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Object Detection and Segmentation
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Vision Transformers
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1. Image Inpainting @ \ELTE
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Image inpainting is about filling in missing or occluded regions in digital images, aiming to restore plausible, realistic
content. Its applications range from cultural relic restoration to virtual scene editing and film production.
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1. Image Inpainting ELTE

Image Inpainting e
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Image inpainting is about filling in missing or occluded regions in digital images, aiming to restore plausible, realistic
content. Its applications range from cultural relic restoration to virtual scene editing and film production.

Square Alternating Lines Super-Resolution 2x Expand

2 = [l

Bndmwaihcd;sjfnlasj

Dmc;aslm

Dcma;mdmajdflsjfuou

dmlajdosauddnmlikas

Letter Object Narrow Large Wide Large Box




1. Image Inpainting

Image Inpainting

Adobe Photoshop image expanding
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1. Image Inpainting @ \ELTE
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1. Image Inpainting @\ ELTE

Image Inpainting
Object removal and Text Image editing
fuzzy panda wearing

table lamp cowboy hat playing guitar
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1. Image Inpainting @\ ELTE
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Diffusion Based methods

Pros: Good at handling small gaps, extending
smooth areas, and completing continuous
structures like edges and curves.

Cons: Struggles with large texture areas, as it
tends to blur the regions being filled, making it
unsuitable for complex textures

(@) (b)

Christine Guillemot; Olivier Le Meur - Image Inpainting : Overview and Recent Advances (2014) - https://ieeexplore.ieee.org/document/6678248
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1. Image Inpainting @ \ELTE

= comvos ovis g

UNIVERSITY & JL L
Exemplar-Based Inpainting

Pros: Capable of filling large textured areas by S
copying similar patches from known regions. It A g =ar
leverages self-similarity to reproduce textures
accurately.

Cons: Computationally intensive and may
produce repetitive patterns or "texture garbage" @

when handling stochastic textures.

Christine Guillemot; Olivier Le Meur - Image Inpainting : Overview and Recent Advances (2014) - https://ieeexplore.ieee.org/document/6678248
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1. Image Inpainting @\ ELTE
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Hybrid methods

Pros: Combine diffusion for structures and
exemplar-based methods for textures, resulting
in more visually consistent inpainted images.
They offer better handling of complex textures
and structures.

Cons: More complex and computationally
intensive due to the combination of techniques

(a) original, (b) diffusion based (c) exemplar based, (e) hybrid
method

Christine Guillemot; Olivier Le Meur - Image Inpainting : Overview and Recent Advances (2014) - https://ieeexplore.ieee.org/document/6678248
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1. Image Inpainting

Deep Learning Based Approaches

Autoencoders:

Pros:

- [fficient feature extraction
- Simplicity and Stability

- Denoising Capabilition

Cons:

- Blurred output

- Lack of diversity

- Limited realms for large holes

Similarly GANs can also be used:

- Detail oriented results

- Diversity

- High Realms

- But more tricky to train

- Higher computational demand
- Artifacts and inconsistencies

Input Image

encoder- decoder neural network

T - Y- >

Output generation

EOTVOS LORAND ,‘ =
UNIVERSITY M@ TLW
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1. Image Inpainting

i
[5es]
@
Single-Shot
Uses one generator to directly produce the inpainted image.
Input: corrupted image and mask (concatenation)
Output: the completed image
Input & Mask Generator Output Ground truth
Training
objectives
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1. Image Inpainting

Two-stage

Utilizes two generators

Coarse-to-fine:

- First creates a coarse filling on the missing area

- Second refines the filled area
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1. Image Inpainting
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g
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Two-stage

Utilizes two generators

Structure-then-texture:
- First creates a structure map of the image
- Second predicts the complete image
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1. Image Inpainting

Progressive

Real or Fake Real or Fake

Progressive: lteratively fills the missing area from
boundary to center, useful for handling larger D-Net
missing areas

| )50 R

Phase 1 Phase 2 Phase 3 Phase 4
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2. Generative Modeling @ \FITE
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Deep Generative Modeling (DGM)

« The ambitious goal in DGM training is to learn an
unknown probability distribution from a typically
small number of independent and identically
distributed samples.

