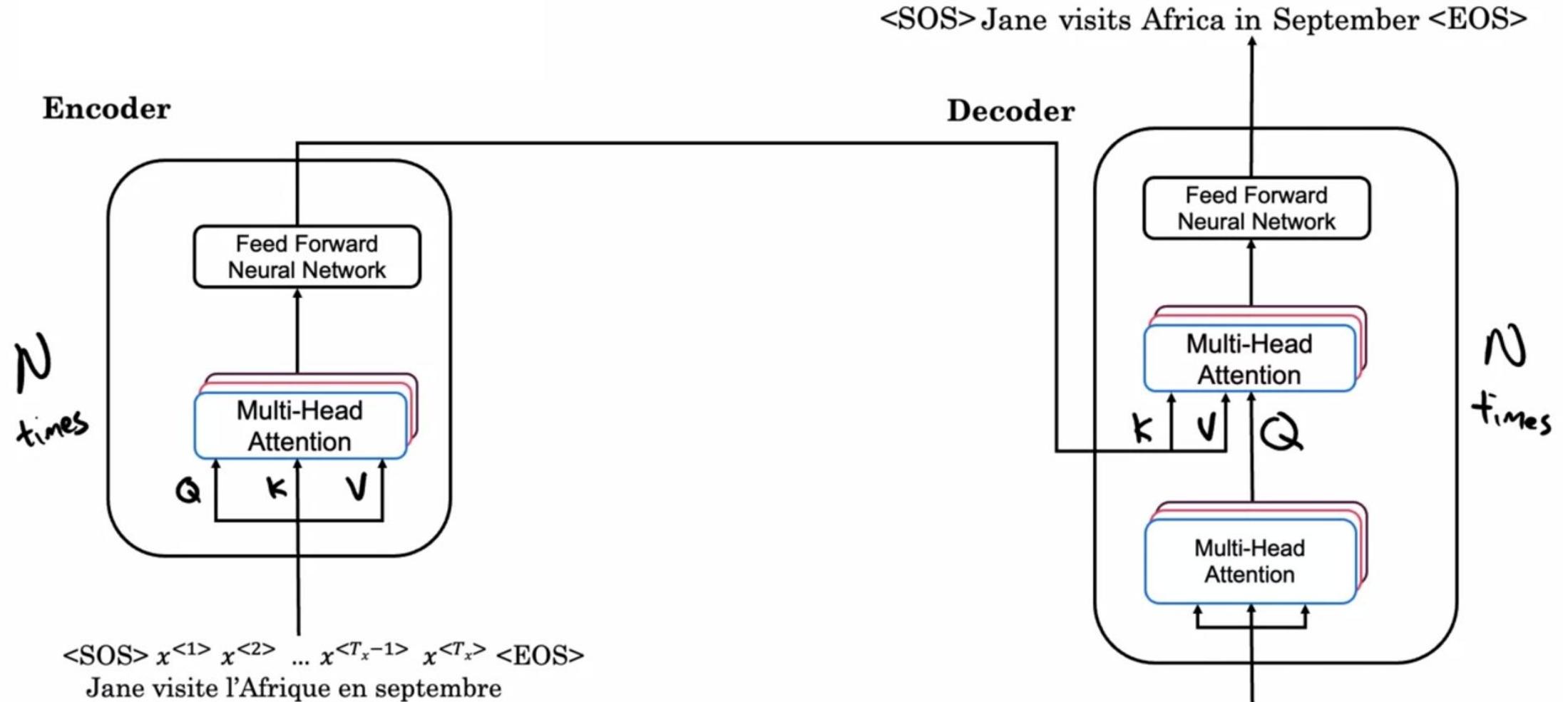
Transformer



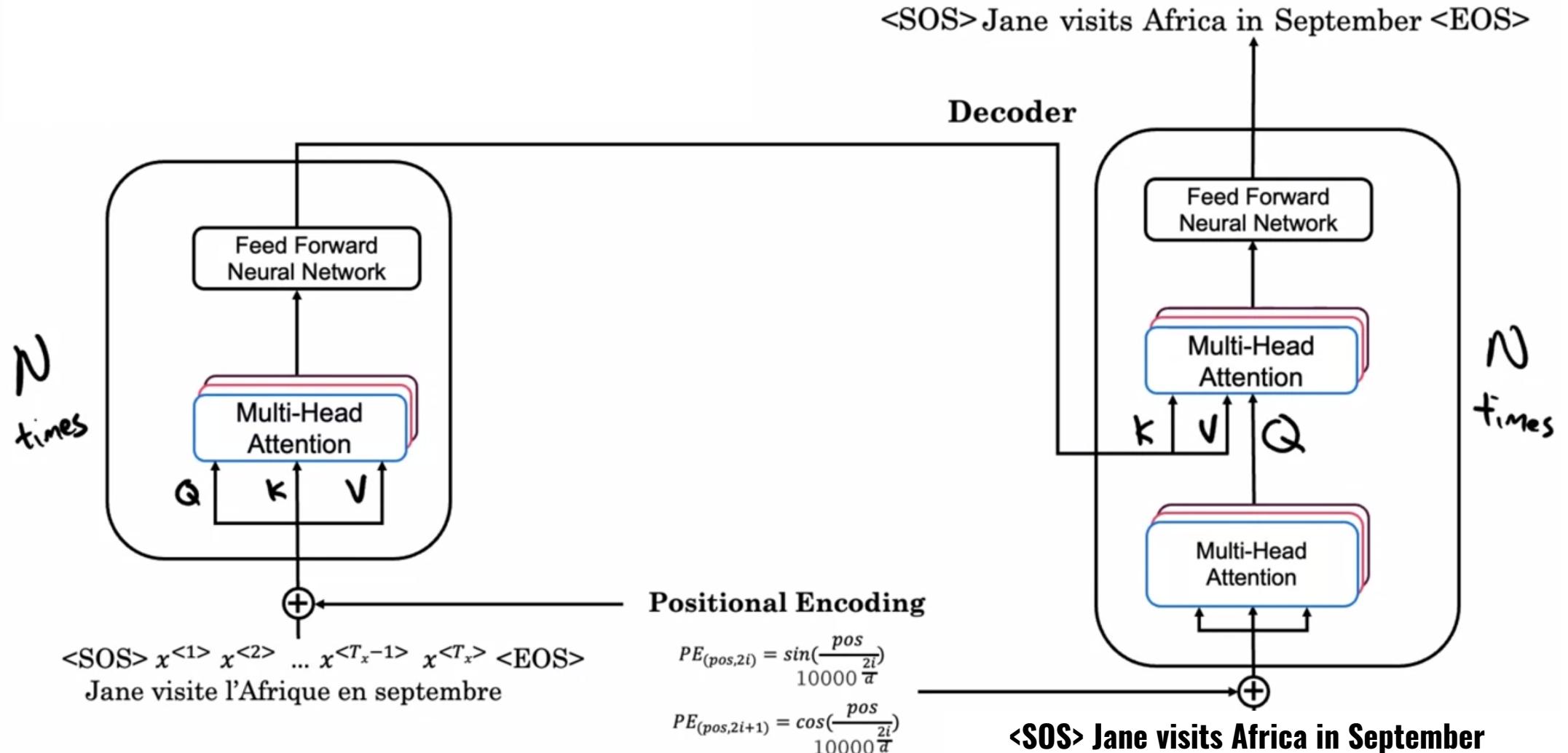
Transformer



Transformer

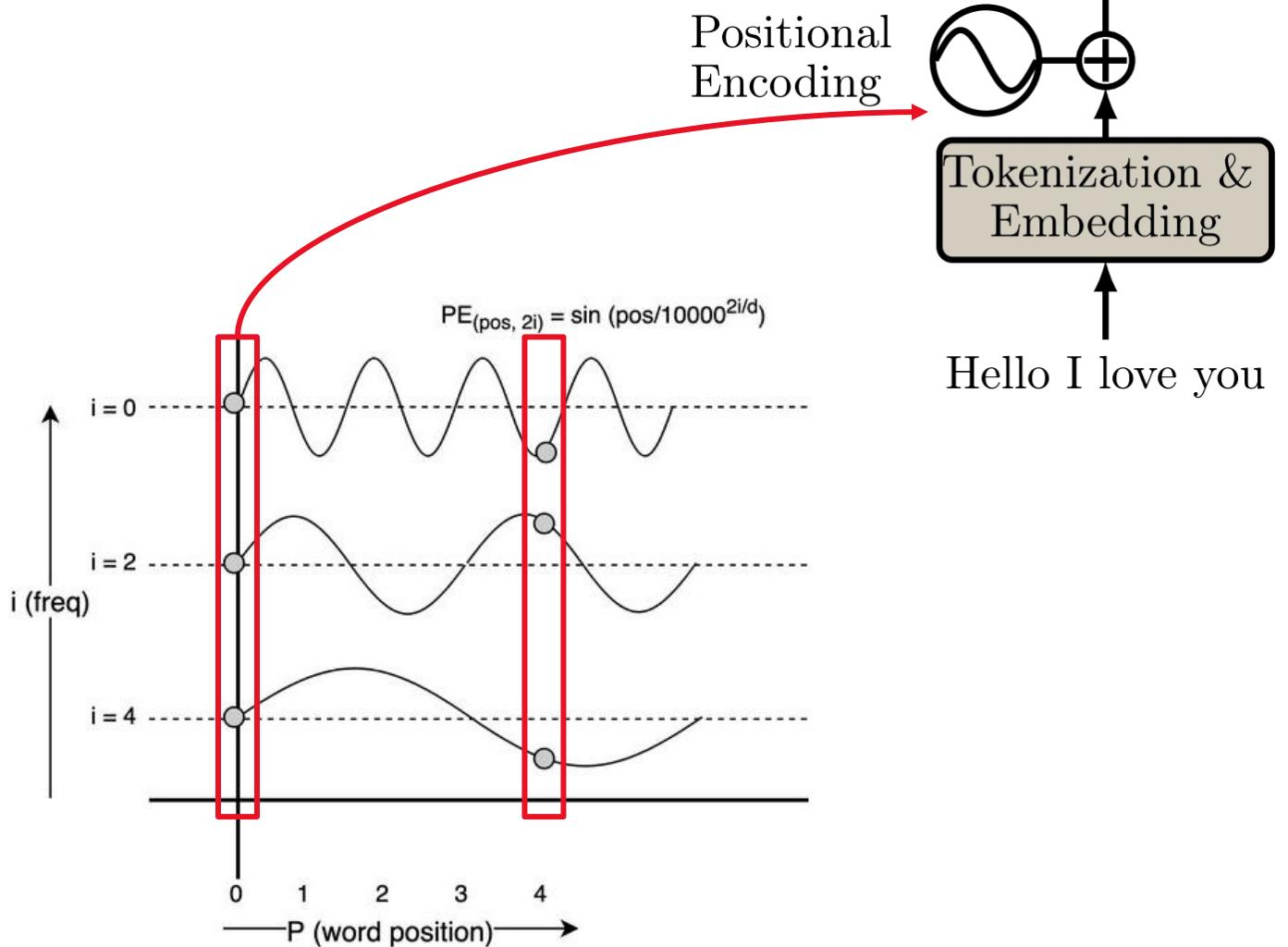


Transformer

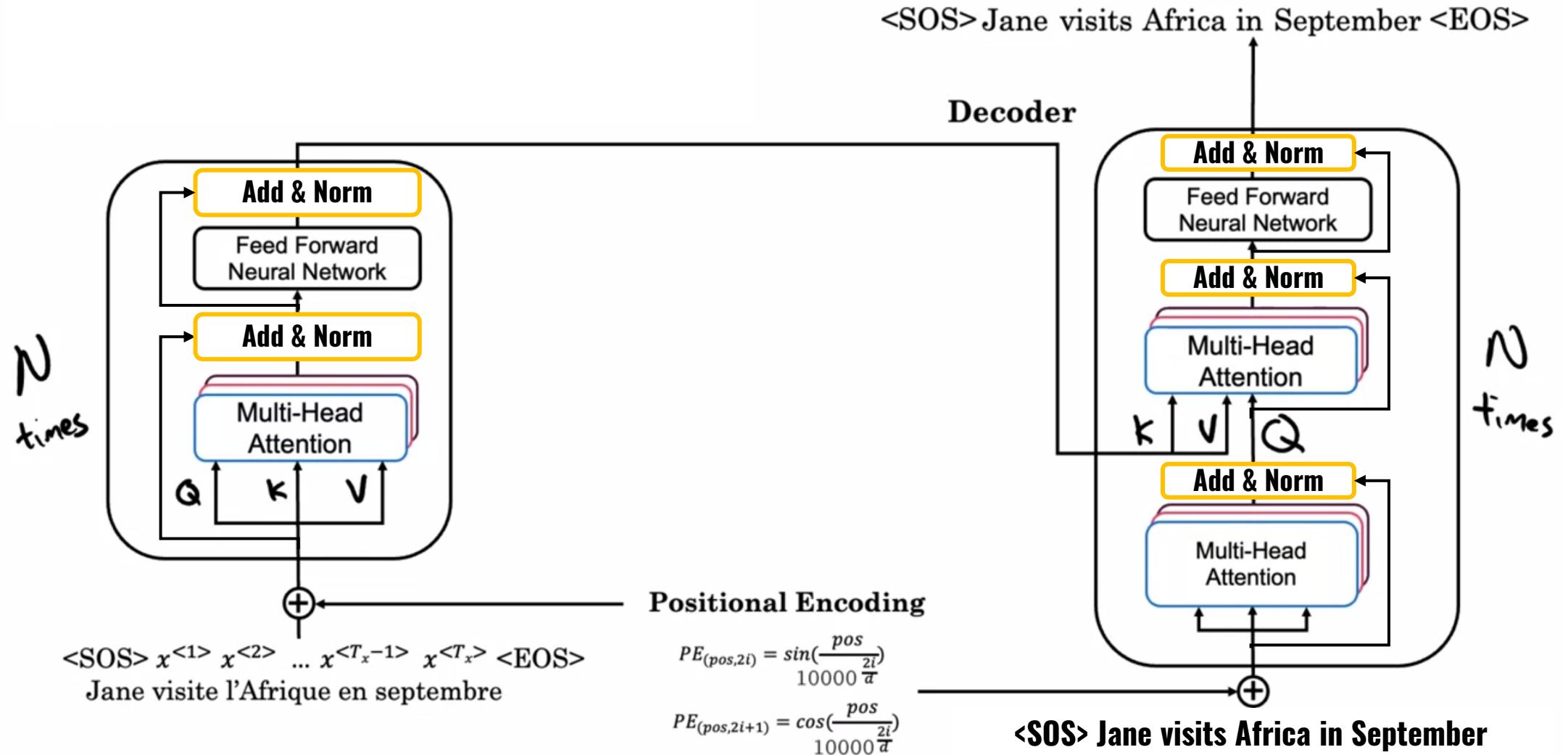


Transformer

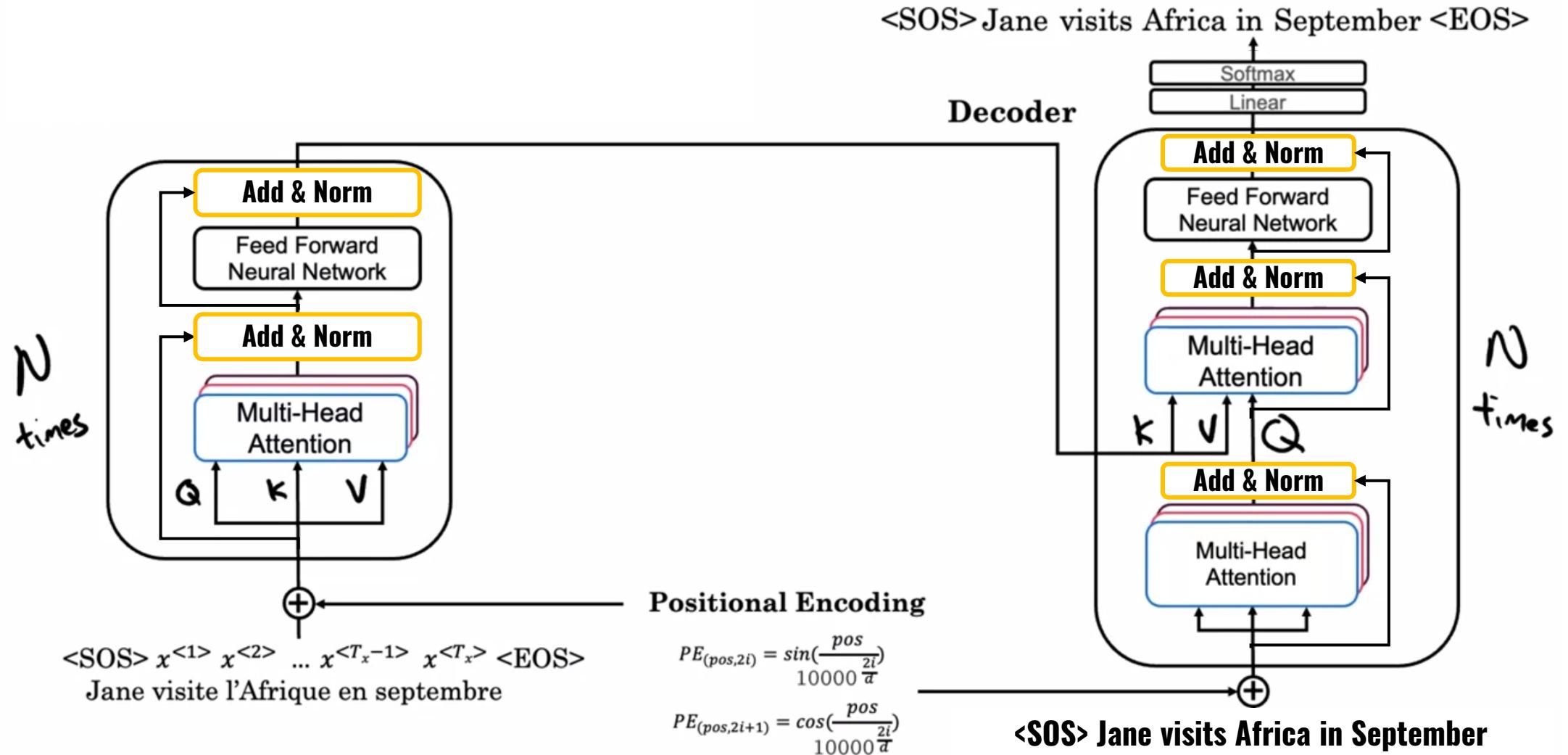
- When you convert a sequence into a set (**tokenization**), you lose the notion of order.
- **Positional encoding** is a set of small constants, which are added to the word embedding vector before the first self-attention layer.
- So if the same word appears in a different position, the actual representation will be slightly different, **depending on where it appears in the input sentence**.
- They use a sinusoidal function for the positional encoding. The sine function tells the model to pay attention to a particular wavelength.



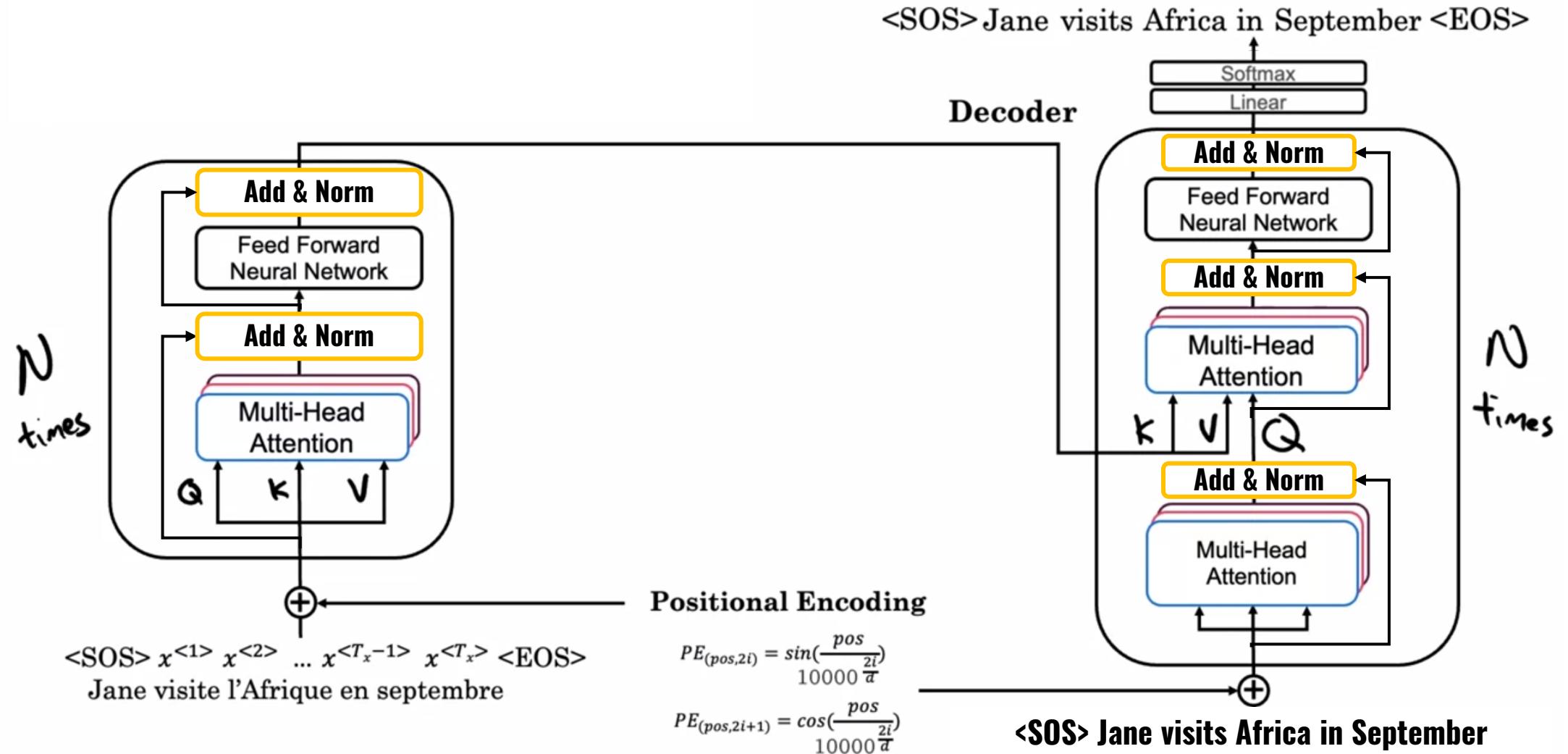
Transformer



Transformer



Transformer



Transformer Encoder

Summary: the Transformer encoder

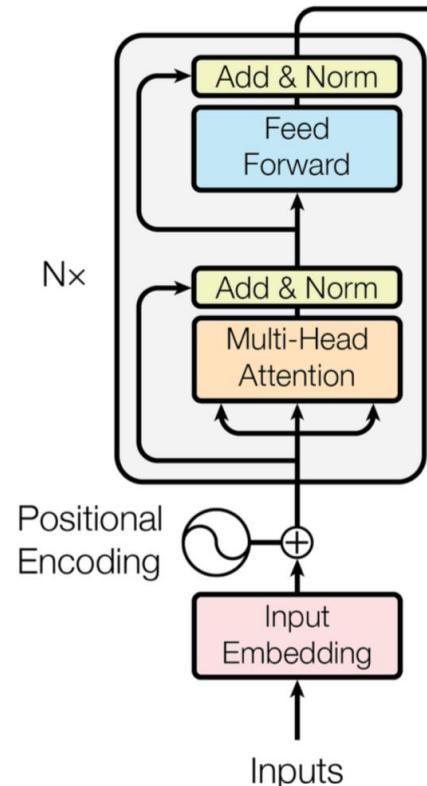
To process a sentence, we need these 3 steps:

1. Word embeddings of the input sentence are computed simultaneously.
2. Positional encodings are then applied to each embedding resulting in word vectors that also include positional information.
3. The word vectors are passed to the first encoder block.

Each block consists of the following layers in the same order:

