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Last week - The essence of machine learning

We learn to solve the problem without knowing the specific algorithm for
the solution.

- We define a machine learning model
with parameters.

- We try to find such parameters
that will make our model
solve the task as well as possible.

- We define the task and its correct
solution by showing examples.
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Last week - The essence of machine learning

We learn to solve the problem without knowing the specific algorithm for

the solution.

- We define a machine learning model
with parameters.

- We try to find such parameters
that will make our model
solve the task as well as possible.

- We define the task and its correct
solution by showing examples.
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Image sources: boardgamegeek.com

Last week - |Ideal tasks for machine learning

Relying on ML instead of writing an algorithm might be ideal when...

1. We need to solve many slightly different varieties of the same task.
2. An algorithmic solution is unknown or hard to compute.
3. The task can only be formulated by showing examples




Last week - Machine learning

Three main groups of machine learning methods:

- Supervised learning
- Unsupervised learning
- Reinforcement learning



Last week - Supervised learning

Given: The training sample, a set of (input, label) pairs

{(zW,yM),..., (=™, ym)}
rc XCR" yeY C RF

Task: The estimation of the label (the expected output) from the input

|.e., we search for a (hypothesis-)function h@ , for which:

ho(z) =9~y



Last week - Supervised learning
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Given: The training sample, a set of (input, label) pairs

{(zW,yD), ..., (&™), ym)}
rcXCR", yeY CR*

Task: The estimation of the label (the expected output) from the input

|.e., we search for a (hypothesis-)function h@ , for which:
The predicted label 7y

— ) ~ Goal: Find 0 that makes {J b
he (x) o y ~ y si(r)nailar Itr; asa ons‘:ibelz'y o
The true label y P :



The two main types of tasks in supervised learning

Regression: Continuous labels (The label set is infinite)

|Y| = Q0 Example: Number of cars or the age of a person

Classification: Discrete labels (The label set is finite)
‘Yl < 0 Example: Categorization of examples

- What is the profession of the person
in the image?



The two main types of tasks in supervised learning

Regression: Continuous labels (The label set is infinite)

|Y| = Q0 Example: Number of cars or the age of a person

Classification: Discrete labels (The label set is finite)
‘Yl < 0 Example: Categorization of examples

- What is the profession of the person
in the image?

Today: A simple method to solve each of the cases.



Regression

Regression: Continuous labels (The label set is infinite)

|Y| = Q0 Example: Number of cars or the age of a person



Regression

Example: Estimate the number of cars in a particular city given the

population of that city.

x: The population of a
particular city

y: The number of cars in a

particular city

Cars and residents (Poland 2017)
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Regression

Example: Estimate the number of cars in a particular city given the

population of that city.

x: The population of a
particular city

y: The number of cars in a
particular city

A single input variable and a label:
Our labeled examples can be interpreted
as points located in

a two-dimensional vector space (a plane).

Cars and residents (Poland 2017)
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Regression
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o

100 200 300 400 500 600 700
Number of residents (in thousands)

the input variable (feature) the label
XL Y
(population, (n. of cars,
x1000) x1000)

Warsaw 1760 910
i=1)

Krakow 770 465
- (=2)

 Lublin— 340 198
(=3)




Linear regression

Hypothesis function for linear regression (not yet complete!)

A very simple (linear
y p ( ) Cars and residents (Poland 2017)
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We are looking for a parameter 0
. _ such that h(x) closely
lLinear reg ression approximates the true y labels.

For example, the hypothesis function

Hypothesis function for linear regressic N(X) = 0.69°x fits this particular
sample well, so a good parameter is

A very simple (linear) 6 = 0.65.

] ] Cars and residents (Poland 2017)
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Linear regression

How do we determine how good the estimate is?
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Supervised learning - Loss function

How do we determine how good the estimate is?

ho(z) =G~y

With the help of the loss function J: J 10— Ry

The loss function indicates how much the actual label differs from our
estimate for given parameter values.



Supervised learning - Loss fiinction

The loss must be a single number

How do we determine how good tt (scalar). If the y label consists of multiple
variables, then instead of the absolute

value, we will need, for example, a norm...

ho(z) =G~y d

With the help of the loss function J: J 10— Ry

The loss function indicates how much the actual label differs from our

estimate for given parameter values.

The greater the error in our estimate
with a given parameter 0, the greater the loss is in 0.
In case of most loss functions: a loss value of 0 indicates a perfect estimate.