 When trained successfully,

« We can use the DGM to estimate the likelihood
of a given sample

- Create new samples that are similar to the
samples from the unknown distribution
(generator).

Lars Ruthotto and Eldad Haber - An Introduction to Deep Generative Modeling (2021) - https://arxiv.org/abs/2103.05180
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2. Generative Modeling

Deep Generative Modelling (DGM)

1. Uniquely identifying a probability distribution from a
finite number of samples is impossible.

2. Training the generator requires a way to quantify its
samples’ similarity to those from the intractable
distribution.

3. We assume, that we can approximate the intractable
distribution by transforming a known and much
simpler distribution (Gaussian) in a latent space of
known dimension

Lars Ruthotto and Eldad Haber - An Introduction to Deep Generative Modelling (2021) - https://arxiv.org/abs/2103.05180

1/14/2026 Deep Network Development 22



2. Generative Modelling

Autoencoders

First, take a pre-trained autoencoder:
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2. Generative Modelling

Autoencoders

Split into encoder and decoder

n

’
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2. Generative Modelling

Autoencoders

Then modify the latent space representation and feed
it into the decoder

N
_|_
™
¢

1/14/2026 Deep Network Development 25



2. Generative Modelling

Autoencoders

Similarly, try to blend two faces

x>
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2. Generative Modelling @\ FILTE
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Autoencoders

- The autoencoder didn't see the modified represent ) p
so it struggles with reconstruction w N SRS
- The blended representation might not be valid k - R N
n -
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2. Generative Modelling @\ FILTE
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Autoencoders

45 45

- For smaller dimensions we can use noising, but T
in higher dimensions we will likely generate . s -

invalid instances §° L iieEe 1L e
- The distribution of the latent variable z thatis '~ =™ "z~ - Boi® cgmadiely

producing the reconstructed data sample is s e B Ce . 2 it s G

generally intractable. o I o I
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2. Generative Modelling

Variational Autoencoders

- We approximate the distribution of the latent variable
to be in a parameterized probability distribution
(Normal distribution)

- The normal distribution is tractable — we can sample
from the distribution and compute probabilities
efficiently

- This network takes x as an input and generates the
parameter of the parameters of the distribution — in
case of Normal distribution the mean and covariance

1/14/2026 Deep Network Development 29



2. Generative Modelling @ \ELTE /&

oo
()

EOTVOS LORAND 4
UNIVERSITY &

Variational Autoencoders

Let's constrain the possible representations into a know distribution (Normal distribution)
« |f we would know the distribution, the generation wouldn't be an issue
« The results are blurry because of the minimization of the MSE loss

K K L
N A

M > Z X
X ~N(y, %)

(0)
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2. Generative Modelling

Variational Autoencoders

https://xnought.github.io/vae-explainer/

Latent Space
Resample @
Means 4
[1.65, 0.71]
std. Deviations O Sampled z
[0.14, 0.08] [1.77, 0.63] @

¢2 Explain VAE Details

Decoder

ELTE
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UNIVERSITY
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2. Generative Modelling

Generative Adversarial Networks

- We train the network by minimizing a loss function
that measures the distance between the generated
and the sampled image.

- Compare the distribution in data space
- |t does not try to infer the latent variable

|

}
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2. Generative Modelling

Generative Adversarial Networks

A Generator and a Discriminator are competing

Generator: Generates images.

Discriminator: Tries to predict if the input image
is real or fake (binary classification).

If the generator generates an image that the
discriminator considers a valid image, we punish
the discriminator L.