1. A multi-head self-attention layer to find correlations between each word
2. A normalization layer
3. A residual connection around the previous two sublayers
4. A linear layer
5. A second normalization layer
6. A second residual connection

Note that the above block can be replicated several times to form the Encoder. In the original paper, the encoder composed of 6 identical blocks.



Transformer Decoder

Transformer decoder: what is different?

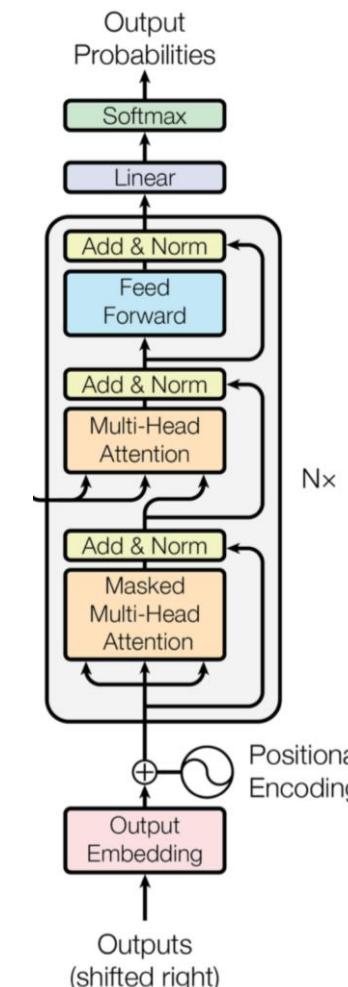
The decoder consists of all the previously mentioned components plus two novel ones. As before:

1. The output sequence is fed in its entirety and word embeddings are computed
2. Positional encoding are again applied
3. And the vectors are passed to the first Decoder block

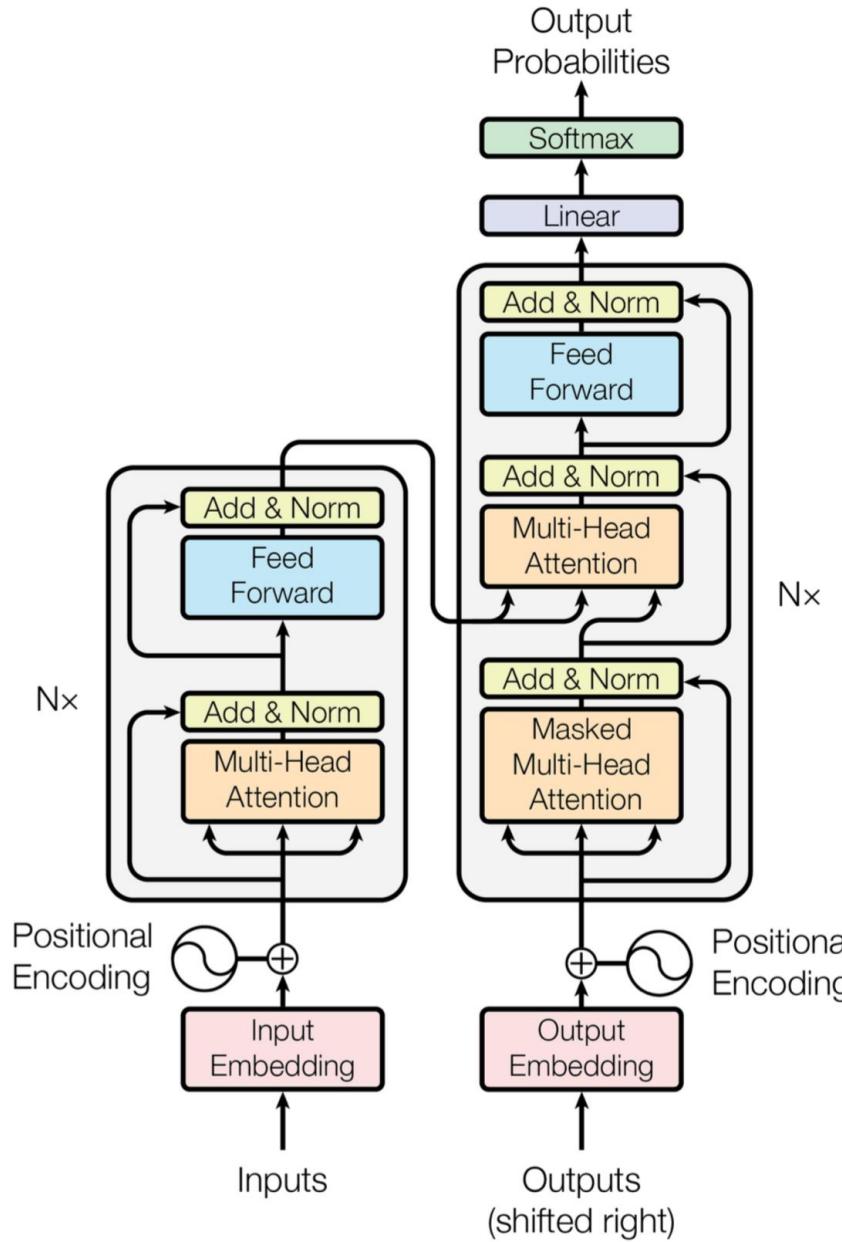
Each decoder block includes:

1. A **Masked** multi-head self-attention layer
2. A normalization layer followed by a residual connection
3. A new multi-head attention layer (known as **Encoder-Decoder attention**)
4. A second normalization layer and a residual connection
5. A linear layer and a third residual connection

The decoder block appears again 6 times. The final output is transformed through a final linear layer and the output probabilities are calculated with the standard softmax function.