Linear regression - The least squares method

When using the least squares method, our loss function is:

g(j)

10) = 5= (ho(a?) -y’

/

We define the loss as the squared differences of true labels and
estimates.




Linear regression - The least squares method

When using the least squares method, our loss function is:

We define the loss as the squared differences of true labels and
estimates. We take the mean of these errors over the training dataset.



Linear regression - The least squares method

When using the least squares method, our loss function is:

We define the loss as the squared differences of true labels and
estimates. We take the mean of these errors over the training dataset.
— Mean Squared Error (MSE) loss



Linear regression - The least squares method

Cars and residents (Poland 2017)
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Linear regression - The least squares method
Our goal: 6* = argmin J(0)
6

— \We search for the optimal parameter (0*) that minimizes the loss,
l.e., the mean squared error of our label prediction from the true label.

1 m . .
9* — _E:h (1)) — 41))2 =
arggnm - j:1( (9(51c ) Yy )

1 X : :
. in — 9 _ 4,9))2
arg;nln Sy ;( T yv)



Linear regression - The least squares method

X, y are known constants.

Our goal: 6" = argmin J(0) They simply come from the dataset.
0 We are looking for a good 6.
1 ™ | |
0" = argmin — Ozl — 492
gmin 5 j;( )

How do we find the optimal parameter 6*?



Linear regression - The least squares method

How do we find the optimal parameter 6*?

Naive approach (1):
Grid search - Evaluate J(0) in several 6 values J(6)
(parameters)!




Linear regression - The least squares method

How do we find the optimal parameter 6*?

Naive approach (1):
Grid search - Evaluate J(0) in several 6 values J(6)
(parameters)!

-5 0

[ ]
For example, here, from the paramete/ s
values 8 ={-1, 0, 1, 2, 3}, ?

the loss is the smallest in 6 = -1




Linear regression - The least squares method

How do we find the optimal parameter 6*?

Naive approach (1):
Grid search - Evaluate J(0) in several 6 values J(6)
(parameters)!

Later, we will have
more than one parameters... ¢




Linear regression - The least squares method

How do we find the optimal parameter(s) 6*?

Naive approach (1):
Grid search - Evaluate J(0) in several 8 points
(parameter combinations)!




Linear regression - The least squares method

How do we find the optimal parameter(s) 6*?

Naive approach (1):
Grid search - Evaluate J(0) in several 8 points
(parameter combinations)!

Grid search: For each parameter, we choose a finite
number of possible values. We try each combination
of the possible values across all parameters.

Practically, we evaluate the loss function in
each point of a grid defined in the parameter space.



Linear regression - The least squares method

How do we find the optimal parameter(s) 6*?

Naive approach (1):
Grid search - Evaluate J(0) in several 8 points
(parameter combinations)!

Any problem?




Linear regression - The least squares method

How do we find the optimal parameter(s) 6*?

Naive approach (1):
Grid search - Evaluate J(0) in several 8 points
(parameter combinations)!

Problem: When our model will have more than one
parameters, the parameter space will also become
multidimensional:

the number of parameter combinations to
evaluate grows exponentially with the number of
dimensions!



Linear regression - The least squares method

How do we find the optimal parameter(s) 6*?

Naive approach (2): Let's examine the neighbors of point 8! Let's move

in the direction where the loss decreases! J(6)

5

8 = 4? J(4) > J(3) — wrong direction () .

-5 0 5

Starting point: 6 =3 Q)
0 =27 J(2) < J(3) — good direction .é) |
-




Linear regression - The least squares method

How do we find the optimal parameter(s) 6*?

Naive approach (2): Let's examine the neighbors of point 8! Let's move

in the direction where the loss decreases! J(6)

This is a more efficient method than grid search. | 5 |
©
6

-5 0 5

However, as the number of parameters increases, the
number of directions to be tested
also increases exponentially...

®
'S.C-) |
R




Linear regression - The least squares method

How do we find the optimal parameter(s) 6*?

Naive approach (2): Let's examine the neighbors of point 8! Let's move

in the direction where the loss decreases! J(6)

This is a more efficient method than grid search. | 5 |
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Linear regression - The least squares method

How do we find the optimal parameter(s) 6*?

Naive approach (2): Let's examine the neighbors of point 8! Let's move

in the direction where the loss decreases! J(6)

There is something we haven't considered yet... i 5 |
©
0

-5 0 5

We know the formula for the loss function!

®
_S.C-) |
R




Linear regression - The least squares method

Loss function J is quadratic.

