

Deep Network Developments

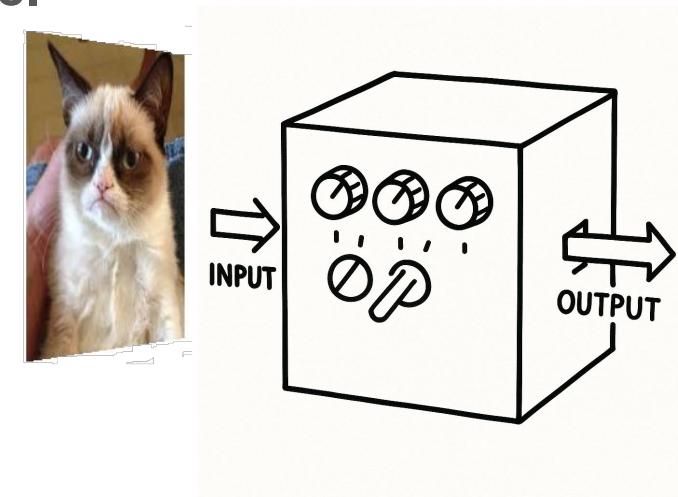
Lecture #2

Viktor Varga
Department of Artificial Intelligence, ELTE IK

Last week - The essence of machine learning

We **learn to solve the problem** without knowing the specific algorithm for the solution.

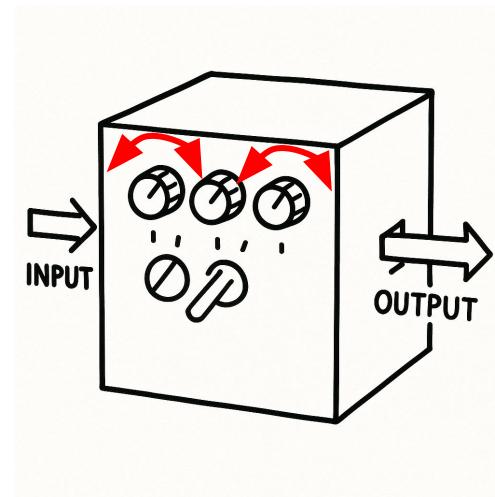
- We define a machine learning **model with parameters**.
- We try to **find such parameters** that will make our model **solve the task as well** as possible.
- We **define the task** and its correct solution **by showing examples**.



Last week - The essence of machine learning

We **learn to solve the problem** without knowing the specific algorithm for the solution.

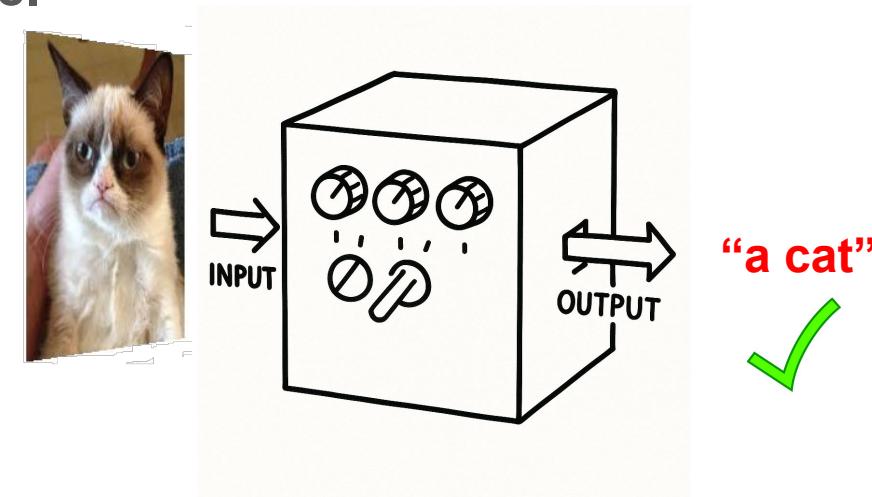
- We define a machine learning **model with parameters**.
- We try to **find such parameters** that will make our model **solve the task as well** as possible.
- We **define the task** and its correct solution **by showing examples**.



Last week - The essence of machine learning

We **learn to solve the problem** without knowing the specific algorithm for the solution.

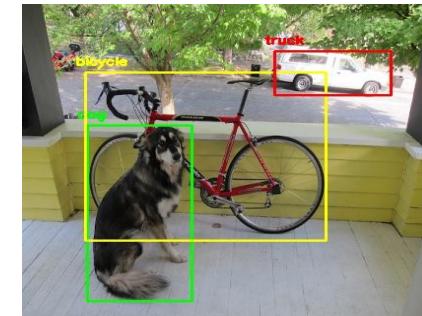
- We define a machine learning **model with parameters**.
- We try to **find such parameters** that will make our model **solve the task as well** as possible.
- We **define the task** and its correct solution **by showing examples**.



Last week - Ideal tasks for machine learning

Relying on ML instead of writing an algorithm might be ideal when...

1. We need to solve **many** slightly different **varieties** of the same task.
2. An **algorithmic solution is unknown** or hard to compute.
3. The task can **only be formulated by showing examples**



Last week - Machine learning

Three main groups of machine learning methods:

- **Supervised learning**
- Unsupervised learning
- Reinforcement learning

Last week - Supervised learning

Given: The training sample, a set of (input, label) pairs

$$\{(x^{(1)}, y^{(1)}), \dots, (x^{(m)}, y^{(m)})\}$$

$$x \in X \subset \mathbb{R}^n, y \in Y \subset \mathbb{R}^k$$

Task: The estimation of the label (the expected output) from the input

i.e., we search for a (hypothesis-)function h_θ , for which:

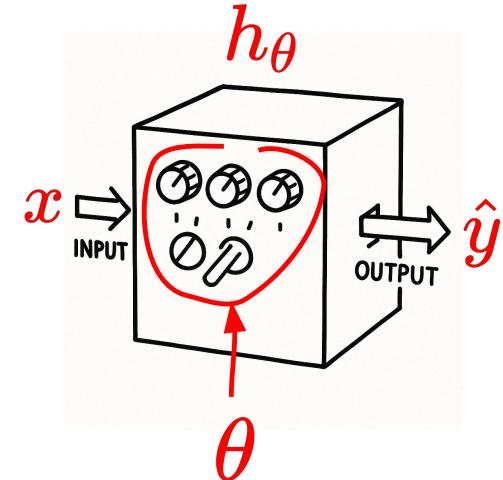
$$h_\theta(x) = \hat{y} \approx y$$

Last week - Supervised learning

Given: The training sample, a set of (input, label) pairs

$$\{(x^{(1)}, y^{(1)}), \dots, (x^{(m)}, y^{(m)})\}$$

$$x \in X \subset \mathbb{R}^n, y \in Y \subset \mathbb{R}^k$$



Task: The estimation of the label (the expected output) from the input

i.e., we search for a (hypothesis-)function h_θ , for which:

The predicted label \hat{y}

$$h_\theta(x) = \hat{y} \approx y$$

The true label

Goal: Find θ that makes \hat{y} be as similar to y as possible!

The two main types of tasks in supervised learning

Regression: Continuous labels (The label set is infinite)

$|Y| = \infty$ **Example:** Number of cars or the age of a person

Classification: Discrete labels (The label set is finite)

$|Y| < \infty$ **Example:** Categorization of examples

- What is the profession of the person in the image?

The two main types of tasks in supervised learning

Regression: Continuous labels (The label set is infinite)

$|Y| = \infty$ **Example:** Number of cars or the age of a person

Classification: Discrete labels (The label set is finite)

$|Y| < \infty$ **Example:** Categorization of examples

- What is the profession of the person in the image?

Today: A simple method to solve each of the cases.

Regression

Regression: Continuous labels (The label set is infinite)

$$|Y| = \infty$$

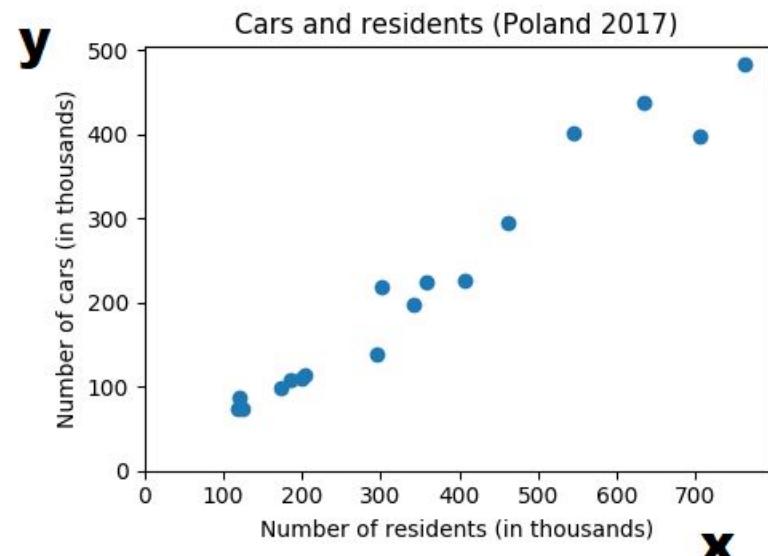
Example: Number of cars or the age of a person

Regression

Example: Estimate the number of cars in a particular city given the population of that city.

x: The **population** of a particular city

y: The **number of cars** in a particular city



$$x^{(j)}, y^{(j)} \in \mathbb{R}$$

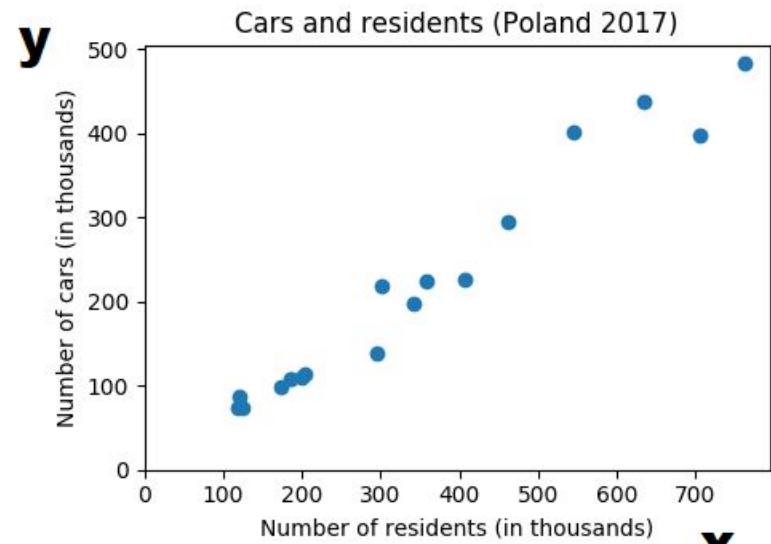
Regression

Example: Estimate the number of cars in a particular city given the population of that city.