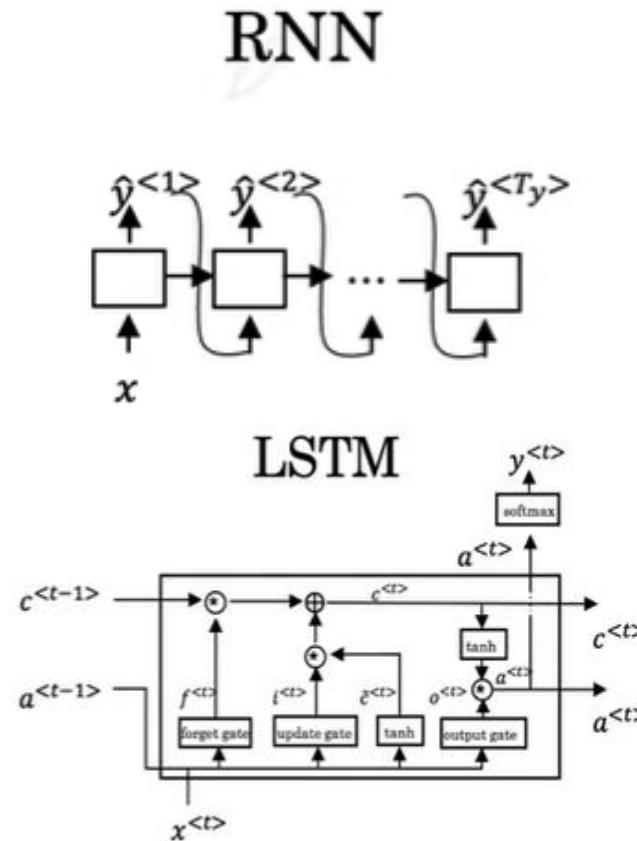
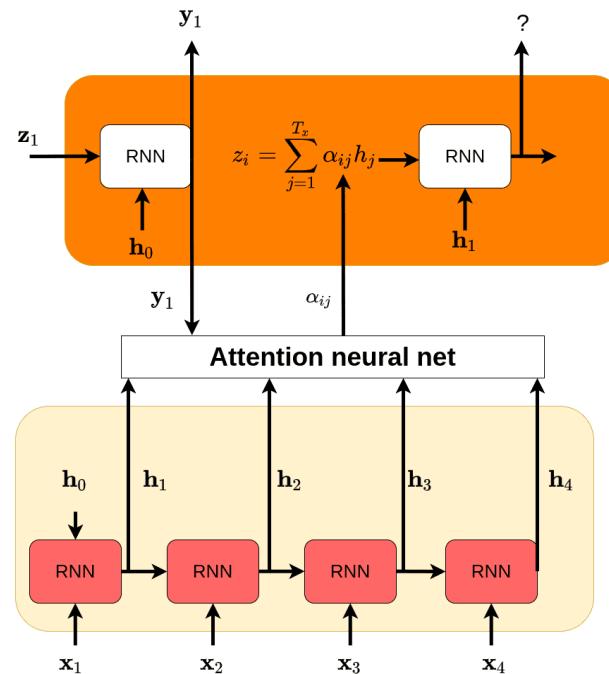
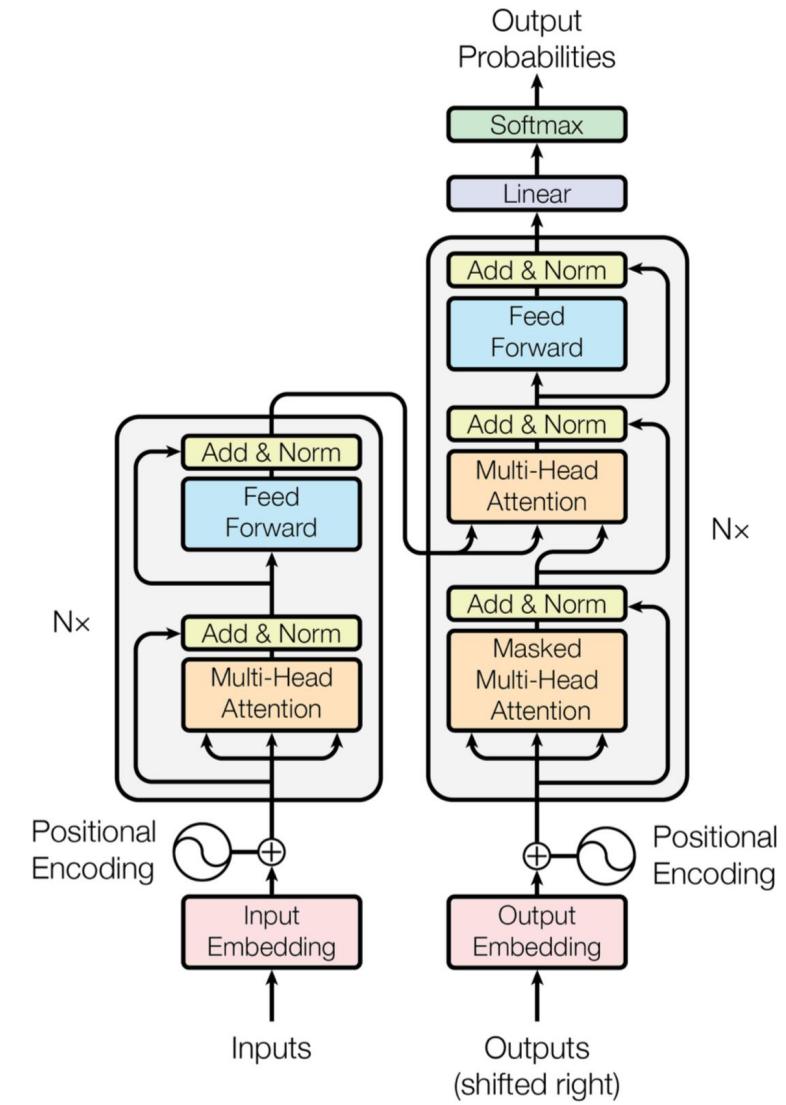


Transformer [1]



[1] Vaswani, Ashish et al. "Attention is All you Need." (2017)

Sequence models



BLEU (bilingual evaluation understudy) [1]

- **BLEU** is an algorithm for evaluating the **quality of text** which has been machine-translated from one natural language to another.
- It's a metric, that measures the **precision of n-grams** (such as bigrams or trigrams) between the **predicted translation** and the **reference translations**

The children are sitting with their shoes off .

A man wearing a long white robe and a white cap , stands over a group of seated people .

A man in a white robe stands and talks to people who are sitting .

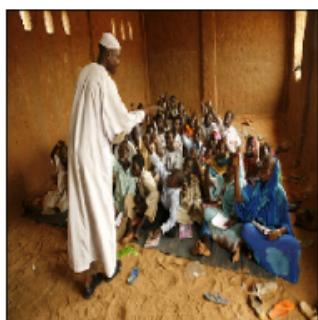
A man in a long white robe and white head cap is pointing to a group of people sitting on a blanket .

A man dressed in all white is talking to the people seated on the dirt floor .

[1] <https://towardsdatascience.com/foundations-of-nlp-explained-bleu-score-and-wer-metrics-1a5ba06d812b/>

N-gram

- It is just a fancy way of describing "**a set of 'n' consecutive words in a sentence**".
- For instance, in the sentence "**The ball is blue**", we could have n-grams such as:
 - **1-gram (unigram)**: "The", "ball", "is", "blue"
 - **2-gram (bigram)**: "The ball", "ball is", "is blue"
 - **3-gram (trigram)**: "The ball is", "ball is blue"
 - **4-gram**: "The ball is blue"



The children are sitting with their shoes off .

A man wearing a long white robe and a white cap , stands over a group of seated people .

A man in a white robe stands and talks to people who are sitting .

A man in a long white robe and white head cap is pointing to a group of people sitting on a blanket .

A man dressed in all white is talking to the people seated on the dirt floor .

[1] <https://towardsdatascience.com/foundations-of-nlp-explained-bleu-score-and-wer-metrics-1a5ba06d812b/>

Precision

- Let's say, that we have:
 - **Target Sentence:** He eats an apple
 - **Predicted Sentence:** He ate an apple
- We would normally compute the Precision using the formula:

$$\text{Precision} = \frac{\text{Number of correct predicted words}}{\text{Number of total predicted words}}$$

- Here **eats** and **ate** count as different words
- Precision = 3 / 4

[1] <https://towardsdatascience.com/foundations-of-nlp-explained-bleu-score-and-wer-metrics-1a5ba06d812b/>

Precision

- The issue is that only using precision allow us to cheat:
 - **Target Sentence:** He eats an apple
 - **Predicted Sentence:** He he he
- Precision = 3 / 3

[1] <https://towardsdatascience.com/foundations-of-nlp-explained-bleu-score-and-wer-metrics-1a5ba06d812b/>

Clipped Precision

- **Target Sentence 1:** He eats a sweet apple
- **Target Sentence 2:** He is eating a tasty apple
- **Predicted Sentence:** He He He eats tasty fruit

1. We compare each word from the predicted sentence with all of the target sentences.
2. If the word matches any target sentence, it is considered to be correct.
3. We limit the count for each correct word to the maximum number of times that that word occurs in the Target Sentence.

$$\text{Clipped Precision} = \frac{\text{Clipped # of correct predicted words}}{\# \text{ of total predicted words}}$$

Word	Matching Sentence	Matched Predicted Count	Clipped Count
He	Both	3	1
eats	Target 1	1	1
tasty	Target 2	1	1
fruit	None	0	0
Total		5	3

$$\text{Clipped Precision} = 3 / 6$$

[1] <https://towardsdatascience.com/foundations-of-nlp-explained-bleu-score-and-wer-metrics-1a5ba06d812b/>

How is BLEU score calculated?

- **Target Sentence:** The guard arrived late because it was raining
- **Predicted Sentence:** The guard arrived late because of the rain

Precision 1-gram:

$$p_1 = \frac{5}{8}$$

Target Sentence: The guard arrived late because it was raining

↓ ↓ ↓ ↓ ↓

Predicted Sentence: The guard arrived late because of the rain

Precision 3-gram:

$$p_3 = \frac{3}{6}$$

Target Sentence: The guard arrived late because it was raining

Predicted Sentence: The guard arrived late because of the rain

Precision 2-gram:

$$p_2 = \frac{4}{7}$$

Target Sentence:

The guard arrived late because it was raining

Predicted Sentence: The guard arrived late because of the rain

Precision 4-gram:

$$p_2 = \frac{2}{5}$$

Target Sentence:

The guard arrived late because it was raining

Predicted Sentence: The guard arrived late because of the rain

How is BLEU score calculated?

Geometric Average Precision (GAP)

- We combine these precision scores using the following formula

$$\mathbf{GAP}(N) = \prod_{n=1}^N p_n^w$$

- We usually use $N = 4$ and uniform weights $w = \frac{1}{N}$
- In case of $N = 4$ the Geometric Average Precision:

$$\mathbf{GAP}(N) = (p_1)^{\frac{1}{4}} \cdot (p_2)^{\frac{1}{4}} \cdot (p_3)^{\frac{1}{4}} \cdot (p_4)^{\frac{1}{4}}$$

[1] <https://towardsdatascience.com/foundations-of-nlp-explained-bleu-score-and-wer-metrics-1a5ba06d812b/>

How is BLEU score calculated?

Brevity Penalty

- The Brevity Penalty penalizes sentences that are too short.

$$\text{BrevityPenalty} = \begin{cases} 1, & \text{if } c > r \\ e^{(1 - \frac{r}{c})}, & \text{if } c \leq r \end{cases}$$

- c is the predicted length -> number of words in the predicted sentence
- r is the target length -> number of words in the target sentence (length closes to prediction length)
- In the previous example $c = 8$ and $r = 8$

[1] <https://towardsdatascience.com/foundations-of-nlp-explained-bleu-score-and-wer-metrics-1a5ba06d812b/>

How is BLEU score calculated?

- To get the BLEU score we multiply the **Brevity Penalty** with the **Geometric Average of the Precision Scores**

$$\text{BLEU}(N) = \text{BrevityPenalty} \cdot \text{GAP}(N)$$

- **BLEU** Score can be computed for different values of N.
 - **BLEU-1** uses the **unigram** Precision score
 - **BLEU-2** uses the geometric average of **unigram** and **bigram** precision
 - **BLEU-3** uses the geometric average of **unigram**, **bigram**, and **trigram** precision
 - and so on.

[1] <https://towardsdatascience.com/foundations-of-nlp-explained-bleu-score-and-wer-metrics-1a5ba06d812b/>

Natural Language Processing Tasks

Name Entity Recognition

- A text corpus tagged with 4 different entity types
 - PER (persons), LOC (locations), ORG (organization), MISC (miscellaneous)

Index	0	1	2	3	4	5	6	7	8
Input X:	Harry	Potter	and	Hermione	Granger	invented	a	new	spell
Tags:	B-PER	I-PER	O	B-PER	I-PER	O	O	O	O
Output Y:	1	2	0	1	2	0	0	0	0

Index	0	1	2	3	4	5	6	7	8	9	10
Input X:	The	European	Commission	said	on	Thursday	it	disagreed	with	German	advice
Tags:	O	B-ORG	I-ORG	O	O	O	O	O	O	B-MISC	O
Output Y:	0	3	4	0	0	0	0	0	0	7	0

Natural Language Processing Tasks

Question Answering

- Stanford Question Answering Dataset (SQuAD)
- **Context**
- **Question – Answer** pairs
- The answer is a span in a given Wikipedia paragraph

Context

Question 1
Answer 1

Question 2
Answer 2

Question 3
Answer 3

In meteorology, precipitation is any product of the condensation of atmospheric water vapor that falls under **gravity**. The main forms of precipitation include drizzle, rain, sleet, snow, **graupel** and hail... Precipitation forms as smaller droplets coalesce via collision with other rain drops or ice crystals **within a cloud**. Short, intense periods of rain in scattered locations are called “showers”.

What causes precipitation to fall?
gravity

What is another main form of precipitation besides drizzle, rain, snow, sleet and hail?
graupel

Where do water droplets collide with ice crystals to form precipitation?
within a cloud

Natural Language Processing Tasks

Textual Entailment

Stanford Natural Language Inference (SNLI)

Determining whether a “**hypothesis**” is true, given a “**premise**”.

Five different annotator – **Gold label**

Contradiction - the hypothesis cannot be true given the premise.

Neutral - the hypothesis might be true or false; it's not entailed or contradicted.

Entailment - the hypothesis must be true given the premise.

Text	Judgements	Hypothesis
A man inspects the uniform of a figure in some East Asian country.	contradiction C C C C C	The man is sleeping
An older and younger man smiling.	neutral N N E N N	Two men are smiling and laughing at the cats playing on the floor.
A black race car starts up in front of a crowd of people.	contradiction C C C C C	A man is driving down a lonely road.
A soccer game with multiple males playing.	entailment E E E E E	Some men are playing a sport.
A smiling costumed woman is holding an umbrella.	neutral N N E C N	A happy woman in a fairy costume holds an umbrella.

Natural Language Processing Tasks

Machine Translation

- The name speaks for itself
- BUT, **input – output** pairs in **source – target** language.
- For one input there might be **multiple candidate** translations

English	French
It's cold.	C'est froid.
Stay calm.	Reste tranquille.
Stop that.	Arrêtez ça !
I will submit the assignment tonight	Je rendrai le devoir ce soir.