Since we only have a single 8 parameter, now J is a parabola.
A

)(8)




Linear regression - The least squares method

Our goal: 6" = argmin J(0)

)(8)

6

4 — Optimal parameter value: 0*

Initial (actual) parameter
value: 0’

How do we get from 0' to 6*?

0~



Linear regression - The least squares method

How do we get from 0' to 6*?

Let's see which direction the loss
1 function slopes most steeply
10 downwards at the
current parameter value 9'!

What determines the slope of J at a
given point 0'?

0~



Linear regression - The least squares method

How do we get from 0' to 6*?

)(8)

e*

Let's see which direction the loss
function slopes most steeply
downwards at the

current parameter value 9'!

What determines the slope of J at a
given point 0'?

The derivative of J at point 0'.



Linear regression - The least squares method

How do we define the derivative of a function?



Linear regression - The least squares method

How do we define the derivative of a function?

PR (R (C)

a—0 a

f(z+a)

f(z)

z z+a



Linear regression - The least squares method

How do we define the derivative of a function?

#0) T D —TC)

a—0 a

f(z+a)
The difference quotient:
The slope of the chord connecting

the two points on the function curve: f(z)
(z, f(z)) and (z+a, f(z+a))

z z+a



Linear regression - The least squares method

How do we define the derivative of a function?

o) i 29— TC)

a—0 a

!

The derivative of a function at point z f(z+a)
is the limit of the slope of the chord
when a approaches zero...
... if this limit exists and is finite.
f(z)

Z: _ z-:l-a



Linear regression - The least squares method

How do we define the derivative of a function?

o) i 29— TC)

a—0 a

The derivative of a function at point z f(z+a)
is the limit of the slope of the chord
when a approaches zero...
... if this limit exists and is finite.

f(z)
This limit is equal to the slope of the | |
tangent to the curve at point z. Z — z+a




Linear regression - The least squares method

How do we know what direction to take in order to reduce the loss?

)(8)

e*

Let's move from 0' in the direction
where the loss function curve slopes
downwards.

To do this, we need to calculate the
derivative of the loss function J.



Linear regression - The least squares method

We need to calculate the derivative of the loss function J.

Do we have to use the difference quotient formula?

f(z)




Linear regression - The least squares method

We need to calculate the derivative of the loss function J.

Do we have to use the difference quotient formula?

F2)  tim TG =1
a—0 a
f(z)
Not necessarily!
We have higher level tools.




Linear regression - The least squares method

The rules of symbolic differentiation

If f(z) = 2" then dJ;E:) = nx" !

If f(x) = k then dj;(;) =0

_ df(z) _ dg(z) | dh(z)
If f(z) = g(z) + h(z) then ——= = —= + —

dh(z)

If f(2) = g(x)h(z) then LD = B p () 4 o)

dx

A list of all rules:
https://homepage.cs.uiowa.edu/~stroyan/CTLC3rdEd/3rdCTLCText/Chapters/ch6.pdf



https://homepage.cs.uiowa.edu/~stroyan/CTLC3rdEd/3rdCTLCText/Chapters/ch6.pdf

Linear regression - The least squares method

The derivative of the loss function:

1 & . .
- 90 — 4,92
16) = g 26 =)



Linear regression - The least squares method

The derivative of the loss function:

1 . . Remember: x and y are known
J(O) = — Z(é’w(J) — yl))? values from the training set,
2m <5 only 0 is unknown.
0
—J(0) =7



Linear regression - The least squares method

The derivative of the loss function:



Linear regression - The least squares method

The derivative of the loss function: Derivative of the composition of
two differentiable functions

dL . : (chain rule of calculus):

1
_ (1) _ 4,092
0= g 2,0 ) /f<g<z»’=f’<g<z» e

8 . .
— ) (1) _ DY —
J0 2m E 2. (02 — ). (92l — D) =

Leibniz notation for partial differentiation:

Z 9:1: —y ]))w J is differentiated with respect to 0. Here we
only have one variable (8), so there is no
question as to what we are differentiating

with respect to...




Linear regression - The least squares method

Gradient descent
We repeatedly step with 0 in the direction where

the slope of the loss function is greatest at the current @ parameter value.

repeat until convergence {
0
grad := - J(0)
0:=0—a- grad

}



Linear regression - The least squares method

Gradient descent

We repeatedly step with 0 in the direction where
the slope of the loss function is greatest at the current @ parameter value.

repeat until convergence {

0
grad := —J(0) <— 5 1 I o
00 — J(0) = ~ ;:1:(933(9) — yU))zl)

0:=0—a- grad

}



Linear regression - The least squares method

Gradient descent

We repeatedly step with 0 in the direction where
the slope of the loss function is greatest at the current @ parameter value.