x: The **population** of a particular city

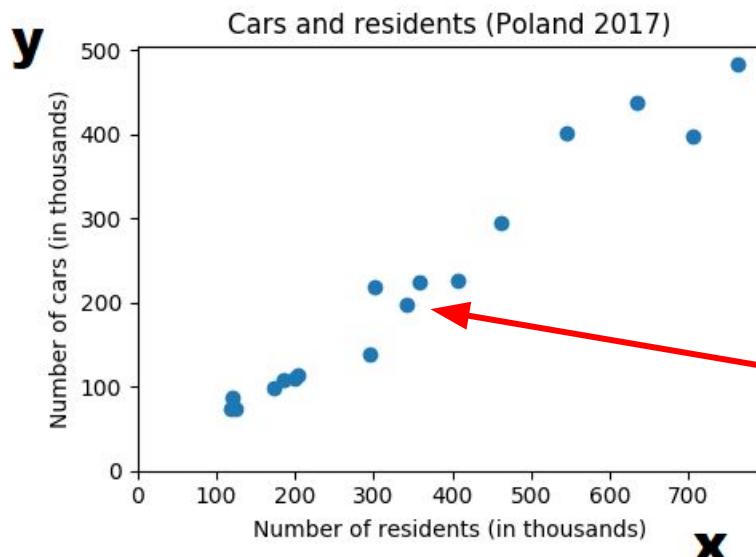
y: The **number of cars** in a particular city

A single input variable and a label:
Our labeled examples can be interpreted as points located in a two-dimensional vector space (a plane).



$x^{(j)}, y^{(j)} \in \mathbb{R}$

Regression



the input variable (feature) the label

	x (population, $\times 1000$)	y (n. of cars, $\times 1000$)
Warsaw ($j = 1$)	1760	910
Krakow ($j = 2$)	770	465
Lublin ($j = 3$)	340	198
...

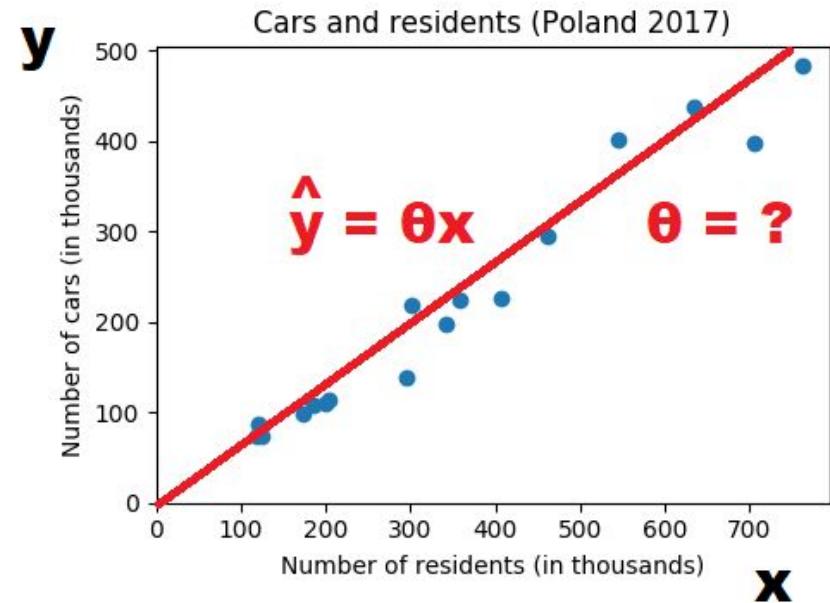
Linear regression

Hypothesis function for linear regression (not yet complete!)

A very simple (linear) hypothesis function:

$$y \approx \hat{y} = h_{\theta}(x) = \theta x$$

θ is the parameter of the hypothesis-function: in this case, this is going to be the **slope of the line**.



Linear regression

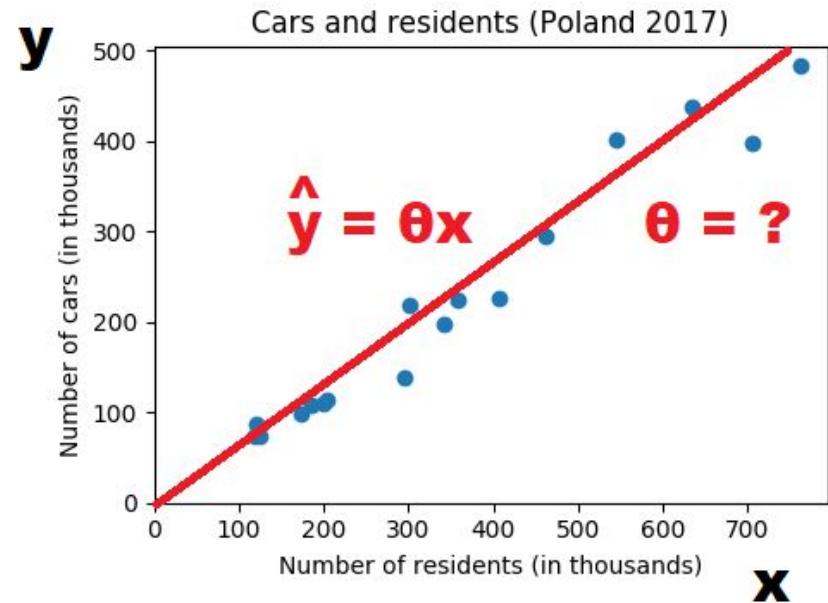
Hypothesis function for linear regression

A very simple (linear) hypothesis function:

$$y \approx \hat{y} = h_{\theta}(x) = \theta x$$

θ is the parameter of the hypothesis-function: in this case, this is going to be the **slope of the line**.

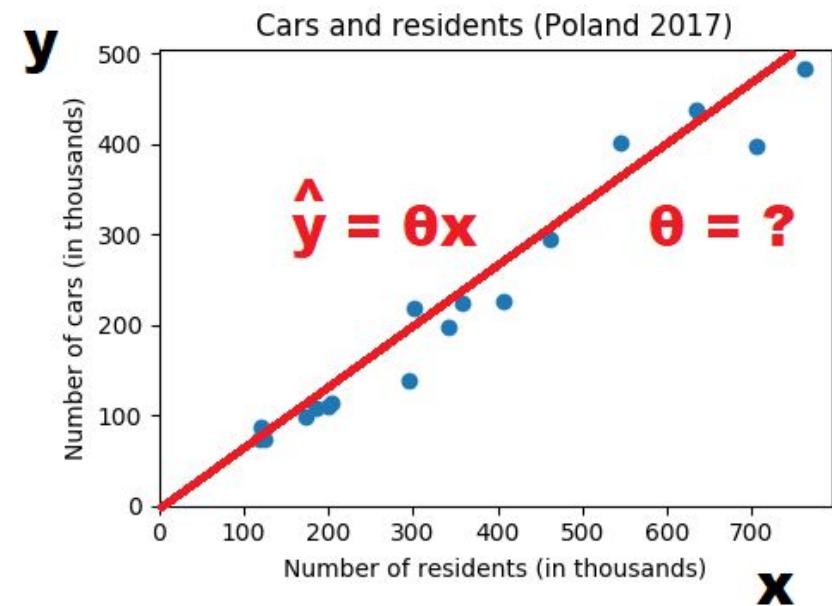
We are looking for a parameter θ such that $h(x)$ closely approximates the true y labels. For example, the hypothesis function $h(x) = 0.65*x$ fits this particular sample well, so a good parameter is $\theta = 0.65$.



Linear regression

How do we determine how good the estimate is?

$$h_{\theta}(x) = \hat{y} \approx y$$



Supervised learning - Loss function

How do we determine how good the estimate is?

$$h_{\theta}(x) = \hat{y} \stackrel{?}{\approx} y$$

With the help of the loss function J :

$$J : \theta \rightarrow \mathbb{R}_{\geq 0}$$

The loss function indicates **how much the actual label differs from our estimate** for given parameter values.

Supervised learning - Loss function

How do we determine how good the estimate is?

$$h_{\theta}(x) = \hat{y} \approx y$$

The loss must be a single number (scalar). If the y label consists of multiple variables, then instead of the absolute value, we will need, for example, a norm...

With the help of the loss function J :

$$J : \theta \rightarrow \mathbb{R}_{\geq 0}$$

The loss function indicates **how much the actual label differs from our estimate** for given parameter values.

The greater the error in our estimate with a given parameter θ , the greater the loss is in θ .
In case of most loss functions: a loss value of 0 indicates a perfect estimate.

Linear regression - The least squares method

When using **the least squares method**, our loss function is:

$$J(\theta) = \frac{1}{2m} \sum_{j=1}^m (\hat{y}^{(j)} - y^{(j)})^2$$

We define the loss as the **squared differences** of true labels and estimates.

Linear regression - The least squares method

When using **the least squares method**, our loss function is:

$$J(\theta) = \frac{1}{2m} \sum_{j=1}^m (h_{\theta}(x^{(j)}) - y^{(j)})^2$$

We define the loss as the **squared differences** of true labels and estimates. We take the **mean of these errors** over the training dataset.