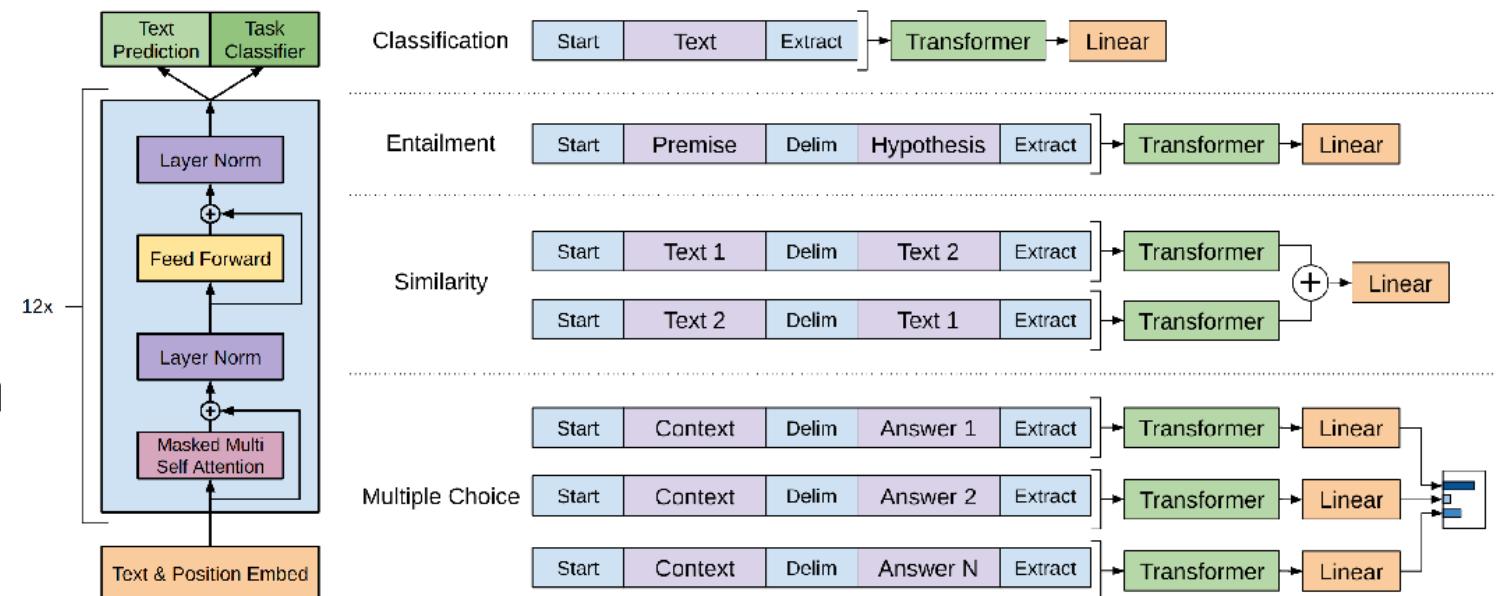
Generative Pre-trained Transformer (GPT) – June 2018

The original goal is Language Modelling (LM)

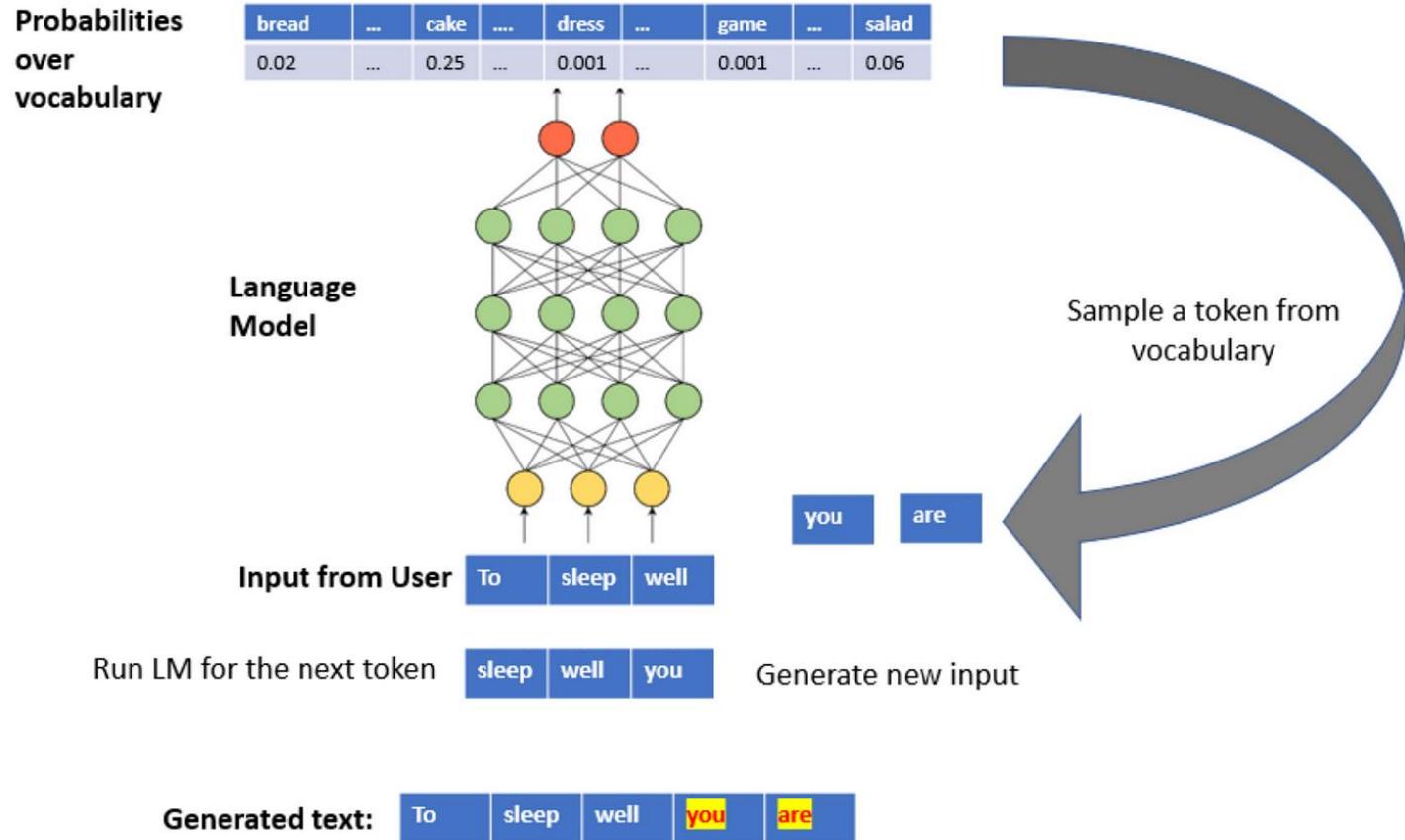
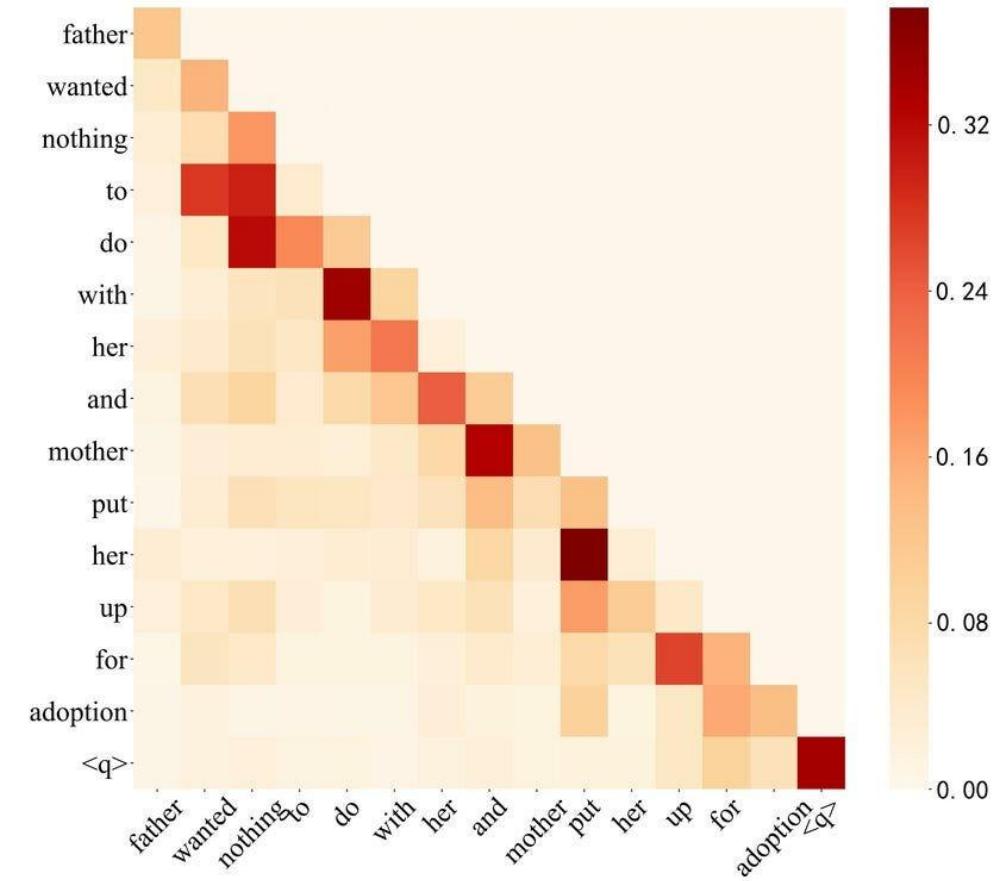
Uses Masked Self-Attention to limit the attention to the previous tokens only (left-to-right)

Two stage training:

1. Unsupervised pre-training:
 - The goal is to predict the next token based on the previous tokens.
2. Supervised fine-tuning:
 - Predict the label (y) based on the input tokens

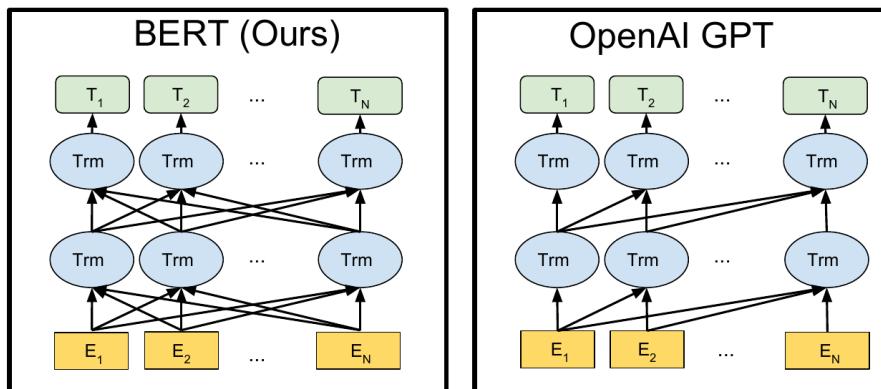
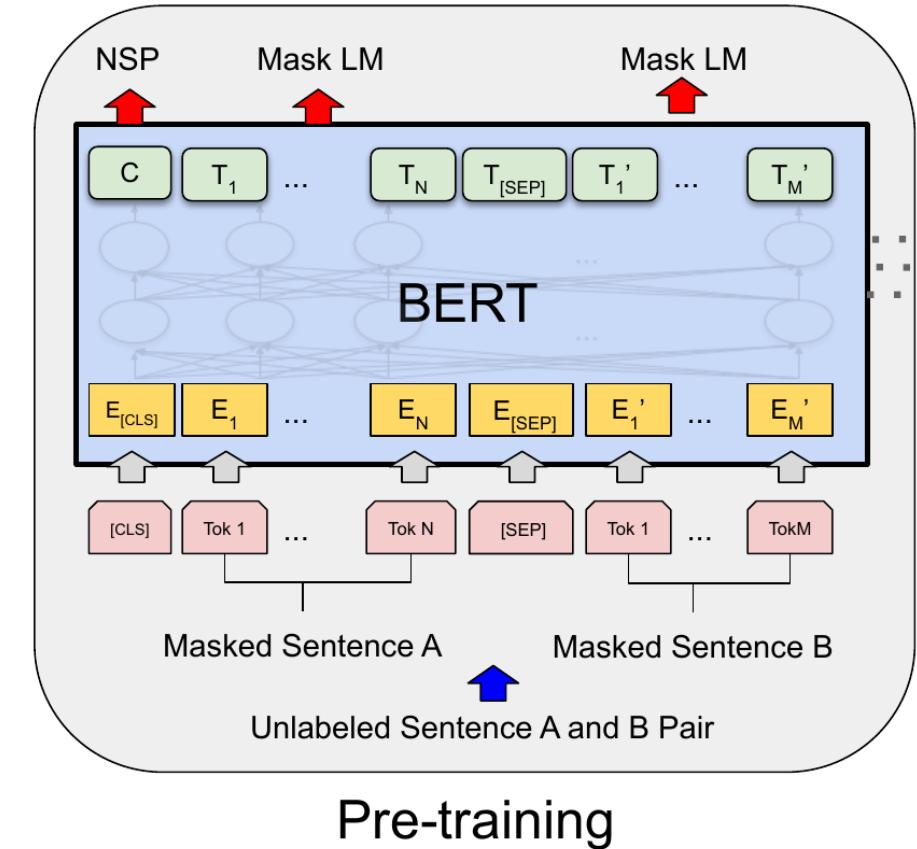


Generative Pre-trained Transformer (GPT) – June 2018

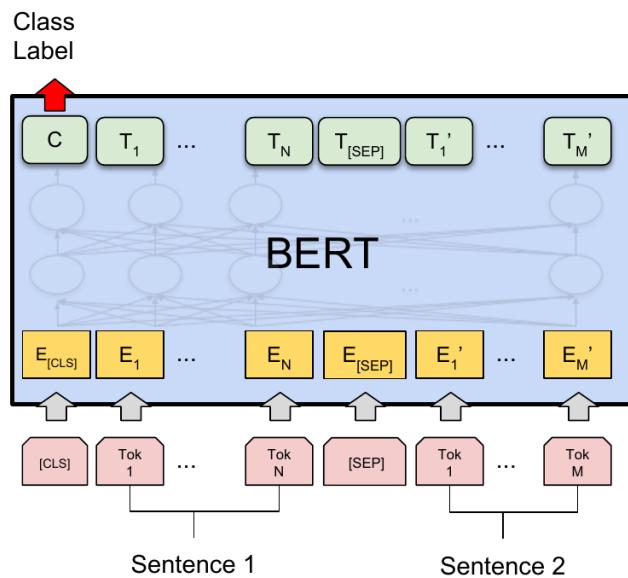


Bidirectional Encoder Representations from Transformers (BERT) – May 2019

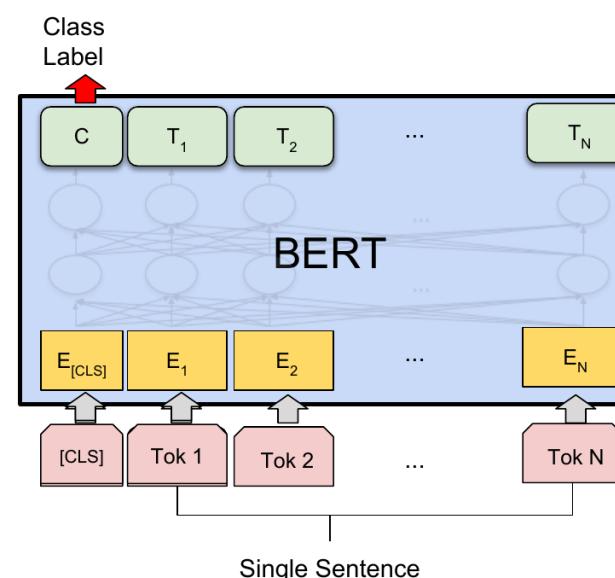
- Compared to OpenAI GPT it uses a bidirectional self-attention
- Trained on 2 tasks at the same time during pre-training
 - Masked LM (15% of the tokens are masked)
 - Next Sentence Prediction
- A special [CLS] token is introduced at the beginning of each sequence.