Gradient of J: Vector pointing in the
repeat until convergence {  direction of the maximum increase of J;

9 / its elements are the partial derivatives of J
grad := %J(e) at a given point

(here still only single-valued)

0:=0—a- grad

} & alpha: the learning rate;
__—" the size of the steps can be scaled with it




Linear regression - The least squares method

Gradient descent

We repeatedly step with 0 in the direction where
the slope of the loss function is greatest at the current @ parameter value.

repeat until convergence {

grad = % J(H) We subtract the gradient from the
current parameter value, as we are
0:=0—«a- grad looking for the steepest descent.

}



Linear regression - The least squares method

Applying gradient descent, T = 0 (before taking the first step)

Cars and residents (Poland 2017)
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We can choose the initial parameter value (8) randomly.



Linear regression - The least squares method
Applying gradient descent, T = 1

Cars and residents (Poland 2017)
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Linear regression - The least squares method

Applying gradient descent, T = < many >

Number of cars (in thousands) <
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Cars and residents (Poland 2017)

0*=0.6768

100 200 300 400 500 600 700
Number of residents (in thousands) X

800

J)(8)

J(6*) = 669.51

e*




Linear regression - The least squares method

Changes in the loss value during the steps of the gradient descent

Cost function

J | ™~ J=209135.18

Cost

J = 669.51

_ 4

0 100 200 300 400
Iterations




Linear regression

What have we achieved?

We trained a simple (linear) regression model.

Cars and residents (Poland 2017)

We will be able to estimate labels o0
for new, unlabeled examples.

500 A
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Linear regression

What have we achieved?
We trained a simple (linear) regression model.

We will be able to estimate labels

Cars and residents (Poland 2017)

=
=)

-~
o
o

for new, unlabeled examples.

3
=}

=
o

For example, for a city with a

8

&
=}

Number of carf (in thousands) <
S
o

population of 550 000, we estimatif _
0.6768 * 550 000 = 372 240 cars. 100

T T T T T . T
100 200 300 400 500 600
Number of residents (in thousands)

700
X

800



Linear regression

What’s missing?

- Cost of residential real estate (Budapest VIil., 2024)

100 A
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Floor area (in sq. meters)



Linear regression

What’s missing?

- Cost of residential real estate (Budapest VIII., 2024)

100 +

80 A

60 -

Price (in M HUF)

40 A

20 A

04

(I) 2I0 4‘0 6‘0 8|0 160 12IO 140
Floor area (in sq. meters)
New dataset: Apartment prices as a function of floor space.
Problem: Smaller apartments are in higher demand, so their price per square meter
rate is higher.

— Does not fit well with the straight line passing through the origin...



Linear regression
What’s missing?

Our model so far has been too limited. The hypothesis function was a
straight line that had to pass through the origin...

In addition to the slope, we also introduce a "constant” (bias / intercept)
parameter.

Former hypothesis: h(aj) — Oxr = :& ~ Y

New hypothesis: h(x) — le - 90 — @ ~ Y



Linear regression

The new hypothesis function: Yy~ ¢ = h(:l:) =0,z + 0

Cost of residential real estate (Budapest VIIl., 2024
01 ’ 00 E R 120 ( P )

100 A
80 A
60 -

40

Price (in M HUF)

297 0,=? 6,=?

0 20 40 60 80 100 120 140
Floor area (in sq. meters)



Linear regression
The new hypothesis function: Yy~ ¢ = h(a;) =0,z + 0

Cost of residential real estate (Budapest VIIl., 2024
0]_ ’ 00 E R 120 ( P )

100 A

80 A

01 the slope of the line

= o
6o is the value where the line g ]
intersects the y-axis :
(the bias / intercept). 207 0,22 6,=7?

0 20 40 60 80 100 120 140
Floor area (in sq. meters)



Linear regression - The least squares method

The loss function is still the Mean Squared Error (MSE):

g(j)
1 & |
J(O) = 5= (he(z") —y")?
=1

However, the hypothesis function has changed.
What will the loss function graph look like?



Linear regression - The least squares method

Loss function J is still quadratic.

Since we have two parameters now, it is an elliptic paraboloid.
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Linear regression - The least squares method

How do we know what direction to take in order to reduce the loss?

™ 104




Linear regression - The least squares method

How do we know what direction to take in order to reduce the loss?