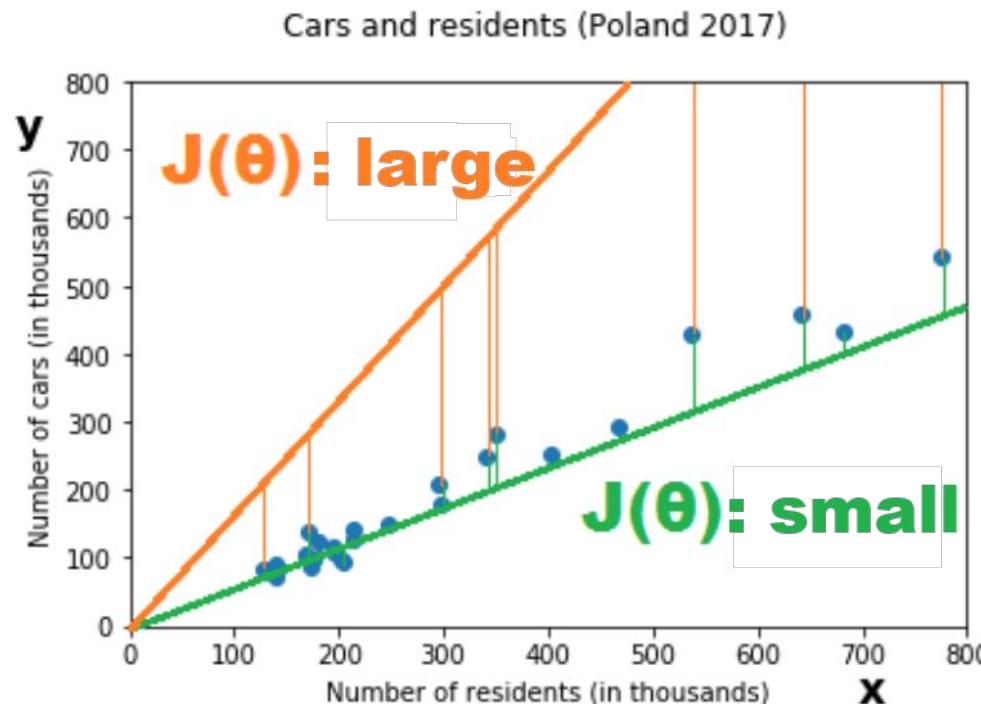
Linear regression - The least squares method

When using **the least squares method**, our loss function is:

$$J(\theta) = \frac{1}{2m} \sum_{j=1}^m (h_{\theta}(x^{(j)}) - y^{(j)})^2$$

We define the loss as the **squared differences** of true labels and estimates. We take the **mean of these errors** over the training dataset.
→ **Mean Squared Error (MSE) loss**

Linear regression - The least squares method



Linear regression - The least squares method

Our goal: $\theta^* = \operatorname{argmin}_{\theta} J(\theta)$

→ We search for the **optimal parameter (θ^*)** that minimizes the loss, i.e., the mean squared error of our label prediction from the true label.

$$\theta^* = \operatorname{argmin}_{\theta} \frac{1}{2m} \sum_{j=1}^m (h_{\theta}(x^{(j)}) - y^{(j)})^2 =$$

$$= \operatorname{argmin}_{\theta} \frac{1}{2m} \sum_{j=1}^m (\theta x^{(j)} - y^{(j)})^2$$

Linear regression - The least squares method

Our goal: $\theta^* = \operatorname{argmin}_{\theta} J(\theta)$

x, y are known constants.
They simply come from the dataset.
We are looking for a good θ .

$$\theta^* = \operatorname{argmin}_{\theta} \frac{1}{2m} \sum_{j=1}^m (\theta x^{(j)} - y^{(j)})^2$$

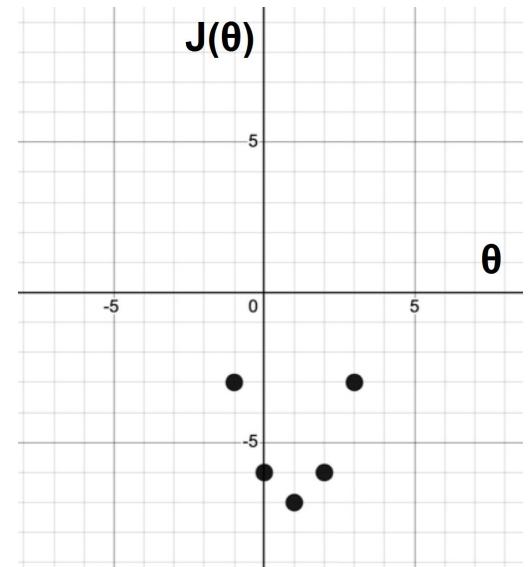
How do we find the optimal parameter θ^* ?

Linear regression - The least squares method

How do we find the optimal parameter θ^* ?

Naive approach (1):

Grid search - Evaluate $J(\theta)$ in several θ values
(parameters)!



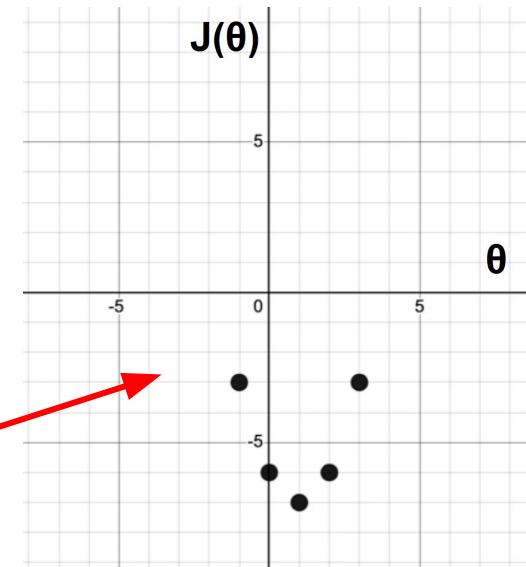
Linear regression - The least squares method

How do we find the optimal parameter θ^* ?

Naive approach (1):

Grid search - Evaluate $J(\theta)$ in several θ values (parameters)!

For example, here, from the parameter values $\theta = \{-1, 0, 1, 2, 3\}$,
the loss is the smallest in $\theta = -1$

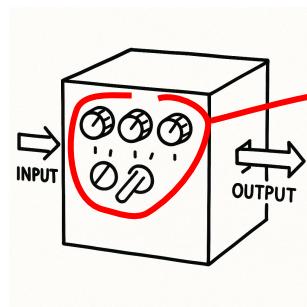


Linear regression - The least squares method

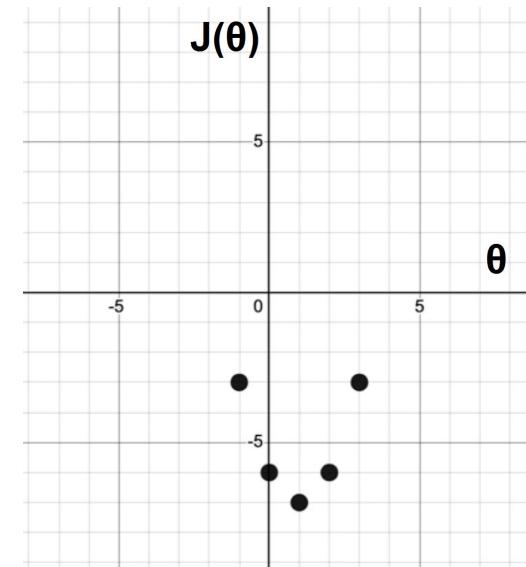
How do we find the optimal parameter θ^* ?

Naive approach (1):

Grid search - Evaluate $J(\theta)$ in several θ values
(parameters)!



Later, we will have
more than one parameters...

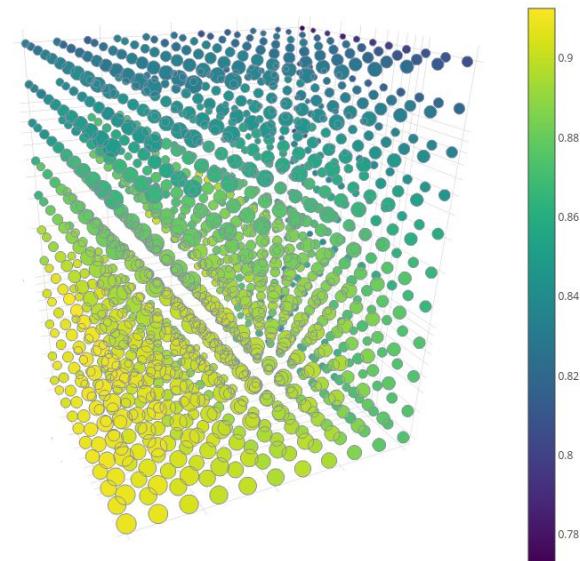


Linear regression - The least squares method

How do we find the optimal parameter(s) θ^* ?

Naive approach (1):

Grid search - Evaluate $J(\theta)$ in several θ **points**
(parameter **combinations**)!



Linear regression - The least squares method

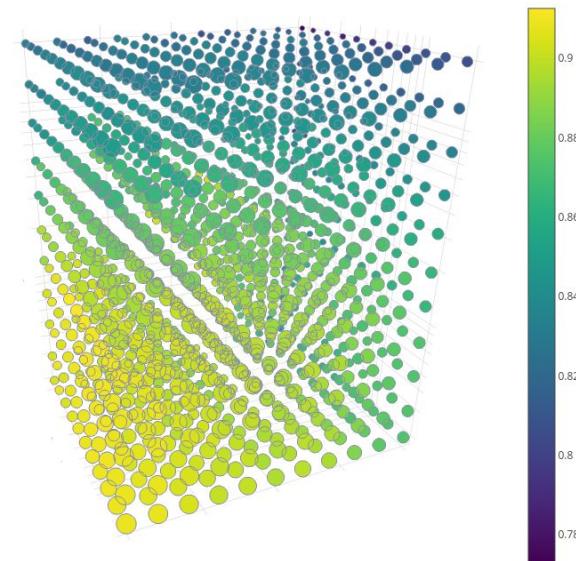
How do we find the optimal parameter(s) θ^* ?

Naive approach (1):

Grid search - Evaluate $J(\theta)$ in several θ **points** (parameter **combinations**)!

Grid search: For each parameter, we choose a finite number of possible values. We try each combination of the possible values across all parameters.

Practically, we evaluate the loss function in **each point of a grid** defined in the parameter space.



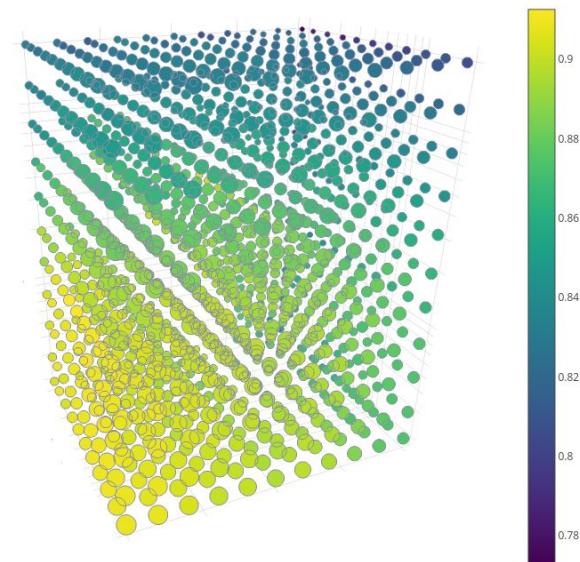
Linear regression - The least squares method

How do we find the optimal parameter(s) θ^* ?

Naive approach (1):

Grid search - Evaluate $J(\theta)$ in several θ **points**
(parameter **combinations**)!

Any problem?