If the discriminator predicts that the generated
image is fake we punish the generator
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2. Generative Modelling @\ FILTE
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Generative Adversarial Networks

Due to the binary classification the GAN is trained with the cross-entropy loss

Joan (8, @) = Exx [l0g (dg ()] + E,z [log (1 = dy(g6(2)) )|

d - the discriminator with parameters ¢
g — the generator with parameters 6

The discriminator is trying to maximize the loss (it can effectively detect fakes
from real images)

The generator is trying to minimize the loss (it can generate deceiving images)
Thus the generator and the discriminator play a zero-sum game

1/14/2026 Deep Network Development 34



2. Generative Modelling

Generative Adversarial Networks

Finding this saddle point is hard
The loss does not tell exactly whether the generator or the discriminator is good

Let’s assume that we have an optimal generator — the discriminator can only
random guess if the image is generated or sampled from the dataset

If we have a slightly off generator, then the discriminator can greatly increase
the objective

1/14/2026 Deep Network Development 35



2. Generative Modelling o ELTE
St a h I e D iffu Si 0 “ - Diffusion Process /

The main idea is to train a denoising network.

- In the forward diffusion process we gradually add
Gaussian noise to the image in each step

- The model estimates the added noise and subtracts
it from the image (recreating the original image)

- In the reverse diffusion process we start from
gaussian noise and the network gradually removes
the noise (in multiple passes), thus generating an

Im age </\ Reverse Diffusion Process

Denoising UNet
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3. Neural Rendering FELTE
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Neural Rendering

It combines the deep learning model with the physical knowledge of computer graphics, to obtain a controllable and
realistic scene model, and realize the control of scene attributes such as lighting, camera parameters, posture and so on.

1/14/2026 Deep Network Development 38



3. Neural Rendering

Differentiable rendering

- Optimization based on images
« Loss is typically the difference between a rendered image and a photo

« Most rendering algorithms are not differentiable:
« Meshes have hard edges, giving abrupt discontinuities

1/14/2026 Deep Network Development 39



3. Neural Rendering ELTE A
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Structure from Motion

o Structure from Motion (SfM) is a field within computer vision that seeks to reconstruct a three-dimensional structure
of the environment from a sequence of two-dimensional images.

- (Obtaining the geometry of 3D scenes from 2D images is a challenging task because the image formation process (3D
world — 2D image captured) is generally not invertible and additional information is needed to solve the reconstruction
problem.

« Given its image in two or more views, a 3D point can be reconstructed by triangulation.

o Structure from Motion usually have three steps:
1. Feature extraction
2. Feature matching
3. Camera pose estimation




3. Neural Rendering @ \E|LTE

& FoTvos lorinD e N
UNIVERSITY & L&

Structure from Motion — Feature Extraction

- First, we must find feature(point)s that
can be matched between images.

« These features are usually corners

« After finding these points we create
the feature descriptors

« Around each point we take a 40x40
region.

« Blur the region

- Subsample it to create an 8x8 reduced
region

« Flatten to 64x1
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3. Neural Rendering ELTE
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Structure from Motion — Feature Matching

« We sample two images from the set
« Select one point from the first image

- Match the descriptor of the selected
points against the points in the second
image

« Take the ratio of best match (lowest
distance) to the second best match
(second lowest distance) and if this is
helow some ratio keep the matched
pair or reject it

- Repeat for all the points in the first image

* You will be left with only the confident feature
correspondences

« These points will be used to estimate the
transformation between the 2 images
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e aooooaes
D <
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3. Neural Rendering

Structure from Motion

- Based on the matched features the
camera positions can be calculated

- Note: These positions are only the
relative camera positions

EOTVOS LORAND , *J
UNIVERSITY &
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3. Neural Rendering

Neural Radiance Fields (NeRF)

- Used to represent a continuous scene with a
neural network

« Treats the scene as a continuous function

« Uses differentiable rendering (volumetric
rendering) to recreate the scene

« The differentiable rendering allows us to train the
network with backpropagation /