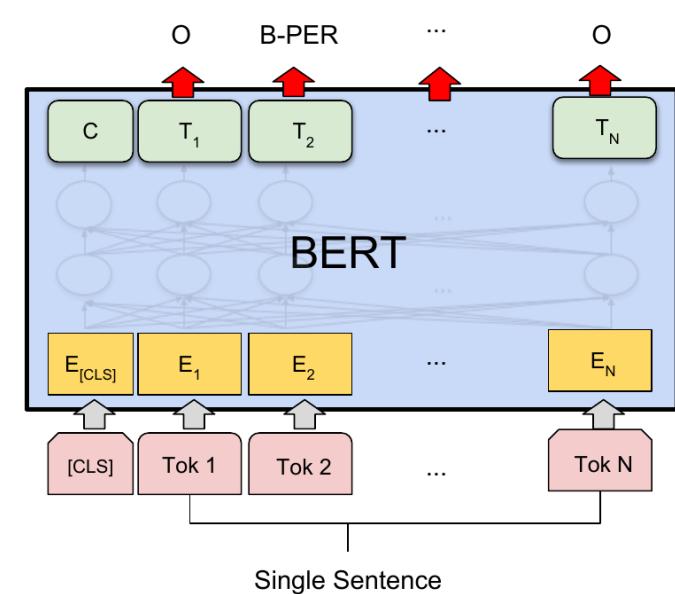
Bidirectional Encoder Representations from Transformers (BERT) – May 2019



(a) Sentence Pair Classification Tasks:
 MNLI, QQP, QNLI, STS-B, MRPC,
 RTE, SWAG

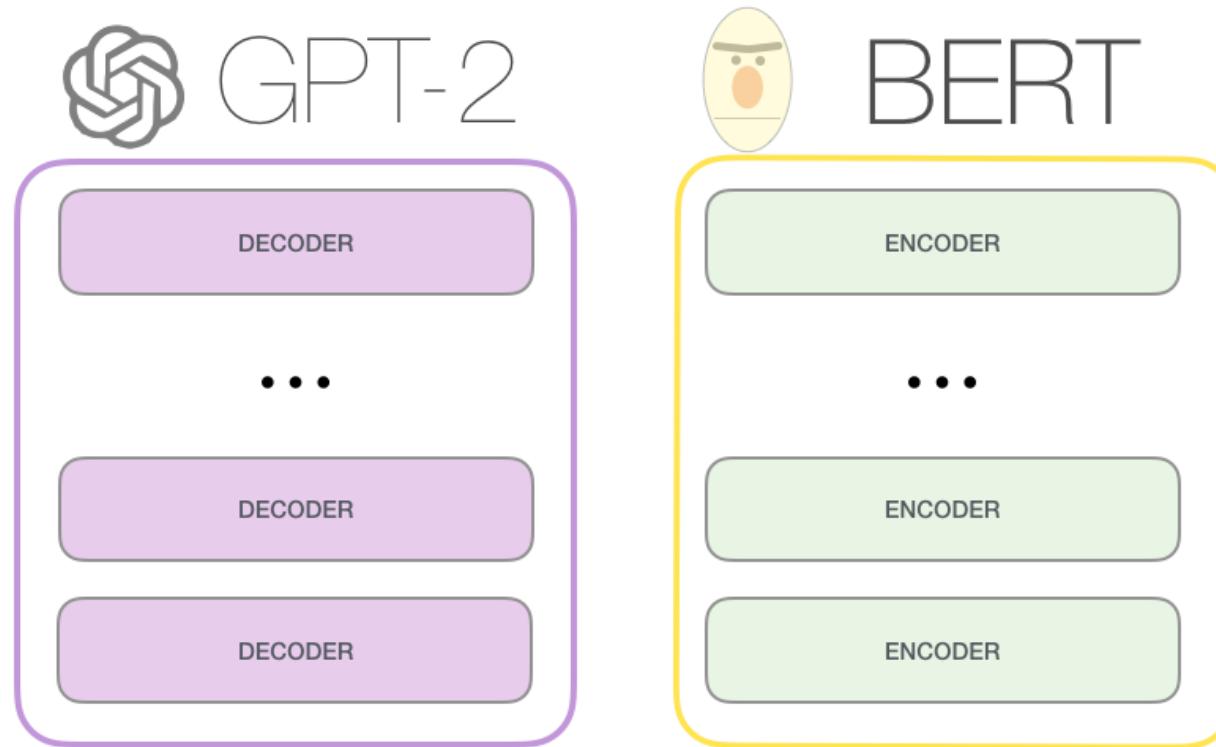


(b) Single Sentence Classification Tasks:
 SST-2, CoLA



(d) Single Sentence Tagging Tasks:
 CoNLL-2003 NER

Transformer Architectures



Lecture 10.

Transformer Networks, Vision Transformers

Budapest, 11th November 2025

1 Natural Language Understanding

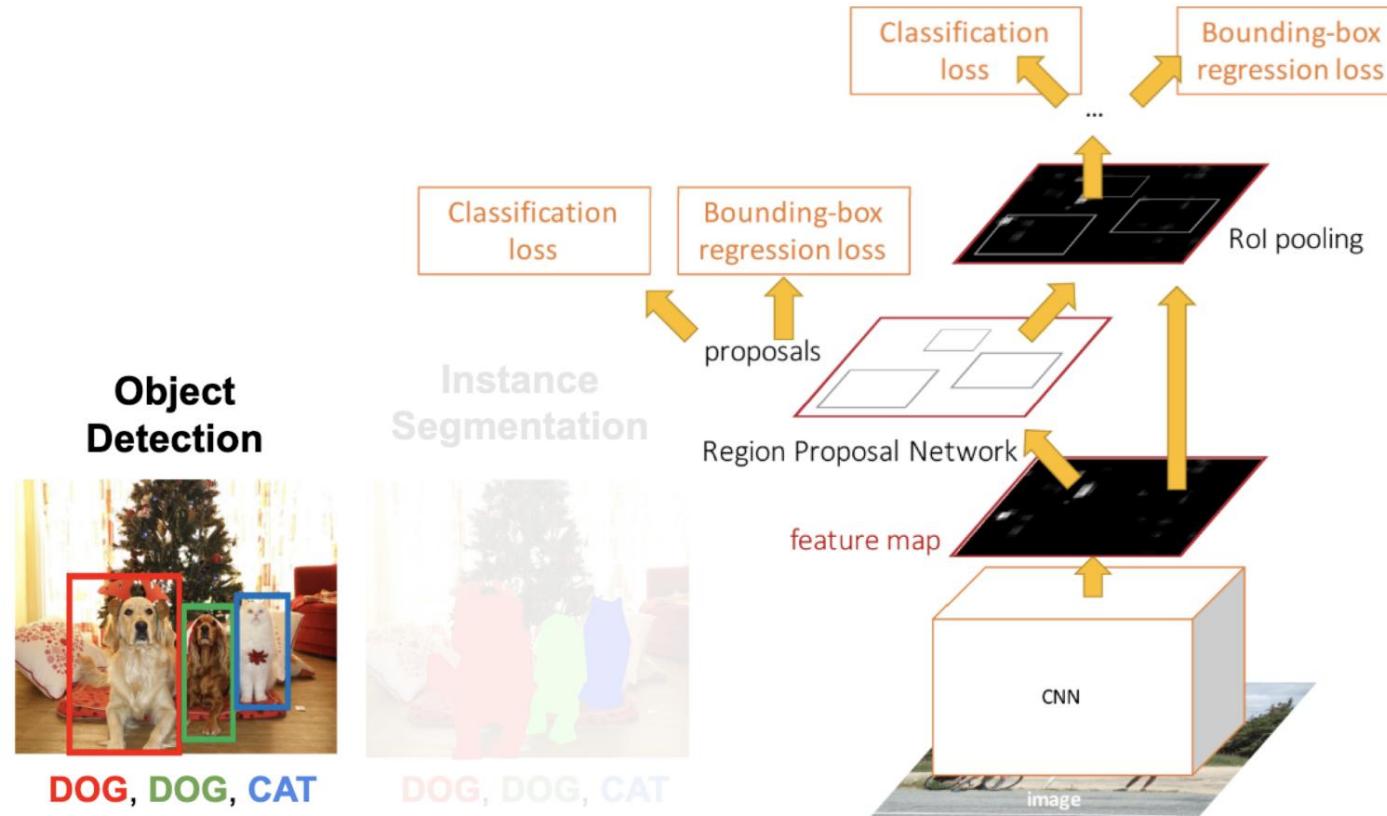
2 Attention Mechanism

3 Transformer Architecture

4 Vision Transformers

Object detection

Object Detection: Faster R-CNN [4]



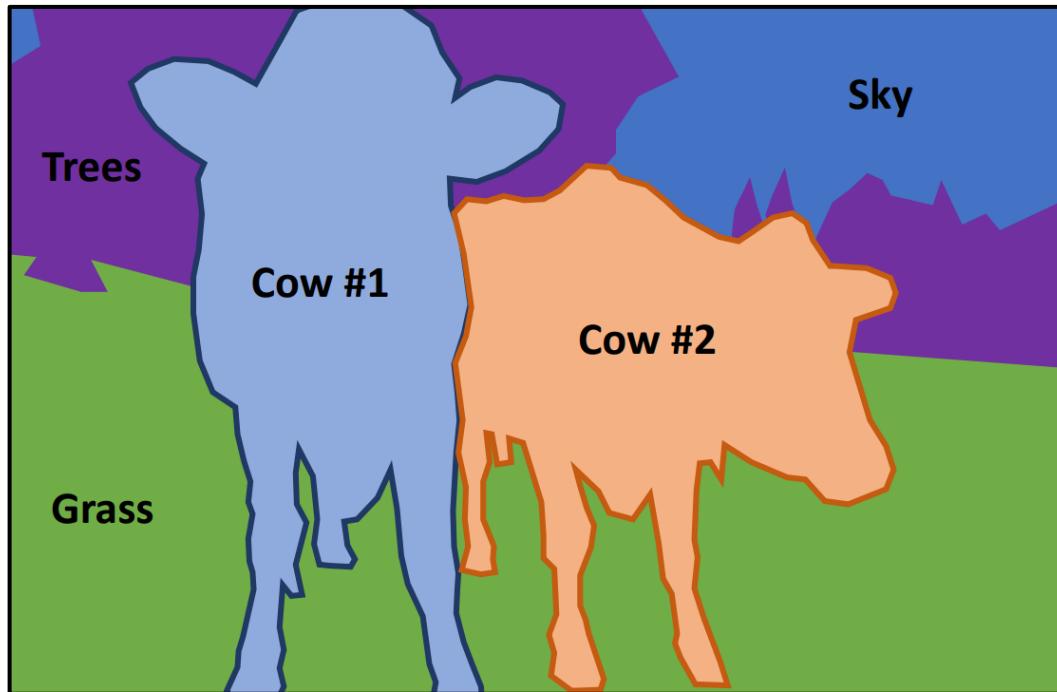
[4] Ren, S., He, K., Girshick, R., & Sun, J. (2016). Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. arXiv [Cs.CV]. Retrieved from <http://arxiv.org/abs/1506.01497>

Instance Segmentation

Beyond Instance Segmentation: Panoptic Segmentation [3]

Label all pixels in the image (both things and stuff).

For “thing” categories also separate into instances.



[3] Kirillov, A., He, K., Girshick, R., Rother, C., & Dollár, P. (2019). Panoptic Segmentation. arXiv [Cs.CV]. Retrieved from <http://arxiv.org/abs/1801.00868>

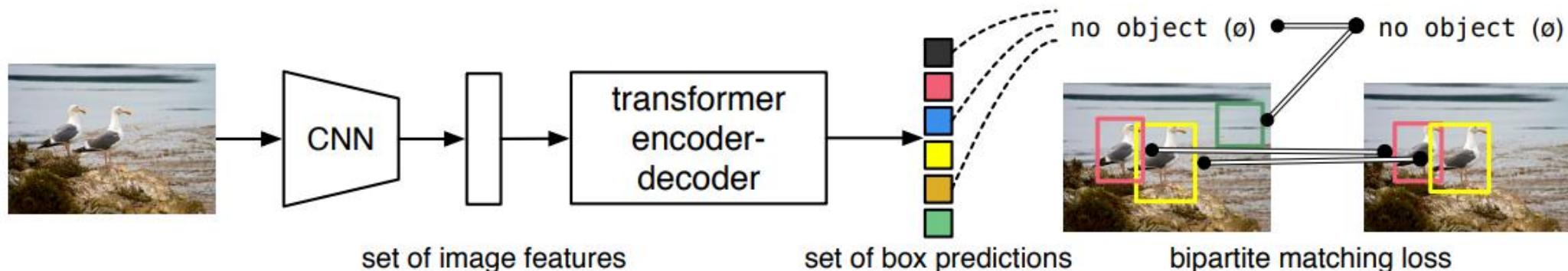
DEtection TRansformer (DETR) – May 2020 [1]

End-to-End Object Detection with Transformers -

arxiv.org/abs/2005.12872

Simple architecture:

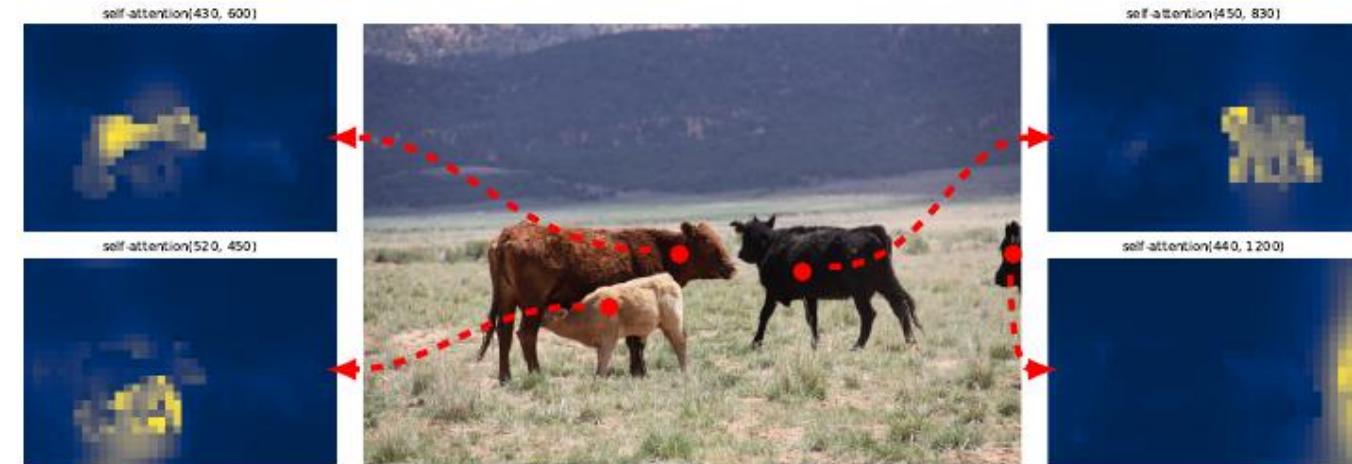
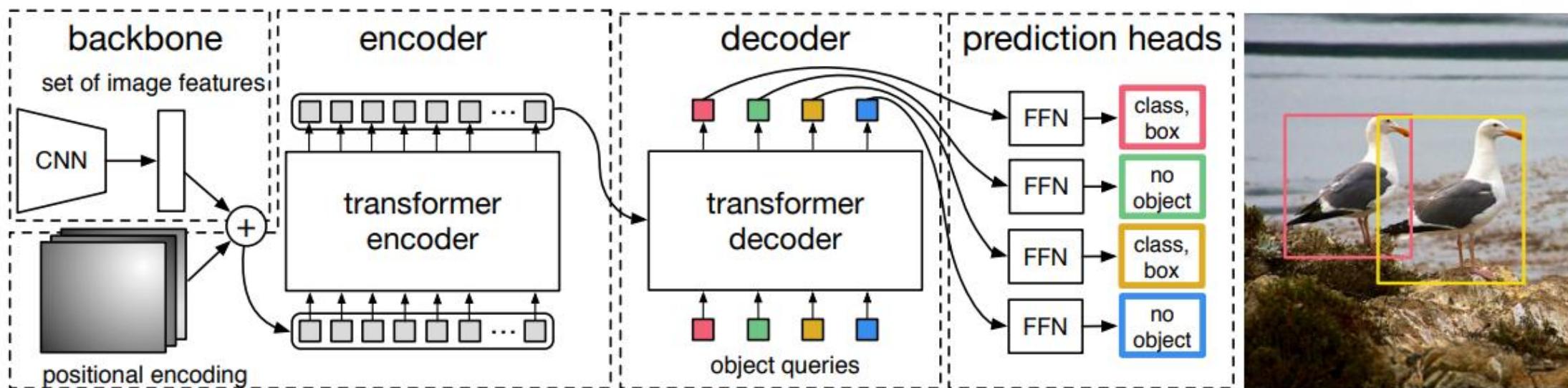
1. CNN backbone
2. Encoder-Decoder Transformer
3. Feed Forward Network