Linear regression - The least squares method

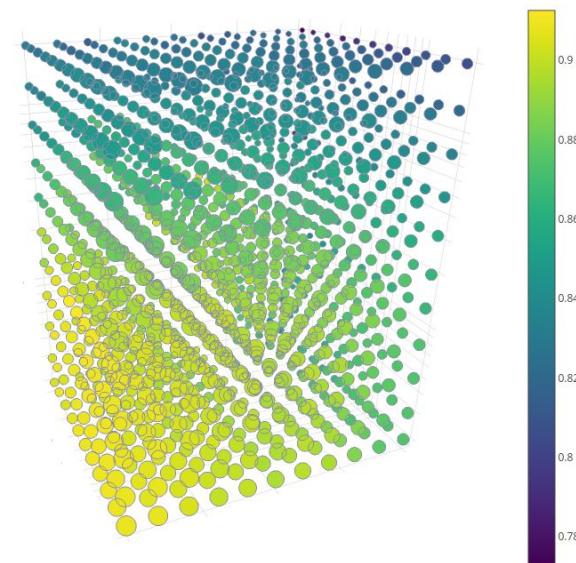
How do we find the optimal parameter(s) θ^* ?

Naive approach (1):

Grid search - Evaluate $J(\theta)$ in several θ **points** (parameter **combinations**)!

Problem: When our model will have more than one parameters, the parameter space will also become multidimensional:

the **number of parameter combinations** to evaluate **grows exponentially** with the number of dimensions!

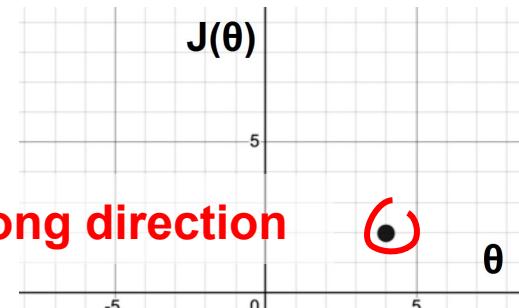


Linear regression - The least squares method

How do we find the optimal parameter(s) θ^* ?

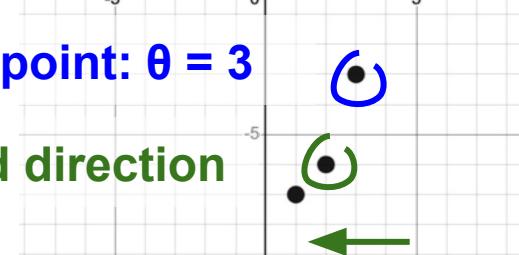
Naive approach (2): Let's examine the neighbors of point θ ! Let's move in the direction where the loss decreases!

$\theta = 4?$ $J(4) > J(3) \rightarrow$ wrong direction



Starting point: $\theta = 3$

$\theta = 2?$ $J(2) < J(3) \rightarrow$ good direction



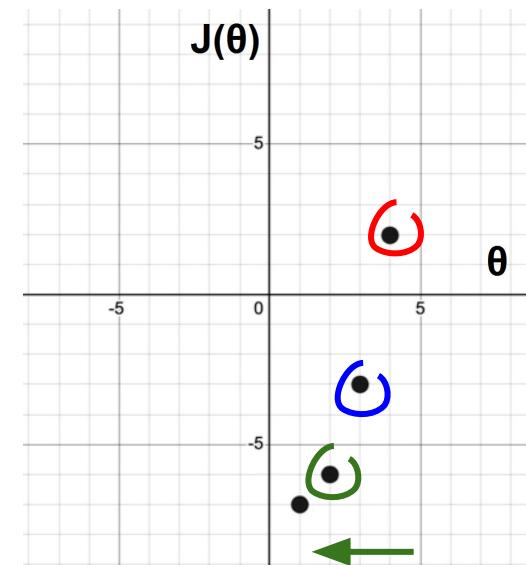
Linear regression - The least squares method

How do we find the optimal parameter(s) θ^* ?

Naive approach (2): Let's examine the **neighbors** of point θ ! Let's move in the **direction where the loss decreases!**

This is a more efficient method than grid search.

However, as the number of parameters increases, the **number of directions** to be tested also **increases exponentially...**



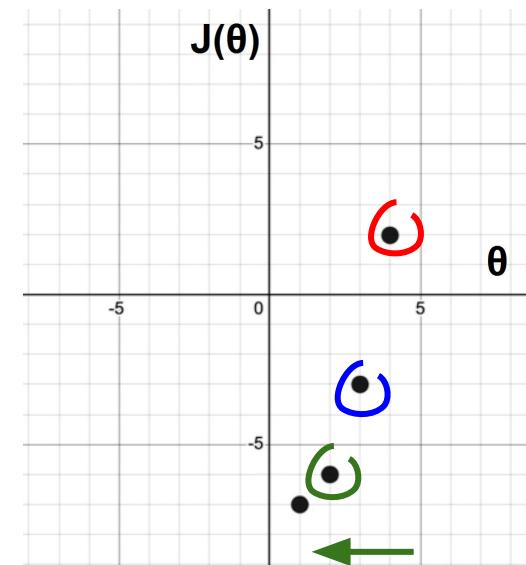
Linear regression - The least squares method

How do we find the optimal parameter(s) θ^* ?

Naive approach (2): Let's examine the **neighbors** of point θ ! Let's move in the **direction where the loss decreases!**

This is a more efficient method than grid search.

However, as the number of parameters increases, the **number of directions** to be tested also **increases exponentially...**



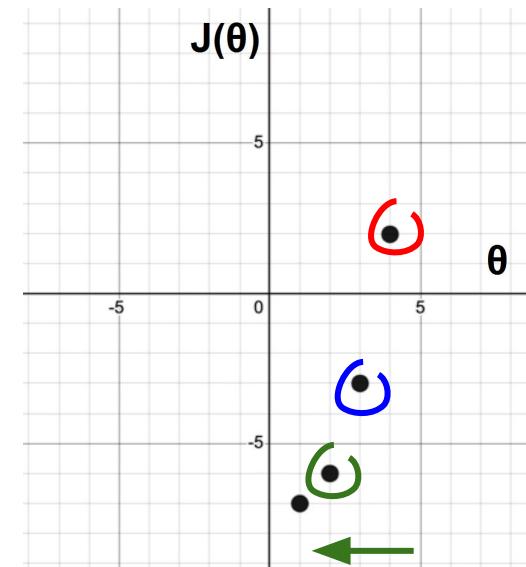
Linear regression - The least squares method

How do we find the optimal parameter(s) θ^* ?

Naive approach (2): Let's examine the neighbors of point θ ! Let's move in the direction where the loss decreases!

There is something we haven't considered yet...

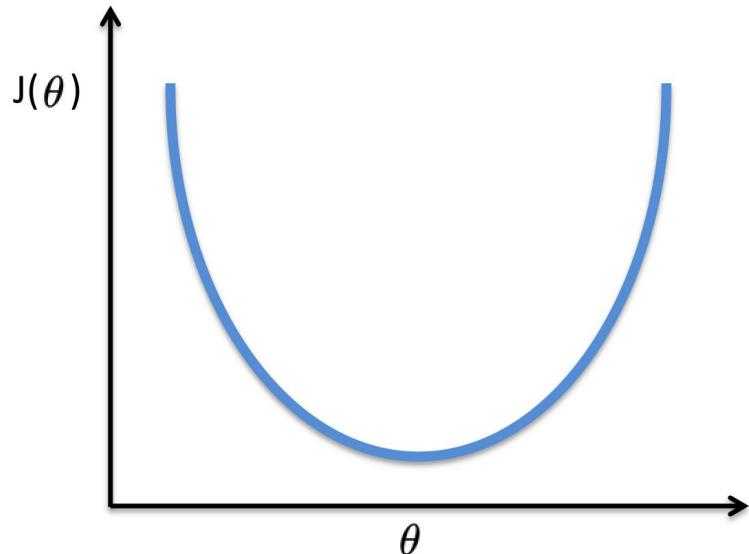
We know the formula for the loss function!



Linear regression - The least squares method

Loss function J is quadratic.

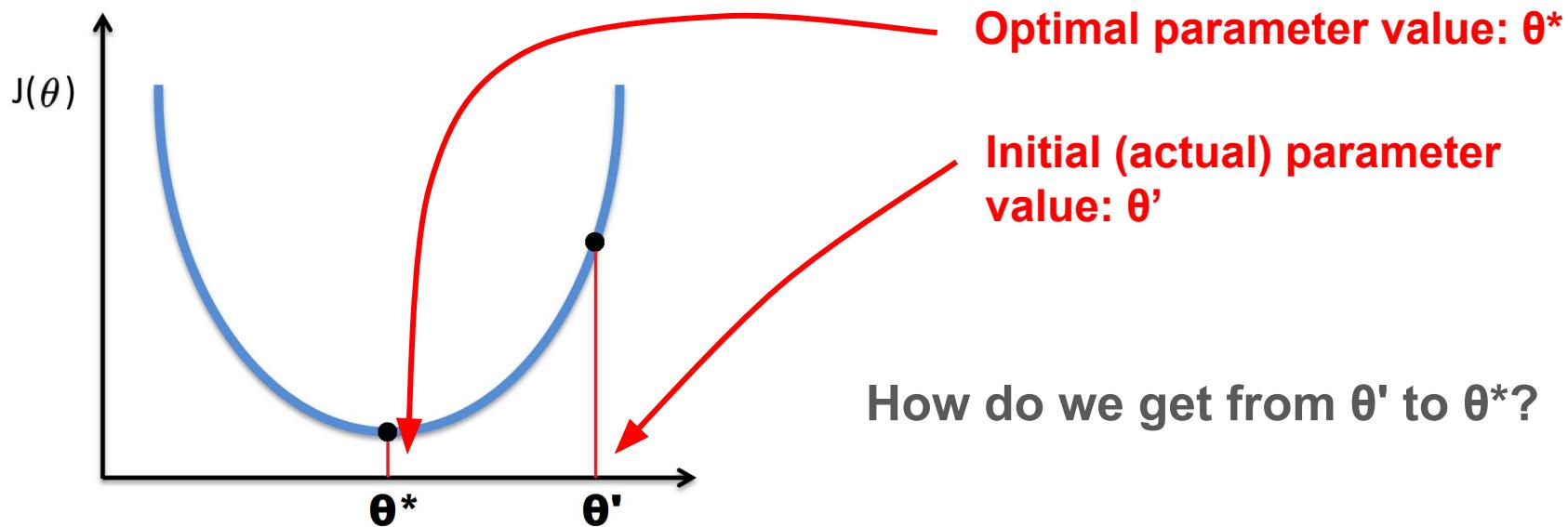
Since we only have a single θ parameter, now J is a parabola.



$$J(\theta) = \frac{1}{2m} \sum_{j=1}^m (\theta x^{(j)} - y^{(j)})^2$$

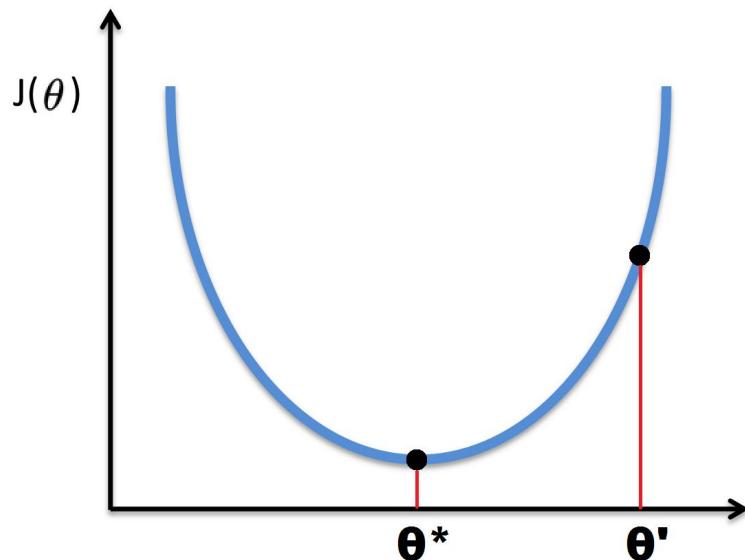
Linear regression - The least squares method

Our goal: $\theta^* = \operatorname{argmin}_{\theta} J(\theta)$



Linear regression - The least squares method

How do we get from θ' to θ^* ?