1/14/2026 Deep Network Development 44



3. Neural Rendering

Neural Radiance Fields (NeRF)

NeRF represents a scene using a fully-connected

(non-convolutional) deep network (x,3,2,6,0) > |:||:||:| — (RGBo)

Input: 5D coordinate
- spatial location (x, v, z) F
- viewing direction (8, ¢) @

Output: the volume density and view-dependent
emitted radiance at that spatial location. U[l[l

1T s

2
2

R
2 /
2

Op Ray 2

/”\[ -1,

Ray Distance
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3. Neural Rendering ELTE ja

Gaussian Splatting (GS)

3D Gaussian Splatting is a rasterization technique described in 3D Gaussian Splatting for Real-Time Radiance Field
Rendering that allows real-time rendering of photorealistic scenes learned from small samples of images.

Instead of triangles let’s use gaussian splats to render
a 3D scene.

Each splat can be described as:

- Position: where it's located (XYZ)

- Govariance: how it's stretched/scaled (3x3 matrix)
- Golor: what color it is (RGB)

- Alpha: how transparent it is (o)

https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
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3. Neural Rendering

Gaussian Splatting (GS)

The training procedure uses Stochastic Gradient Descent,
similar to a neural network, but without the layers. The
training steps are:

1. Rasterize the gaussians to an image
2. Calculate the loss based on the difference between the
rasterized image and ground truth image
3. Adjust the gaussian parameters according to the loss
4. Apply automated densification and pruning:
- [f the gradient is large for a given gaussian (i.e. it’s
too wrong), split/clone it
- If the gaussian is small, clone it
o If the gaussian is large, split it
« If the alpha of a gaussian gets too low, remove it

Clone Optimization

Continues

Under
Reconstruction

Optimization |
Continues

Over
Reconstruction

https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
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3. Neural Rendering ELTE
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Gaussian Splatting (GS)
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3. Neural Rendering @ \ELTE
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Gaussian Splatting (GS)

|@| This video contains a voice-aver

3D Gaussian Splatting for Real-Time
Radiance Field Rendering

SIGGRAPH 2023
(ACM Transactions on Graphics)

Bernhard Kerbi* Georgios Kopanas® Thomas Leimkithler George Drettakis
lnria— lrnria— mipn lrnria—
_ IE :34% NAVERSITE 350 oh
COTEDAZUR COTEDAZUR <7 COTEDAZUR 4!
* Dencles equal contaibulion
ﬁ GraphDeco

https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
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Summary ( ELTE A

Summary

 |n Deep Generative Modeling the goal is to learn an unknown probability distribution, then create new samples that are similar to

the samples from the unknown distribution.
 Image Inpainting is about filling in missing or occluded regions in digital images
 Neural Rendering is a technique that uses neural networks to generate, enhance or manipulate visual content in a realistic way.




Summary

@

Resources

Books:

« Gourville, Goodfellow, Bengio: Deep Learning
Freely available: https://www.deeplearningbook.org/

« [hang, Aston and Lipton, Zachary C. and Li, Mu and Smola, Alexander J.: Dive into Deep Learning
Freely available: https://d2.ai/

Courses:
« Deep Learning specialization by Andrew NG
- https://www.coursera.org/specializations/deep-learning

1/14/2026 Deep Network Development o1
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Summary

Further Links + Resources

« Deep Learning-based Image and Video Inpainting: A Survey - https://arxiv.org/abs/2401.03395

An Introduction to Deep Generative Modeling - https://arxiv.org/abs/2103.05180

Advances in Neural Rendering - https://arxiv.org/abs/2111.05849

3D Gaussian Splatting for Real-Time Radiance Field Rendering - https://arxiv.org/abs/2308.04079
Introduction to 3D Gaussian Splatting - https://huggingface.co/blog/gaussian-splatting
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That’s all for today!
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