J(GO’QI)

Let's use the gradient method:
Let's move from ©' in the direction where
the loss function curve slopes downwards!

This direction will be given by the gradient
vector at 0'.

The elements of the vector are the

partial derivatives of the loss function J
with respect to each parameter.



Linear regression - The least squares method

The partial derivatives of the loss function

1 & . .
J(6,0:) = — Z(glx(a) + 6y — yW))?

2m =

0
—J(6y,01) = ?
890 ( 0y 1)

0
—J(6y,01) = ?
891 ( 05 1)



Linear regression - The least squares method

The partial derivatives of the loss function

1 & : :
J(6o,6:) = o Z(le(]) + 6y — y\)?
=1

0
—J(60,6:1) =

o (0129 4 6y — y\9)

3|~
gt
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0
_J(00701) —
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Linear regression - The least squares method

In partial differentiation, we

The partial derivatives of the loss functio differentiate the function with

1 ™ . ' respect to one variable. In this
J(60p,0;) = — 2(01 29 4 gy — y))? case, we treat the other
2m j=1 variables as constants.
0 J(6o,60:) 1 zm:(g )Ry (J')) The slope of the tangent
an ) - £ T . . .
86, " m ‘= ' oY in the 8o direction.
0 J(6y,6:) 1 Zm:(g @) 40 (J')) (7) The slope of the tangent
an ) - Z T " L i i i
00, 071 m “4 ! 09 in the 81 direction.

J=1



Linear regression - The least squares method

The partial derivatives of the loss function

The
in the

The gradient vector: the direction of the steepest increase



Linear regression - The least squares method

The point of the actual

The partial derivatives of the loss functior parameters (6, 0; )

The
in the

207 (0, 01)\




Linear regression - The least squares method

The gradient descent algorithm with two parameters:

repeat until convergence {

grado = 8100'](90’91)
grad; := %J(@o,ﬁl)

Oy := 6y — - grad
0, ;=601 —a- grady



Linear regression - The least squares method

The gradient descent algorithm with two parameters:

repeat until convergence {
grado = 8_00J(90’91) -— iJ(Gg,Ol) _
0
gradl = 8_01J(90’ 91)

1
Oy := 6y — - grad 86, ~m
0, ;=601 —a- grady

& alpha: the learning rate;
} __—" the size of the steps can be scaled with it




Linear regression - The least squares method

Applying gradient descent, T = 0 (before taking the first step)

- Cost of residential real estate (Budapest VIIl., 2024)

@
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Floor area (in sq. meters)

We can choose the initial parameters (8o, 1) randomly.



Linear regression - The least squares method

Applying gradient descent, T = 1

Cost of residential real estate (Budapest VIIl., 2024)
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Linear regression - The least squares method

Applying gradient descent, T = < many >

- Cost of residential real estate (Budapest VIIl., 2024)

100 A

80 A

60 -

J(60,6,)
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Linear regression - The least squares method

Applying gradient descent, T = < many >

- Cost of residential real estate (Budapest VIIl., 2024)

%\ 80 1 g
i 80* = 23.159 if,
) * = 0.6681
20 4 A
y = 0.6681-x + 23.159
e €, 0)—
Floor area (in sq. meters) 01

s



Linear regression - The least squares method

Is it guaranteed that we will find the optimal solution
(minimum MSE loss) for linear regression using gradient descent?




Linear regression - The least squares method

Is it guaranteed that we will find the optimal solution
(minimum MSE loss) for linear regression using gradient descent?

Yes, if the step size (alpha)
is sufficiently small.
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Linear regression - The least squares method

Is it guaranteed that we will find the optimal solution
(minimum MSE loss) for any function using gradient descent?
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Image sources: spektr @ scicomp.stackexchange.com

Linear regression - The least squares method

Is it guaranteed that we will find the optimal solution
(minimum MSE loss) for any function using gradient descent?

No. We can reach
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one of the local minimum points, By
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but if the loss function is not convex, ‘:‘:1‘.\"‘5';’?,},&';;
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then it is not guaranteed
that this will be the global minimum.
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Linear regression - The least squares method

Is it guaranteed that we will find the optimal solution
(minimum MSE loss) for any function using gradient descent?

No. We can reach N .';"»" N
N ,,,.;;,',".':‘:"' Jncj‘ﬁ,r,:}, o Al

one of the local minimum points, L

but if the loss function is not convex, A

Mountain hiking in fog: We want to reach the deepest point
of the terrain, but we can only feel which direction the terrain
slopes downwards most under our feet...