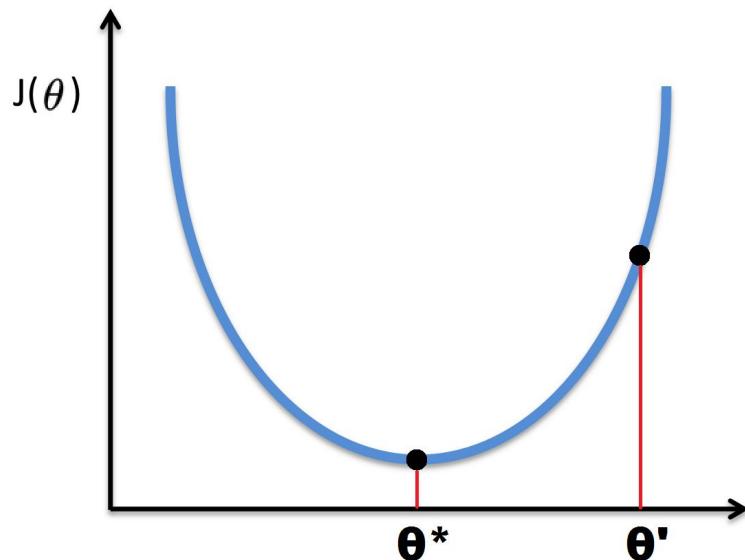


Let's see **which direction** the loss function slopes **most steeply downwards** at the current parameter value θ' !

What determines the slope of J at a given point θ' ?

Linear regression - The least squares method

How do we get from θ' to θ^* ?



Let's see **which direction** the loss function slopes **most steeply downwards** at the current parameter value θ' !

What determines the slope of J at a given point θ' ?

The derivative of J at point θ' .

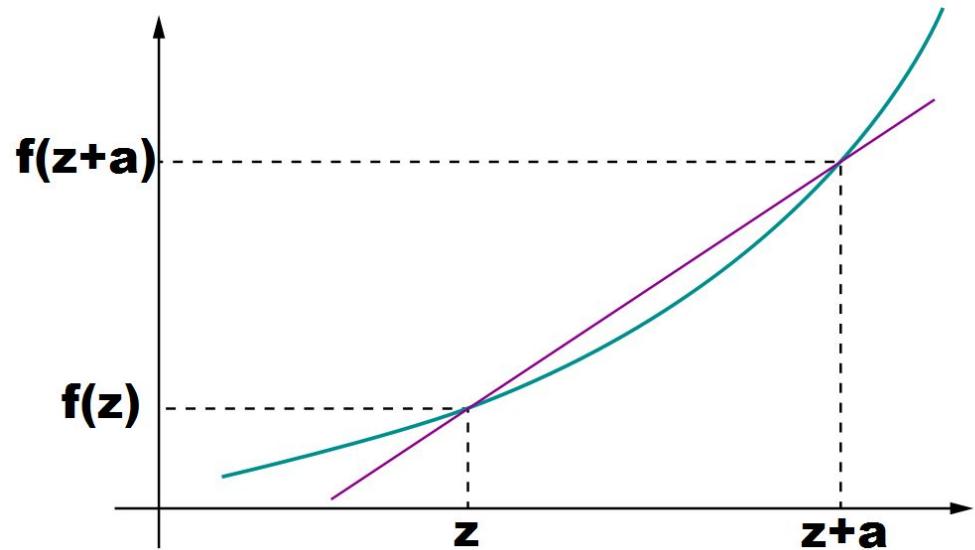
Linear regression - The least squares method

How do we define the derivative of a function?

Linear regression - The least squares method

How do we define the derivative of a function?

$$f'(z) = \lim_{a \rightarrow 0} \frac{f(z + a) - f(z)}{a}$$



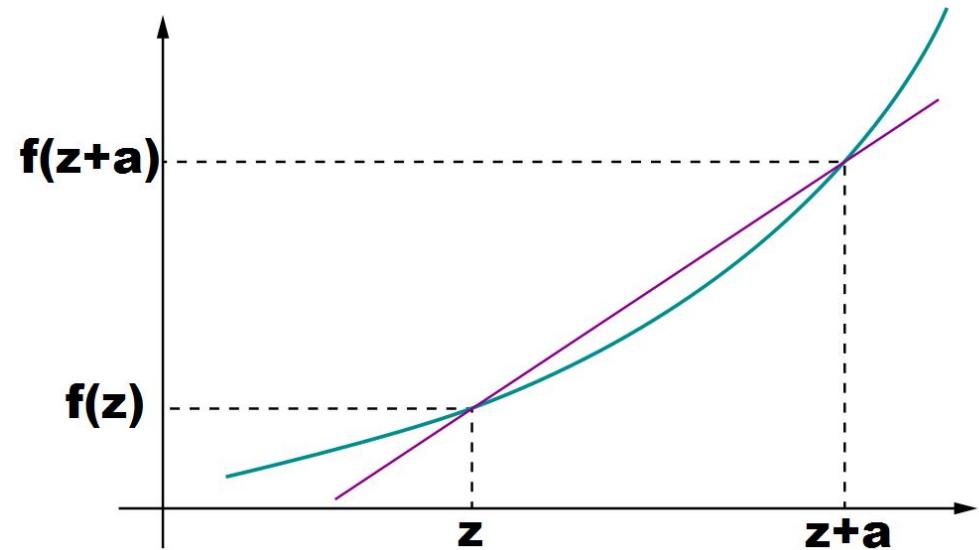
Linear regression - The least squares method

How do we define the derivative of a function?

$$f'(z) = \lim_{a \rightarrow 0} \frac{f(z + a) - f(z)}{a}$$

The difference quotient:

The **slope of the chord** connecting the two points on the function curve: $(z, f(z))$ and $(z+a, f(z+a))$

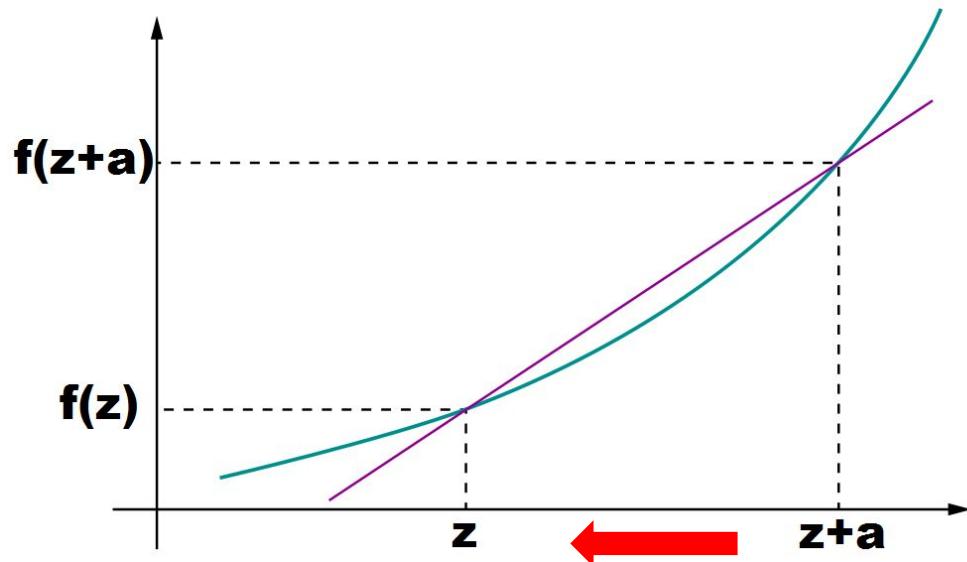


Linear regression - The least squares method

How do we define the derivative of a function?

$$f'(z) = \lim_{a \rightarrow 0} \frac{f(z + a) - f(z)}{a}$$

The derivative of a function at point z is the limit of the slope of the chord when a approaches zero...
... if this limit exists and is finite.