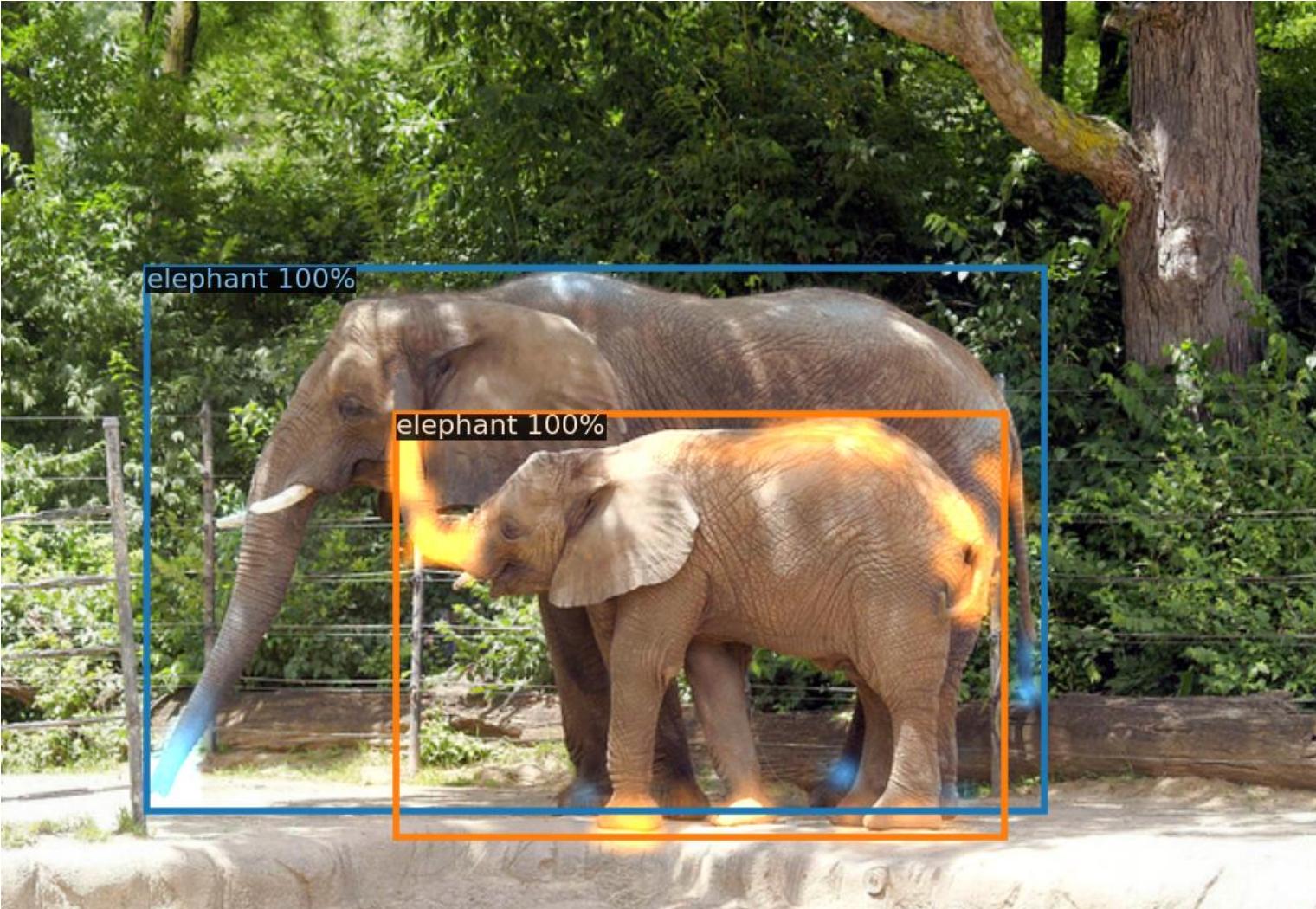
[1] End-to-End Object Detection with Transformers - arxiv.org/abs/2005.12872

DEtection TRansformer (DETR) – May 2020

1. Does N object detection parallelly based on learned object queries – (contrary to Region Proposals)
2. Uses a bipartite matching loss to remove duplicate bounding boxes – (contrary to Non-Maximum Suppression)

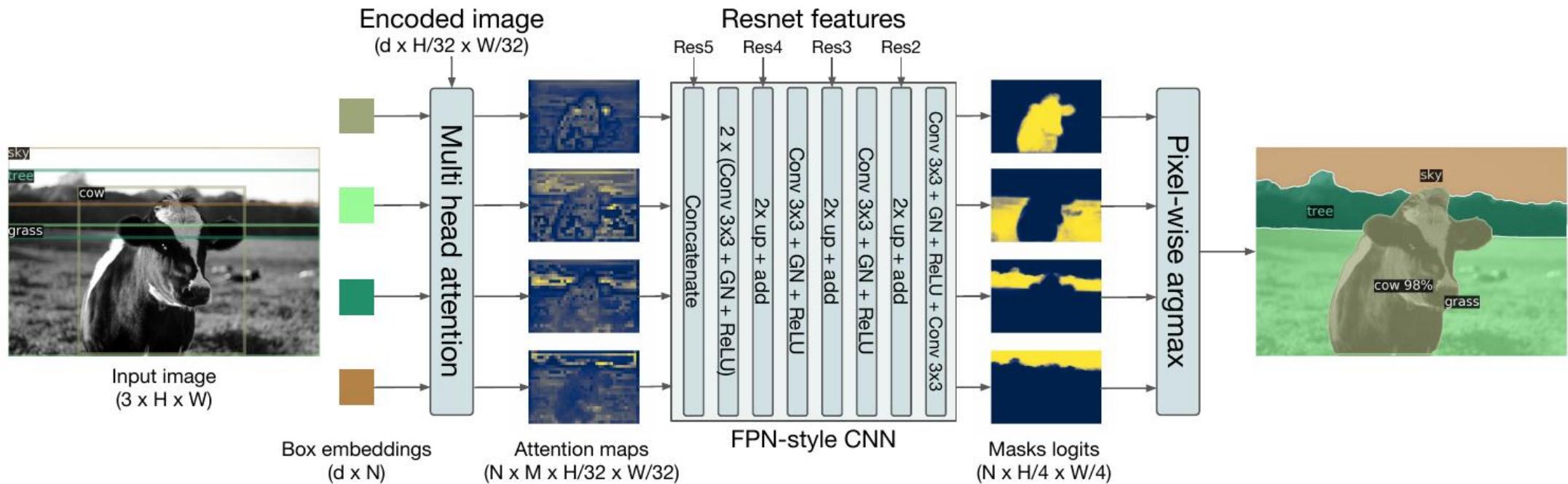


DEtection TRansformer (DETR) – May 2020



DEtection TRansformer (DETR) – May 2020

- DETR can be naturally extended by adding a mask head on top of the decoder outputs.
- Then it will generate the masks parallel to each predicted object



Vision Transformers – June 2021 [2]

- *An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale* - arxiv.org/abs/2010.11929
- In vision, attention is either applied in conjunction with convolutional networks or used to replace certain components of convolutional networks while keeping their overall structure in place.
- Reliance on CNNs is not necessary and a pure transformer applied directly to sequences of image patches can perform very well on image classification tasks
- Transformers operate on a sequence of tokens
- How do we transform an image into tokens?

[2] *An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale* - arxiv.org/abs/2010.11929

Image Tokenization

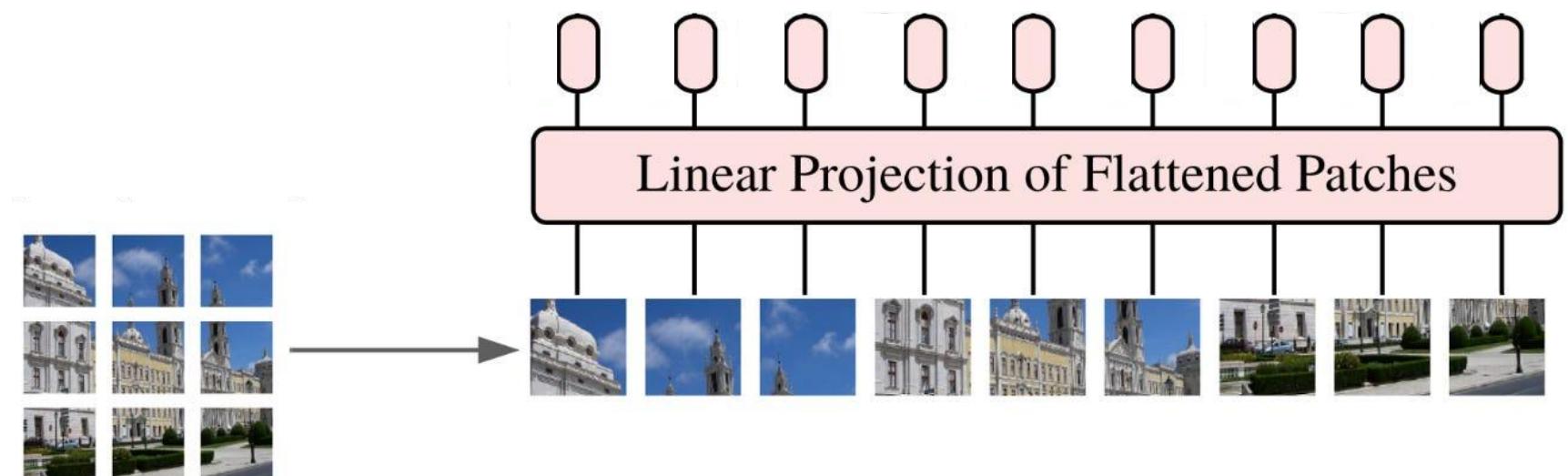
1. Reshape images of $x \in \mathbb{R}^{H \times W \times C}$ into $N = \frac{HW}{P^2}$ patches

- (H, W) – image resolution
- C – number of channels
- (P, P) – patch resolution

Image Tokenization

2. The Transformer uses constant latent vector size D through all of its layers

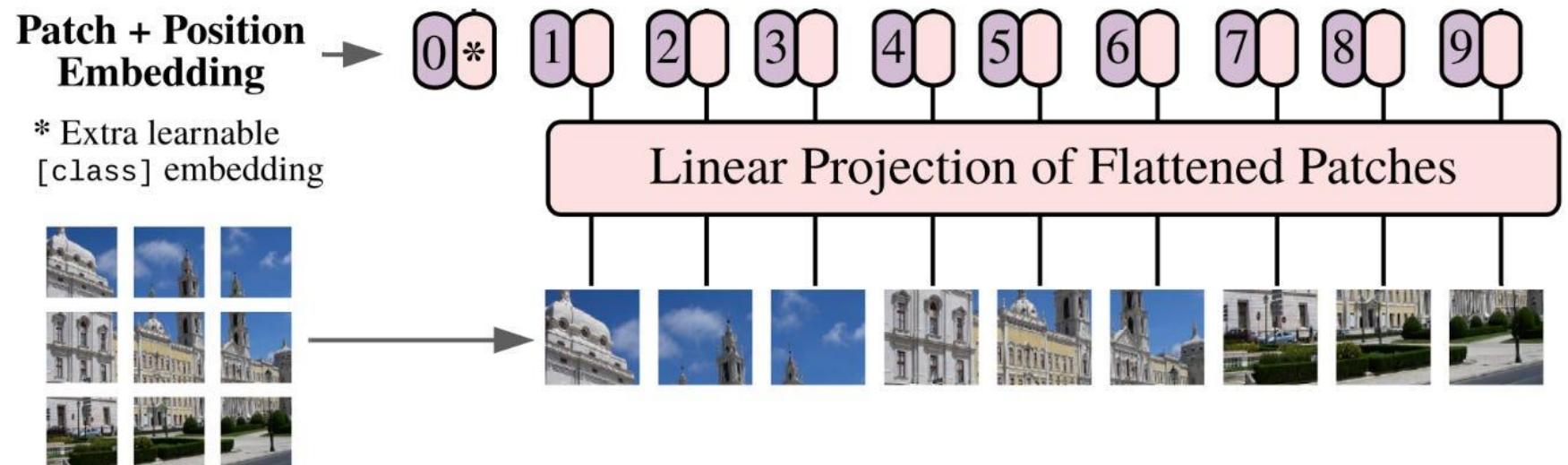
- Flatten all the patches and apply a learnable linear projection (patch embeddings)



Token Processing

3. Processing the tokens

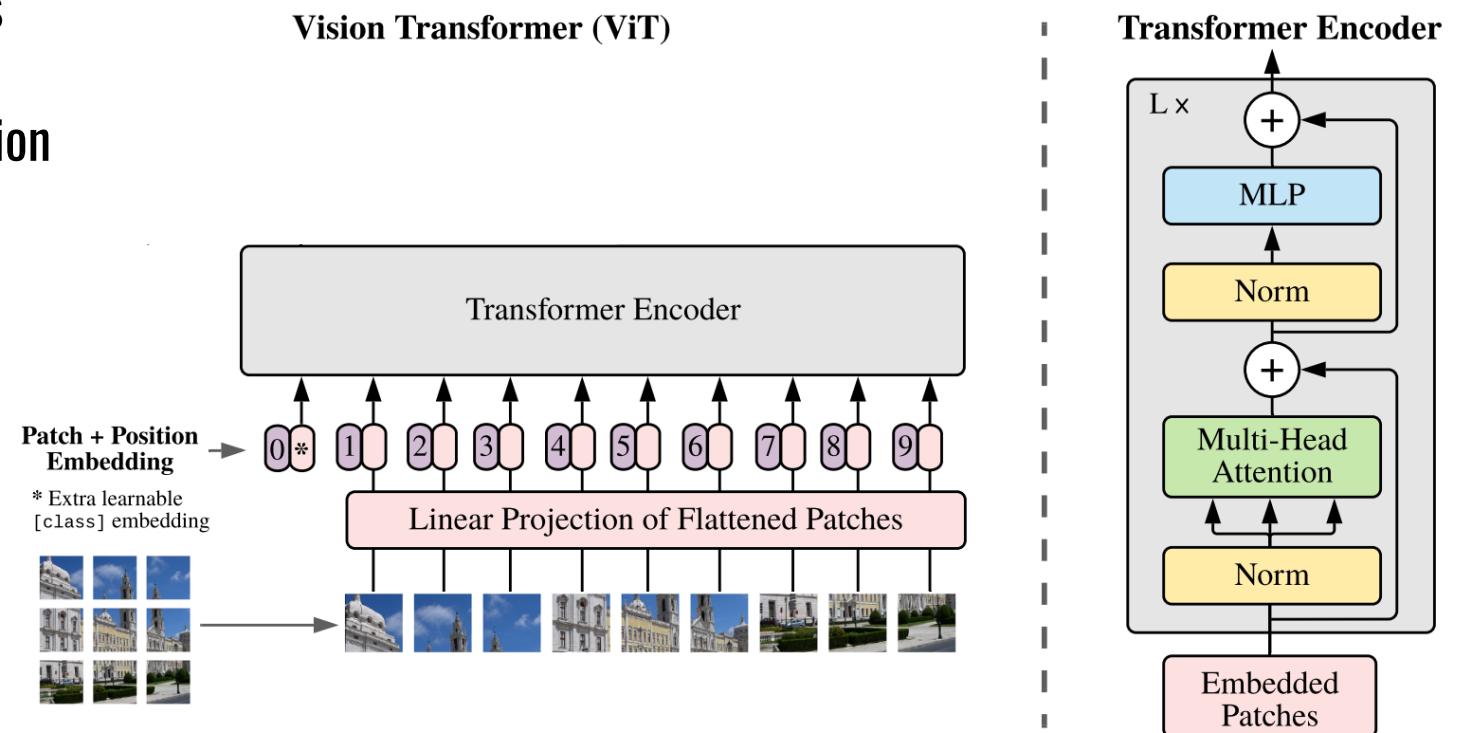
- Prepend a learnable embedding to the patch embeddings
- Apply position embedding