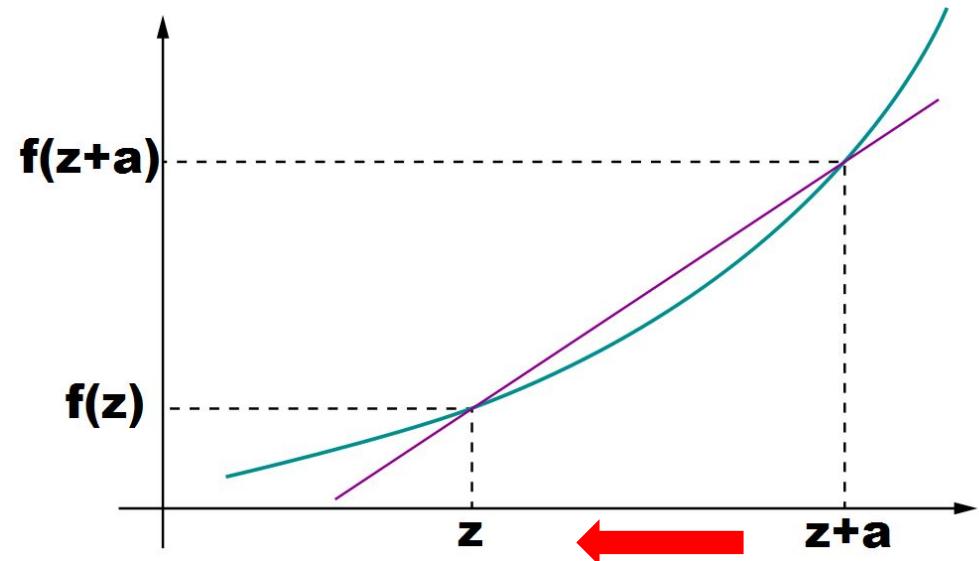
Linear regression - The least squares method

How do we define the derivative of a function?

$$f'(z) = \lim_{a \rightarrow 0} \frac{f(z + a) - f(z)}{a}$$

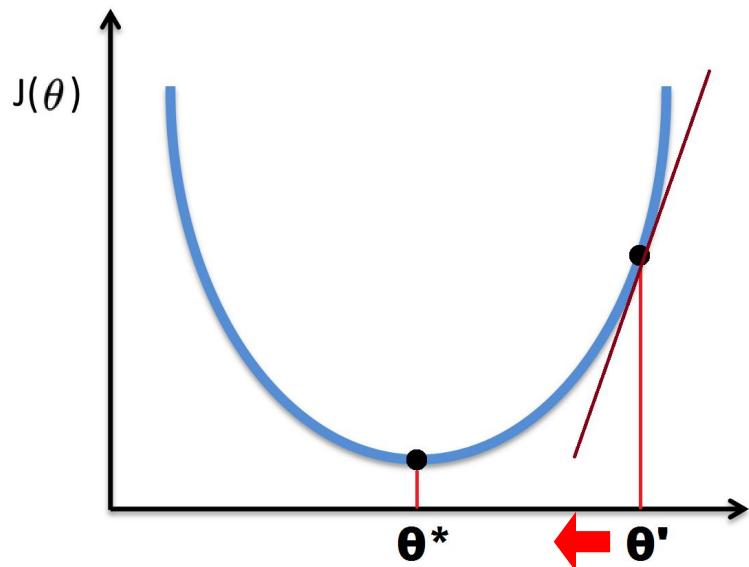
The derivative of a function at point z is the limit of the slope of the chord when a approaches zero...
... if this limit exists and is finite.

This limit is equal to the slope of the tangent to the curve at point z .



Linear regression - The least squares method

How do we know what direction to take in order to reduce the loss?



Let's move from θ' in the direction where the loss function curve slopes downwards.

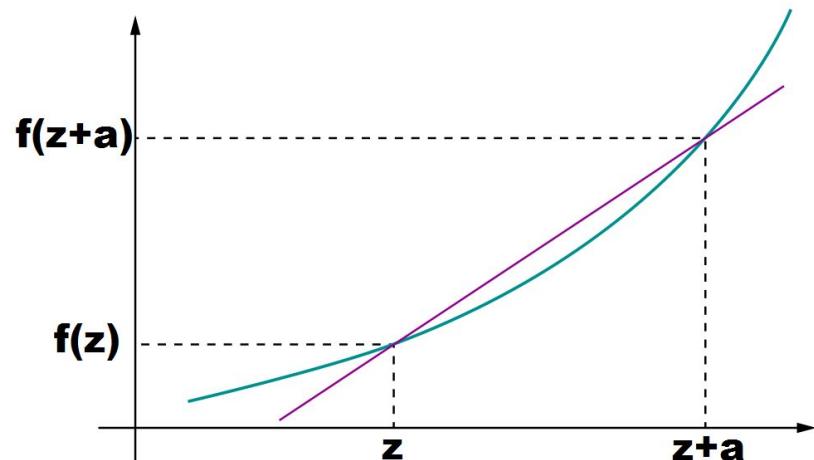
To do this, we need to calculate the derivative of the loss function J .

Linear regression - The least squares method

We need to calculate the derivative of the loss function J .

Do we have to use the difference quotient formula?

$$f'(z) = \lim_{a \rightarrow 0} \frac{f(z + a) - f(z)}{a}$$



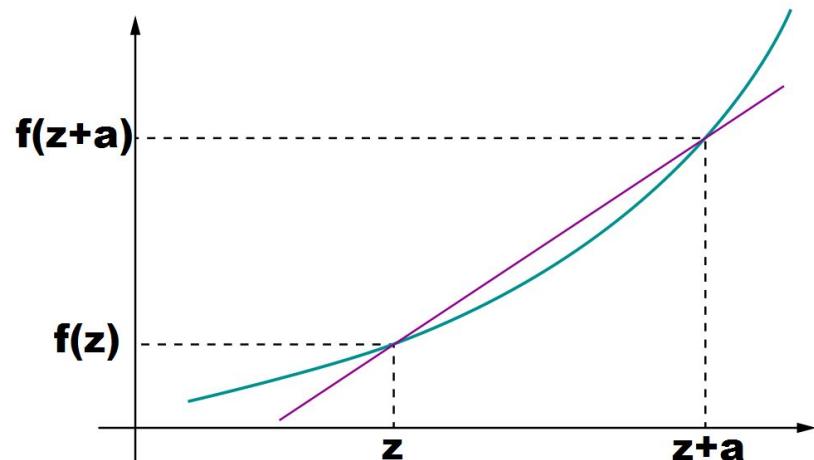
Linear regression - The least squares method

We need to calculate the derivative of the loss function J .

Do we have to use the difference quotient formula?

$$f'(z) = \lim_{a \rightarrow 0} \frac{f(z + a) - f(z)}{a}$$

Not necessarily!
We have higher level tools.



Linear regression - The least squares method

The rules of symbolic differentiation

If $f(x) = x^n$ then $\frac{df(x)}{dx} = nx^{n-1}$

If $f(x) = k$ then $\frac{df(x)}{dx} = 0$

If $f(x) = g(x) + h(x)$ then $\frac{df(x)}{dx} = \frac{dg(x)}{dx} + \frac{dh(x)}{dx}$

If $f(x) = g(x)h(x)$ then $\frac{df(x)}{dx} = \frac{dg(x)}{dx}h(x) + g(x)\frac{dh(x)}{dx}$

A list of all rules:

<https://homepage.cs.uiowa.edu/~stroyan/CTL3rdEd/3rdCTLCText/Chapters/ch6.pdf>

Linear regression - The least squares method

The derivative of the loss function:

$$J(\theta) = \frac{1}{2m} \sum_{j=1}^m (\theta x^{(j)} - y^{(j)})^2$$

$$\frac{\partial}{\partial \theta} J(\theta) = ?$$

Linear regression - The least squares method

The derivative of the loss function:

$$J(\theta) = \frac{1}{2m} \sum_{j=1}^m (\theta x^{(j)} - y^{(j)})^2$$

Remember: x and y are known values from the training set, only θ is unknown.

$$\frac{\partial}{\partial \theta} J(\theta) = ?$$

Linear regression - The least squares method

The derivative of the loss function:

$$J(\theta) = \frac{1}{2m} \sum_{j=1}^m (\theta x^{(j)} - y^{(j)})^2$$

$$\begin{aligned}\frac{\partial}{\partial \theta} J(\theta) &= \frac{1}{2m} \sum_{j=1}^m 2 \cdot (\theta x^{(j)} - y^{(j)}) \cdot (\theta x^{(j)} - y^{(j)})' = \\ &= \frac{1}{m} \sum_{j=1}^m (\theta x^{(j)} - y^{(j)}) x^{(j)}\end{aligned}$$

Linear regression - The least squares method

The derivative of the loss function:

$$J(\theta) = \frac{1}{2m} \sum_{j=1}^m (\theta x^{(j)} - y^{(j)})^2$$

Derivative of the composition of two differentiable functions

(chain rule of calculus):
 $f(g(z))' = f'(g(z)) \cdot g'(z)$

$$\frac{\partial}{\partial \theta} J(\theta) = \frac{1}{2m} \sum_{j=1}^m 2 \cdot (\theta x^{(j)} - y^{(j)}) \cdot (\theta x^{(j)} - y^{(j)})' =$$

$$= \frac{1}{m} \sum_{j=1}^m (\theta x^{(j)} - y^{(j)}) x^{(j)}$$

Leibniz notation for partial differentiation:

J is differentiated with respect to θ . Here we only have one variable (θ), so there is no question as to what we are differentiating with respect to...

Linear regression - The least squares method

Gradient descent

We repeatedly step with θ in the direction where the slope of the loss function is greatest at the current θ parameter value.

repeat until convergence {

$$grad := \frac{\partial}{\partial \theta} J(\theta)$$

$$\theta := \theta - \alpha \cdot grad$$

}

Linear regression - The least squares method

Gradient descent

We repeatedly step with θ in the direction where the slope of the loss function is greatest at the current θ parameter value.

repeat until convergence {

$$grad := \frac{\partial}{\partial \theta} J(\theta)$$

$$\theta := \theta - \alpha \cdot grad$$

$$\frac{\partial}{\partial \theta} J(\theta) = \frac{1}{m} \sum_{j=1}^m (\theta x^{(j)} - y^{(j)}) x^{(j)}$$

}

Linear regression - The least squares method

Gradient descent

We repeatedly step with θ in the direction where the slope of the loss function is greatest at the current θ parameter value.

repeat until convergence {

$$grad := \frac{\partial}{\partial \theta} J(\theta)$$

$$\theta := \theta - \alpha \cdot grad$$

}

Gradient of J: Vector pointing in the direction of the maximum increase of J; its elements are the partial derivatives of J at a given point (here still only single-valued)

alpha: the learning rate; the size of the steps can be scaled with it

Linear regression - The least squares method

Gradient descent

We repeatedly step with θ in the direction where the slope of the loss function is greatest at the current θ parameter value.