Encoder Block

4. Feeding the embedded patches to the Transformer Encoder

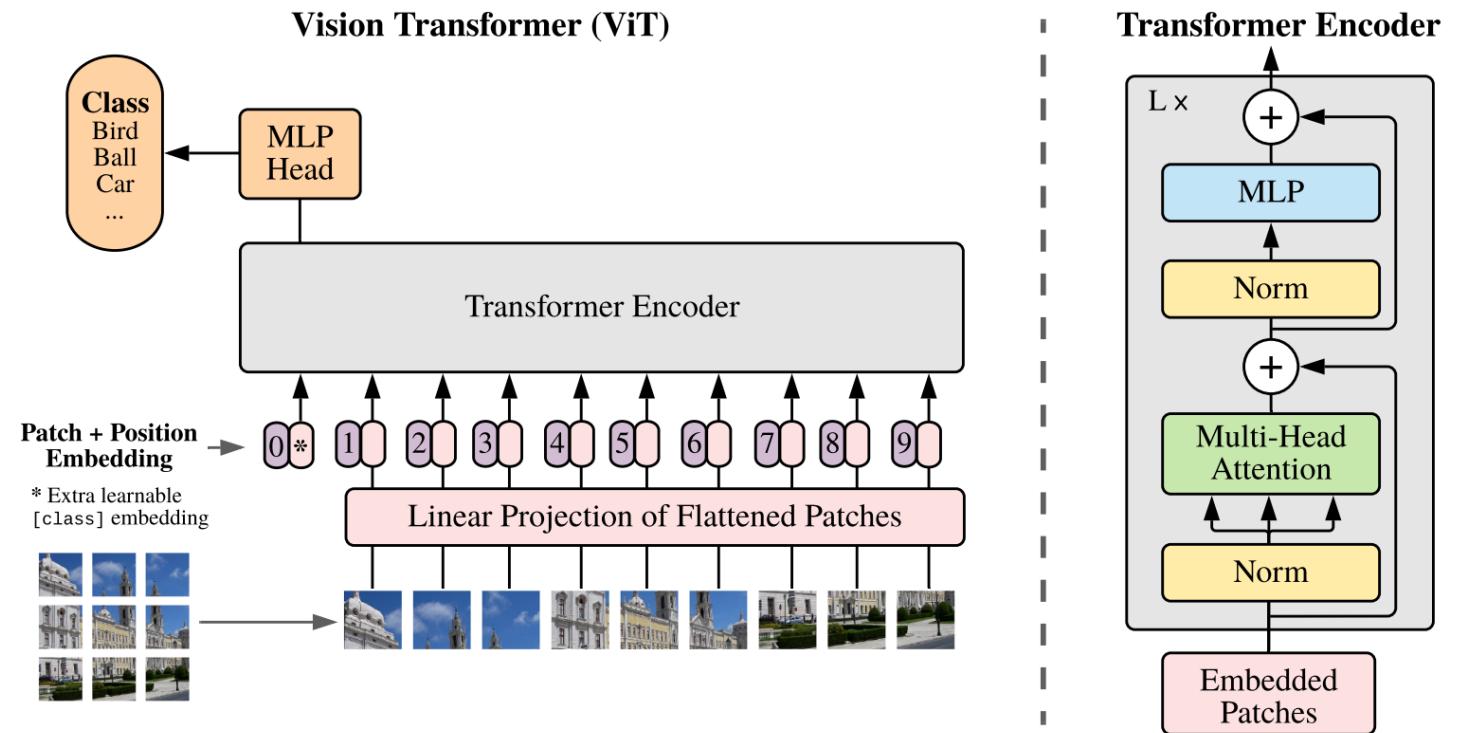
- Input the sequence of embedded patches $([z_0^0, z_0^1, \dots, z_0^N])$
- At the end we get the image representation $([z_L^0, z_L^1, \dots, z_L^N])$



Prediction Processing

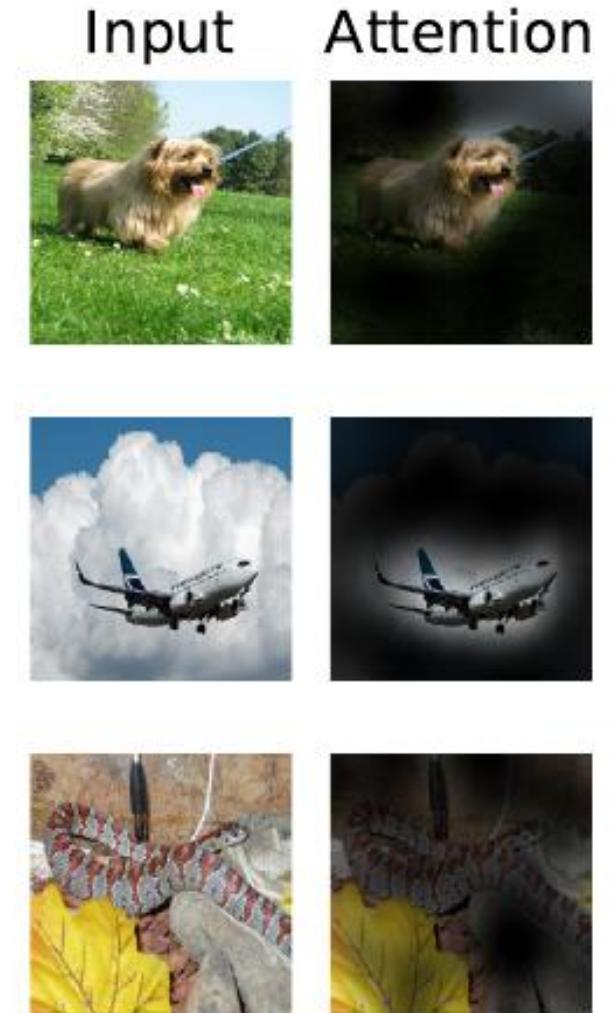
5. Classification MLP head

- Attaching a classifier head to z_L^0



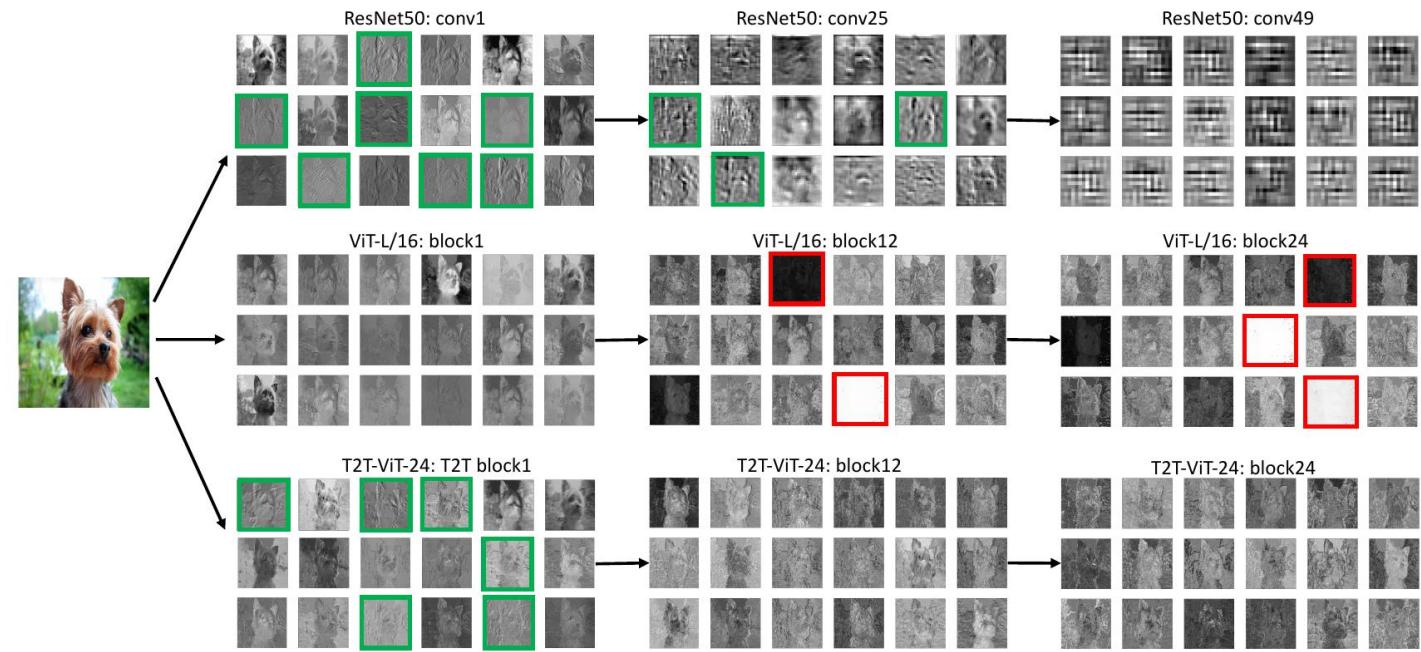
Comparison with Convolutional Networks

- ViT has much less image-specific inductive bias
 - features like **edges, textures, and patterns** are spatially localized and translationally invariant
- In CNNs, locality, two-dimensional neighbourhood structure, and translation equivariance are baked into the whole model
- Position embedding does not carry information about the 2D position of the patches



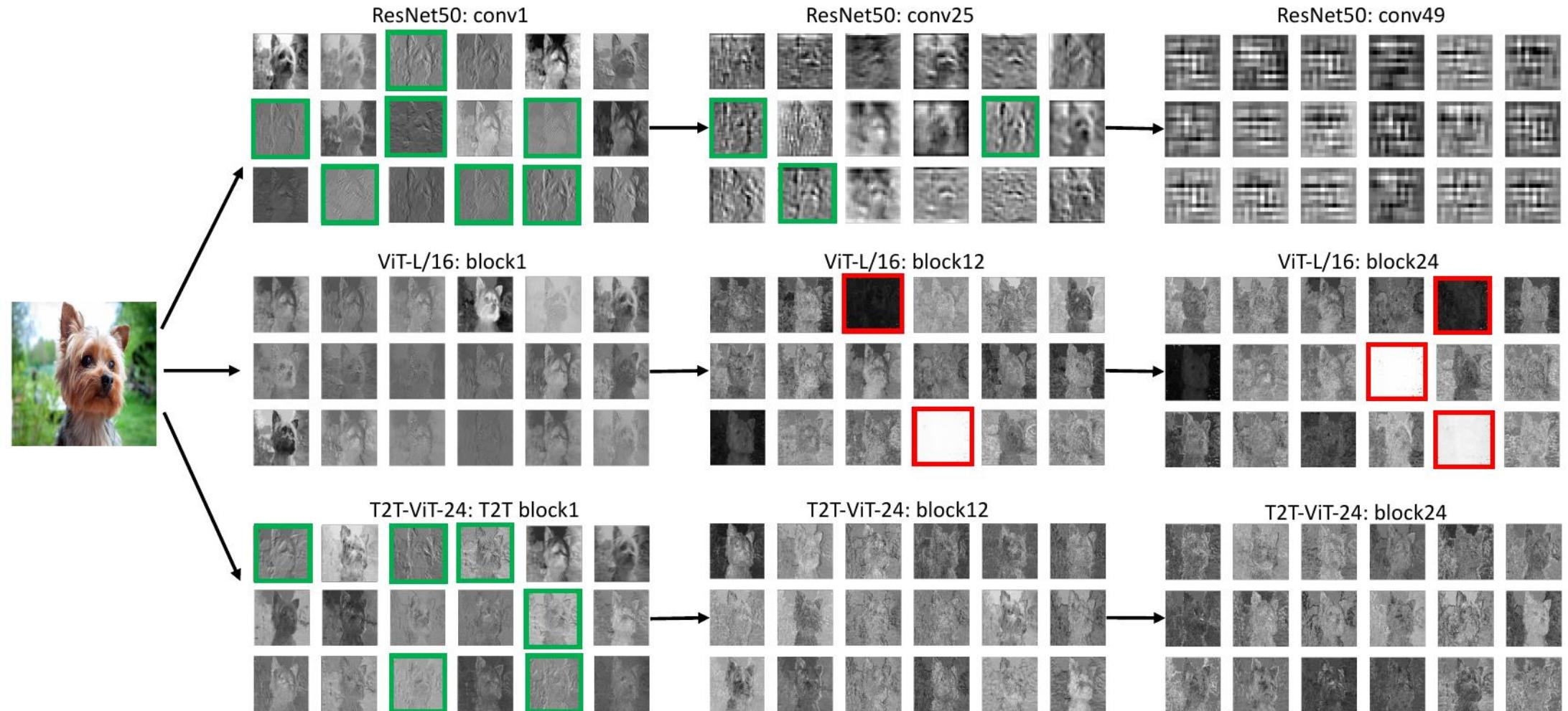
Token-to-Token ViT (T2T-ViT) – Nov 2021

- ViT achieves inferior performance to CNNs when trained on a midsize dataset
 1. The tokenization fails to model the important local structure such as edges, lines, etc.
 2. The redundant attention backbone leads to limited feature richness



[3] An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale - arxiv.org/abs/2010.11929