repeat until convergence {

$$grad := \frac{\partial}{\partial \theta} J(\theta)$$

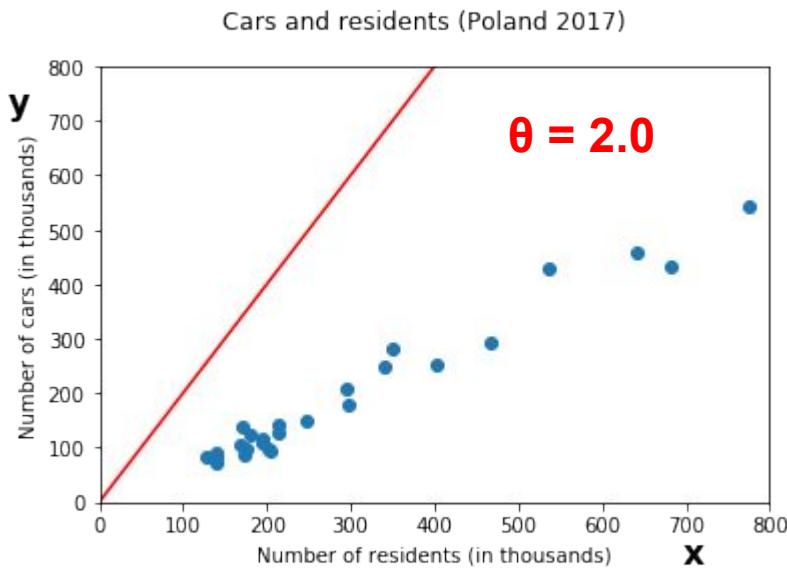
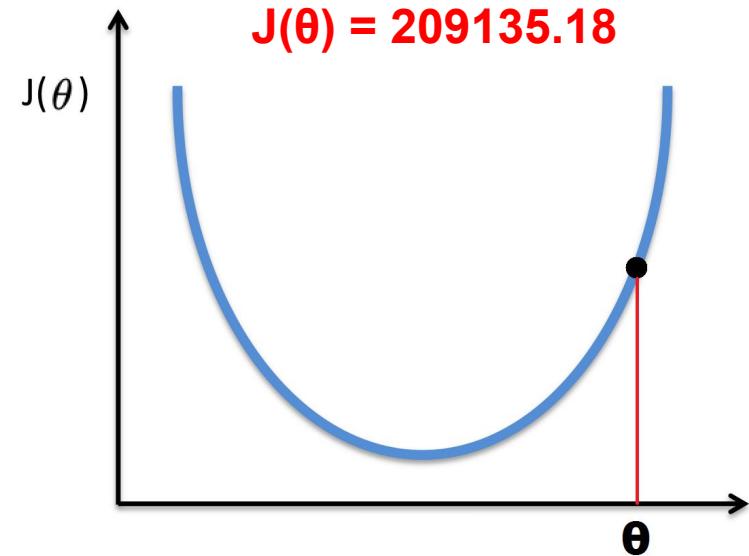
$$\theta := \theta - \alpha \cdot grad$$

}

We **subtract** the gradient from the current parameter value, as we are looking for the steepest descent.

Linear regression - The least squares method

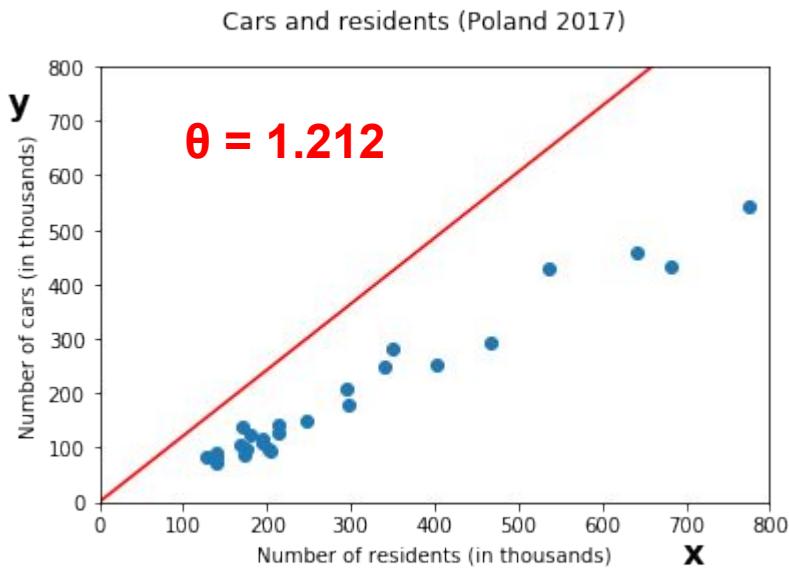
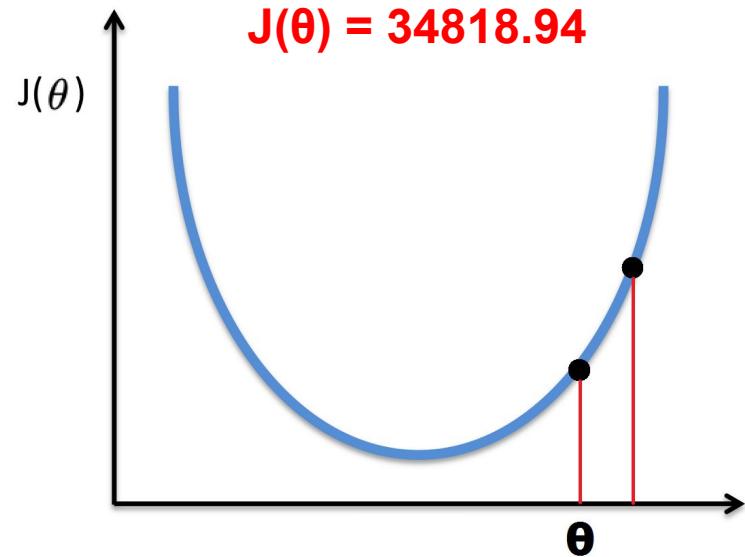
Applying gradient descent, $T = 0$ (before taking the first step)



We can choose the initial parameter value (θ) randomly.

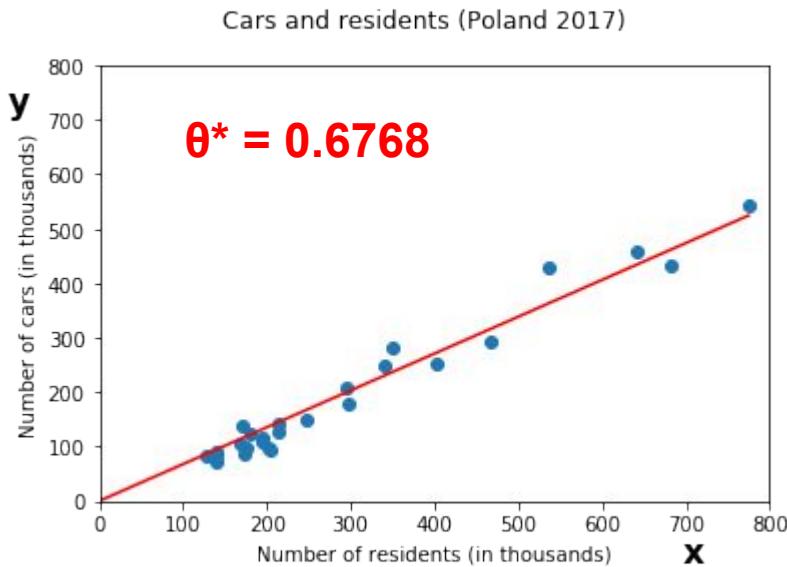
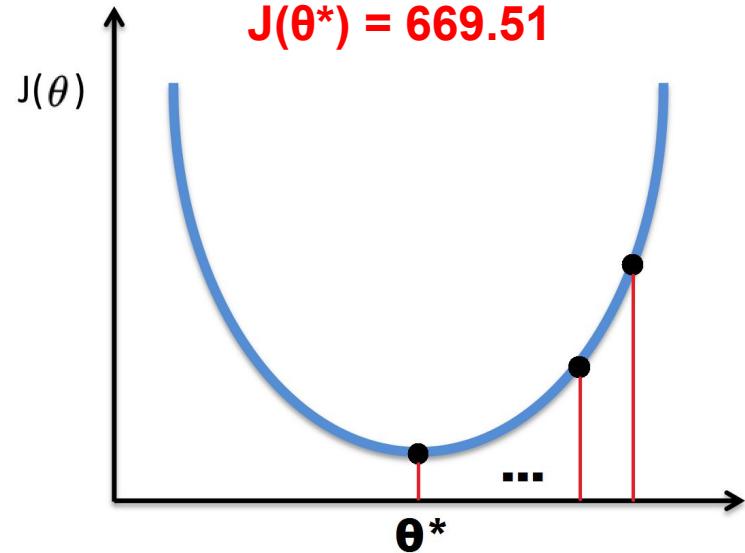
Linear regression - The least squares method

Applying gradient descent, $T = 1$



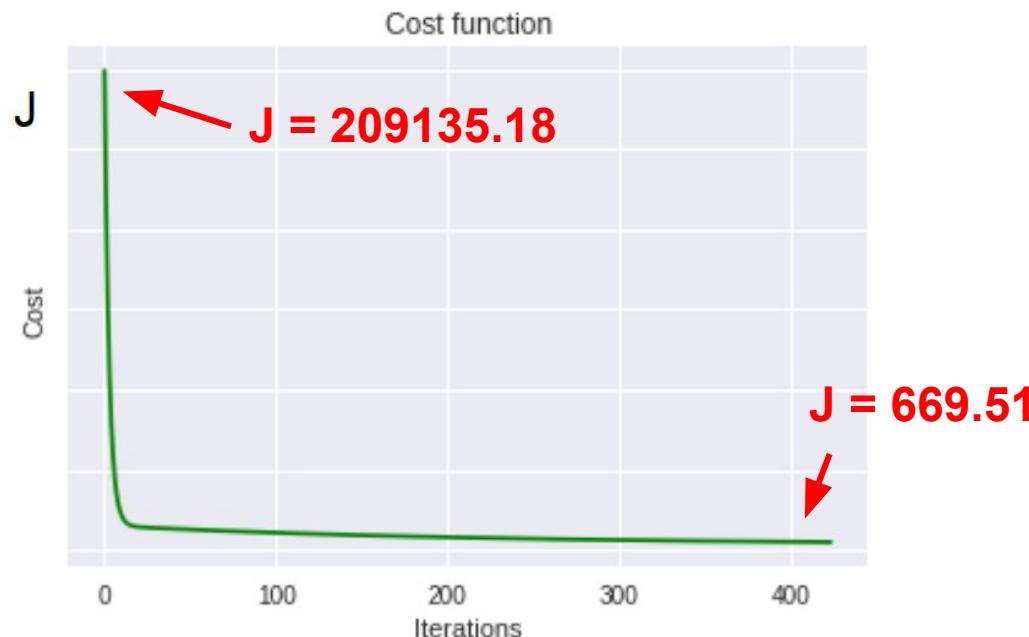
Linear regression - The least squares method

Applying gradient descent, $T = < \text{many} >$



Linear regression - The least squares method

Changes in the loss value during the steps of the gradient descent

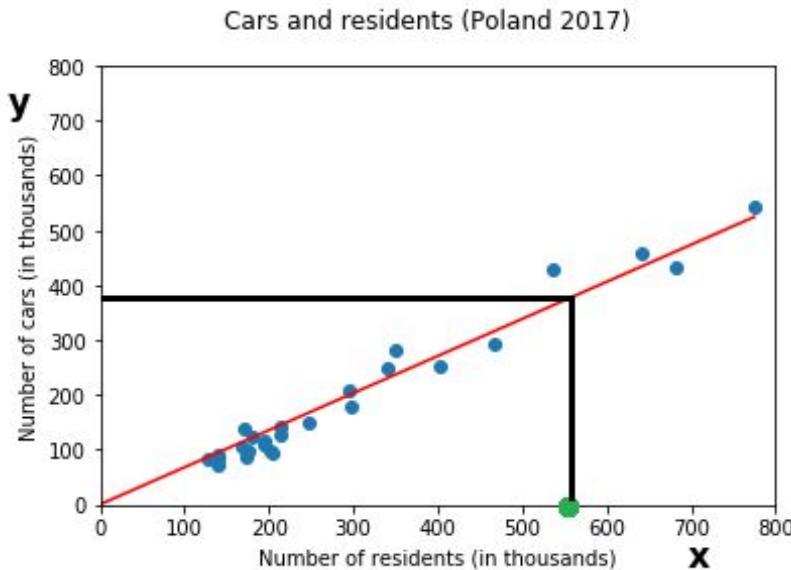


Linear regression

What have we achieved?