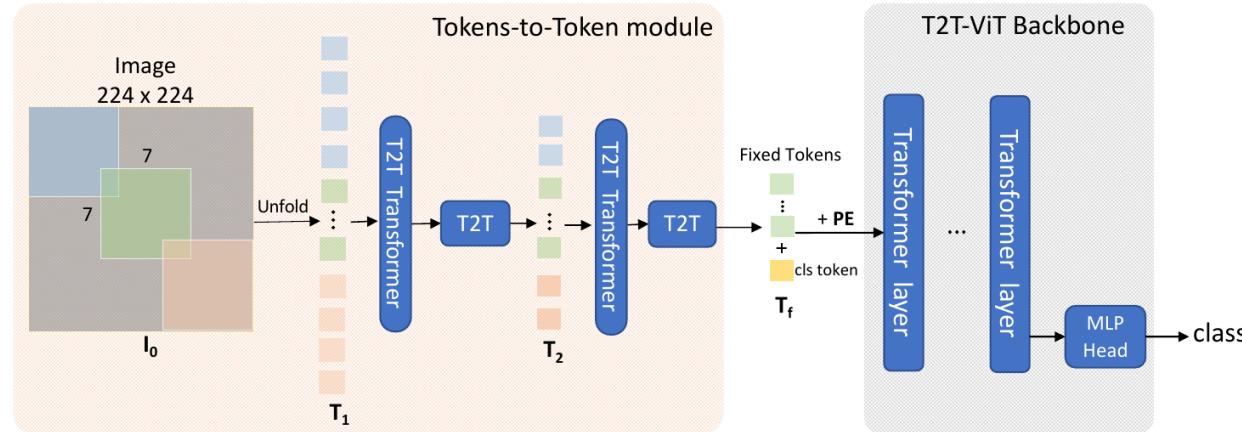
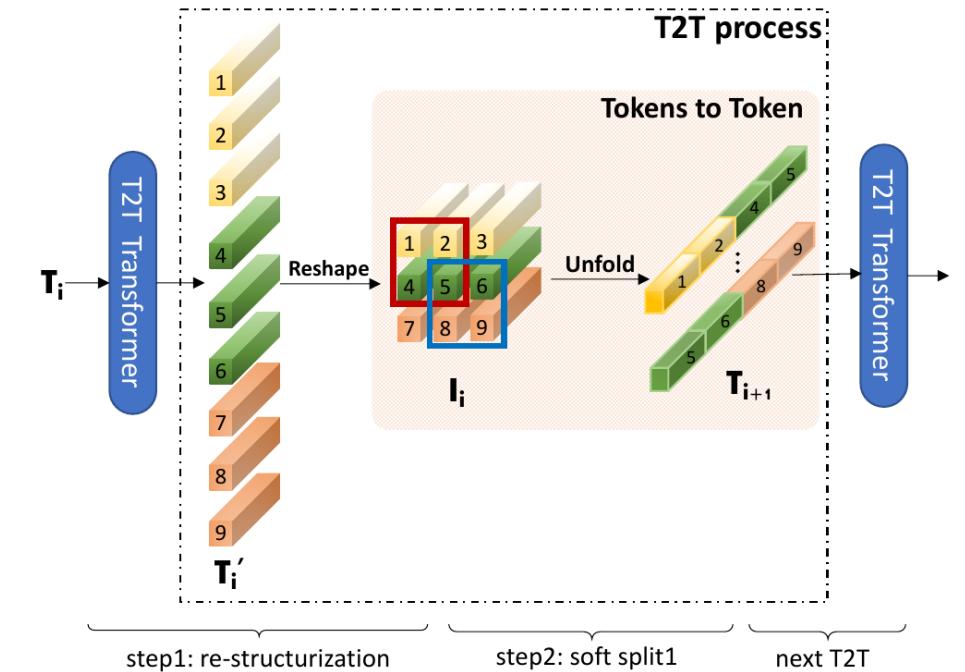
Token-to-Token ViT (T2T-ViT)



Token-to-Token ViT (T2T-ViT)

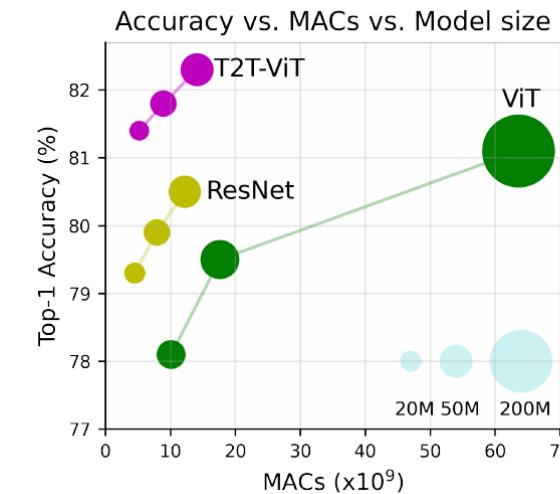
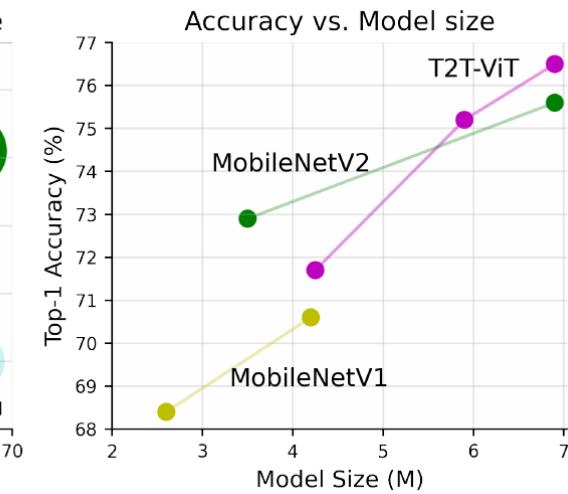
1. A layer-wise “Token-to-token module”
2. An efficient “T2T-ViT backbone”

- The generated tokens are reordered like an “image”
- Then areas closer together are grouped together into a new token



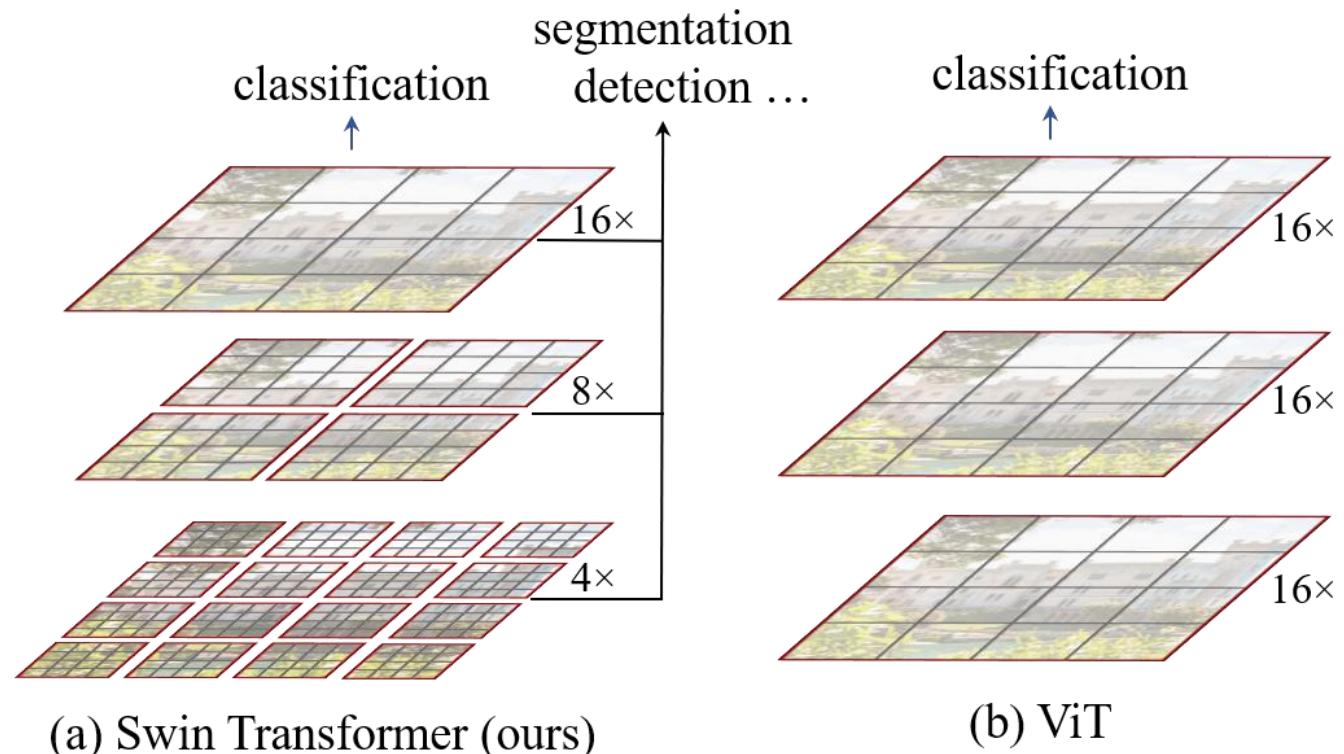
Token-to-Token ViT (T2T-ViT)

- While “vanilla” ViT requires a large dataset and more tuneable parameters to beat the “state-of-the-art” (**JFT-300M**) CNN models
- T2T-ViT requires smaller datasets and less tuneable parameter



Swin Transformer – Aug 2021 [4]

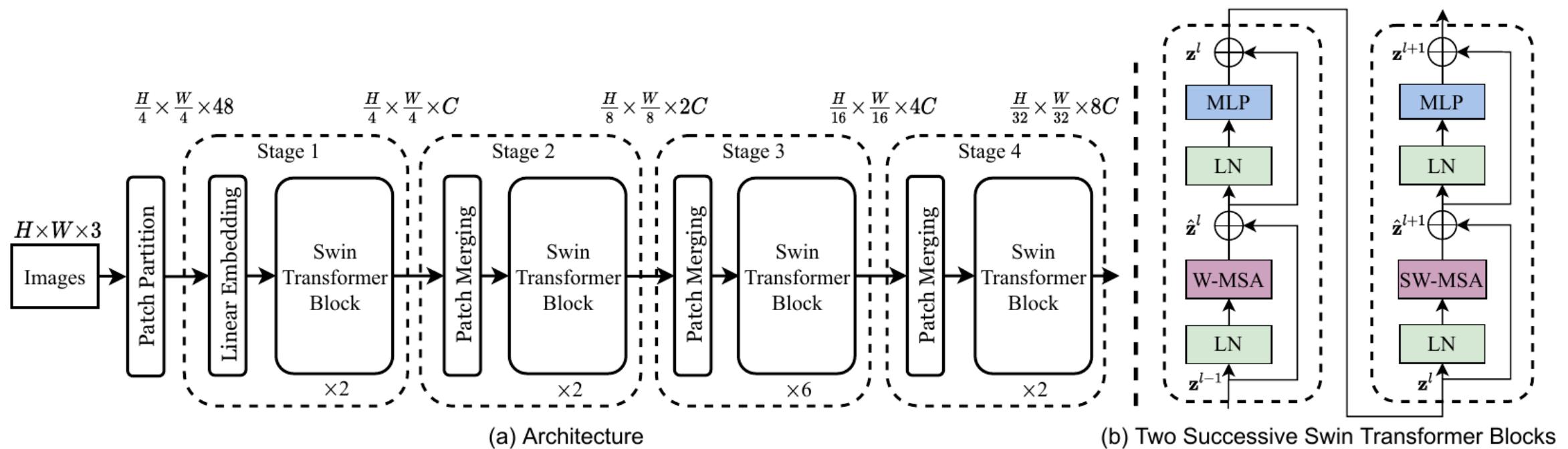
- ViT - computational complexity is quadratic to image size.
 - Conduct global self attention, where the relationships between a token and all other tokens are computed
- Calculate self-attention within local windows
- Patch merging and scaling as the network gets deeper
- Shifted window approach with fixed number of patches.



[4] Swin Transformer: Hierarchical Vision Transformer using Shifted Windows - <https://arxiv.org/abs/2103.14030>

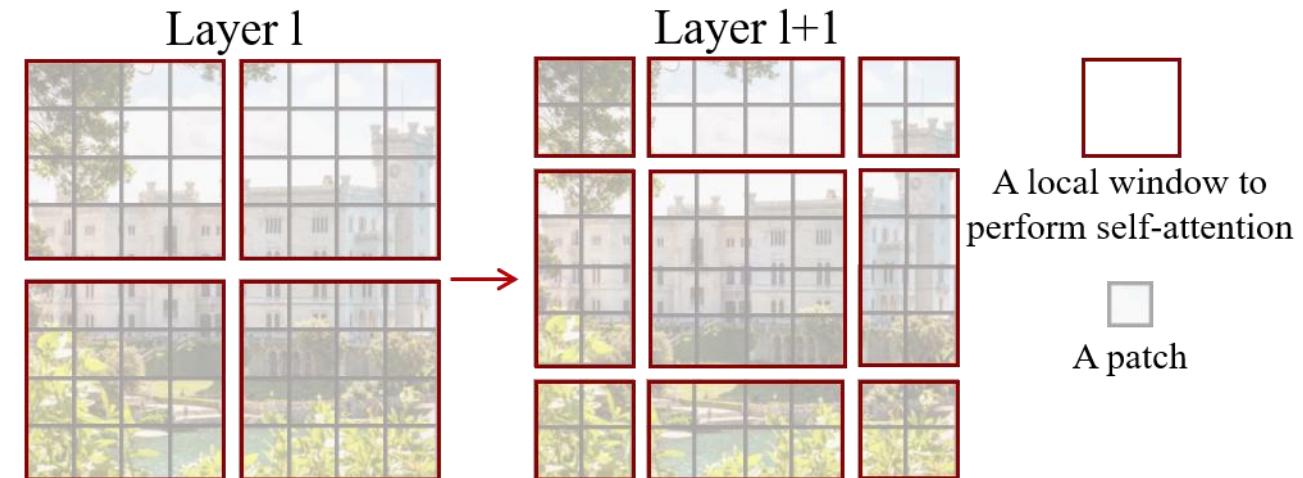
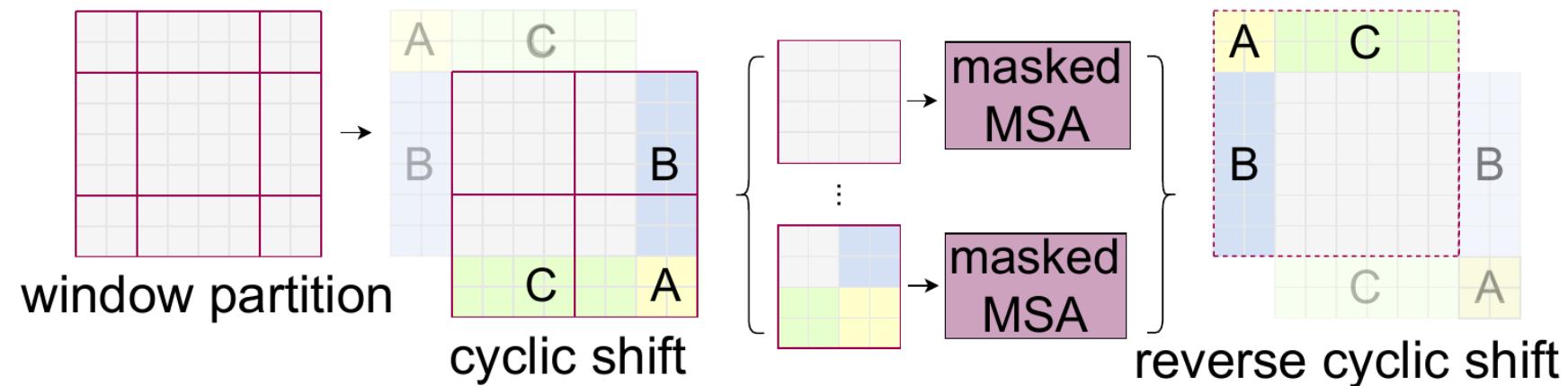
Swin Transformer – Aug 2021 [4]

- The number of tokens reduced in the patch merging layer
 - Produce hierarchical representations
 - Similar to Feature Pyramid Networks



Swin Transformer – Aug 2021 [4]

- Shifted window partitioning to introduce cross-window connection between non-overlapping windows.
- Alternates between two configuration.
- Masking mechanism - limit self-attention non-adjacent windows



Further Links + Resources

- <https://theaisummer.com/attention/>
- <https://theaisummer.com/transformer/>
- <https://jalammar.github.io/illustrated-transformer/>
- <https://nlp.seas.harvard.edu/annotated-transformer/> !!!!
- <https://www.youtube.com/watch?v=bCz4OMemCcA>
- Coursera Deep Learning Specialization

Please read this:

- Beam search: <https://towardsdatascience.com/foundations-of-nlp-explained-visually-beam-search-how-it-works-1586b9849a24>
- BLEU score: <https://cloud.google.com/translate/automl/docs/evaluate#bleu>

Resources

Books:

- **Courville, Goodfellow, Bengio: Deep Learning**
Freely available: <https://www.deeplearningbook.org/>
- **Zhang, Aston and Lipton, Zachary C. and Li, Mu and Smola, Alexander J.: Dive into Deep Learning**
Freely available: <https://d2l.ai/>

Courses:

- **Deep Learning specialization by Andrew NG**
- <https://www.coursera.org/specializations/deep-learning>

That's all for today!