We trained a simple (linear) regression model.

We will be able to estimate labels for new, unlabeled examples.



Linear regression

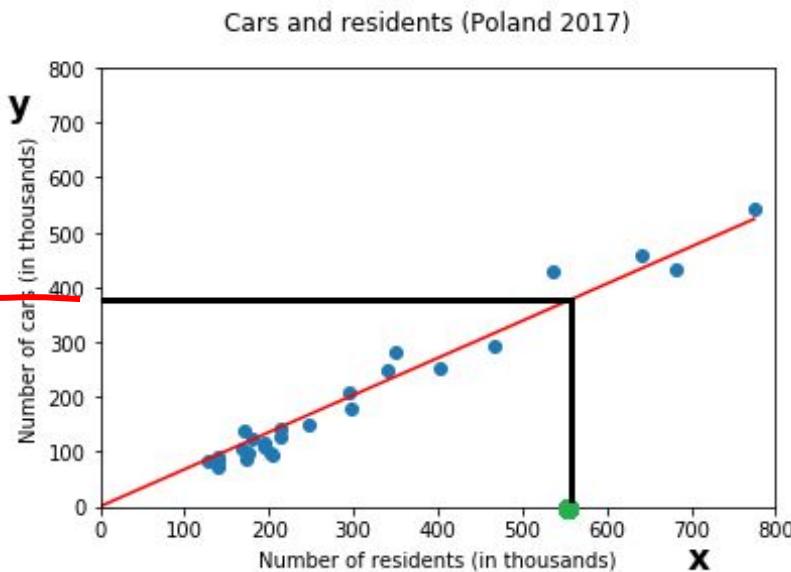
What have we achieved?

We trained a simple (linear) regression model.

We will be able to estimate labels for new, unlabeled examples.

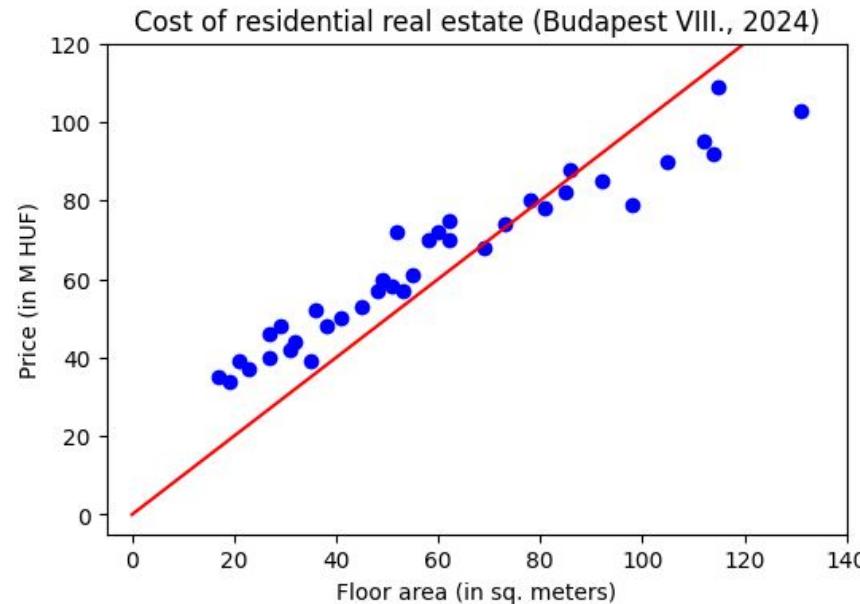
For example, for a city with a population of 550 000, we estimate

$$0.6768 * 550\,000 = 372\,240 \text{ cars.}$$



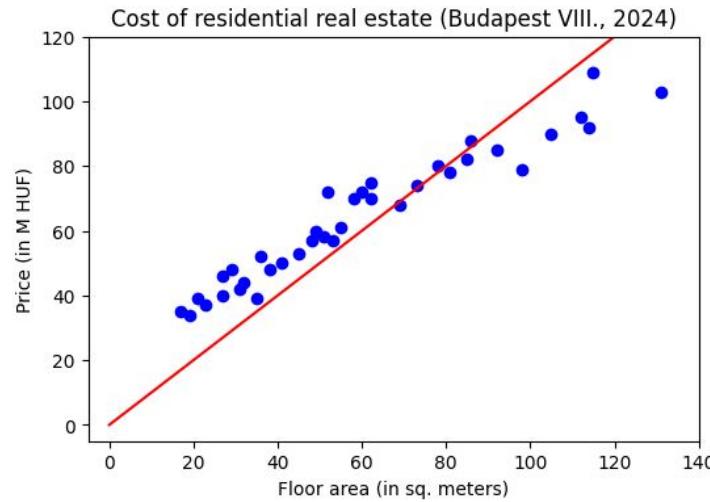
Linear regression

What's missing?



Linear regression

What's missing?



New dataset: Apartment prices as a function of floor space.

Problem: Smaller apartments are in higher demand, so their price per square meter rate is higher.

→ Does not fit well with the straight line passing through the origin...

Linear regression

What's missing?

Our model so far has been too limited. The hypothesis function was a straight line that had to pass through the origin...

In addition to the slope, we also introduce a "constant" (bias / intercept) parameter.

Former hypothesis: $h(x) = \theta x = \hat{y} \approx y$

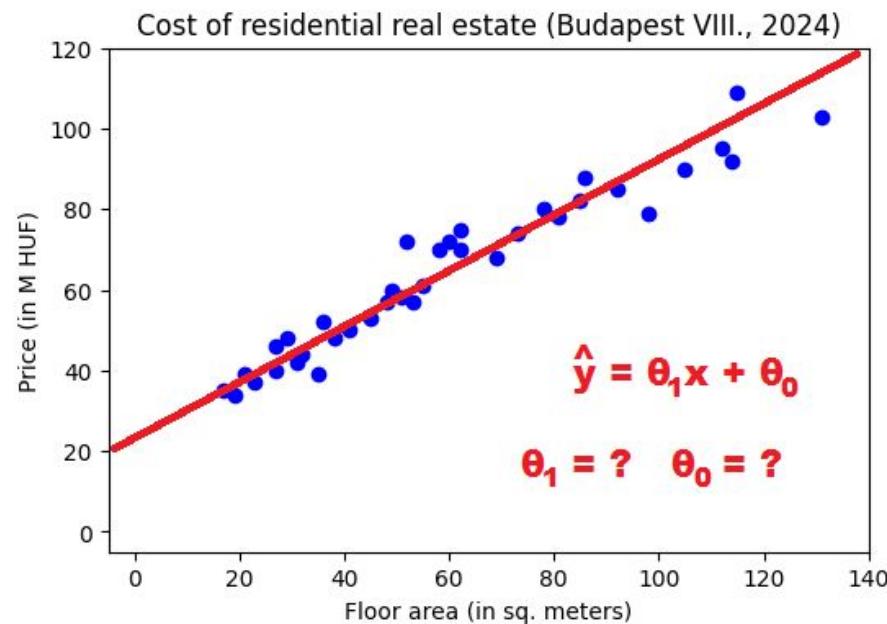
New hypothesis: $h(x) = \theta_1 x + \theta_0 = \hat{y} \approx y$

Linear regression

The new hypothesis function:

$$y \approx \hat{y} = h(x) = \theta_1 x + \theta_0$$

$$\theta_1, \theta_0 \in \mathbb{R}$$



Linear regression

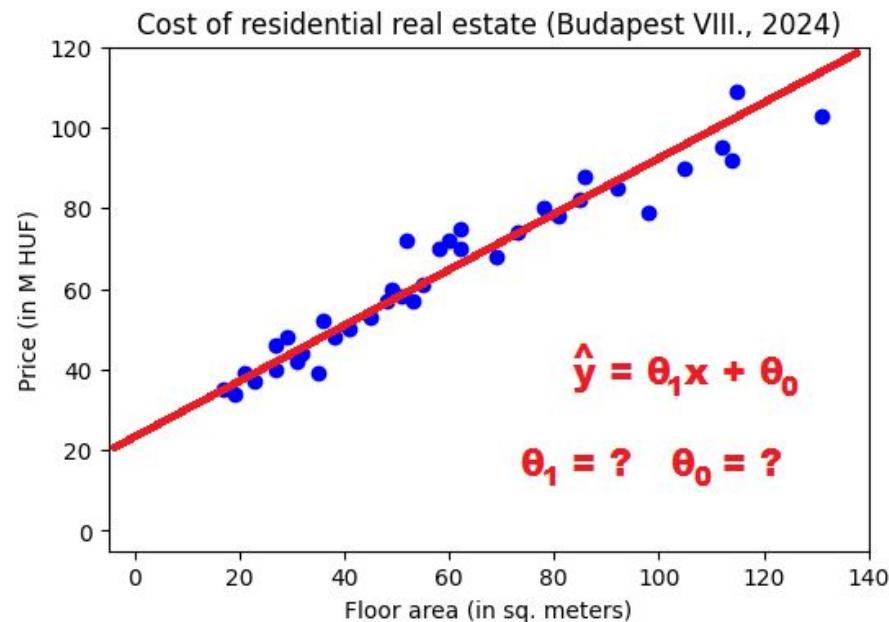
The new hypothesis function:

$$y \approx \hat{y} = h(x) = \theta_1 x + \theta_0$$

$$\theta_1, \theta_0 \in \mathbb{R}$$

θ_1 the slope of the line

θ_0 is the value where the line intersects the y-axis (the bias / intercept).



Linear regression - The least squares method

The loss function is still the **Mean Squared Error** (MSE):

$$J(\theta) = \frac{1}{2m} \sum_{j=1}^m (\hat{y}^{(j)} - y^{(j)})^2$$

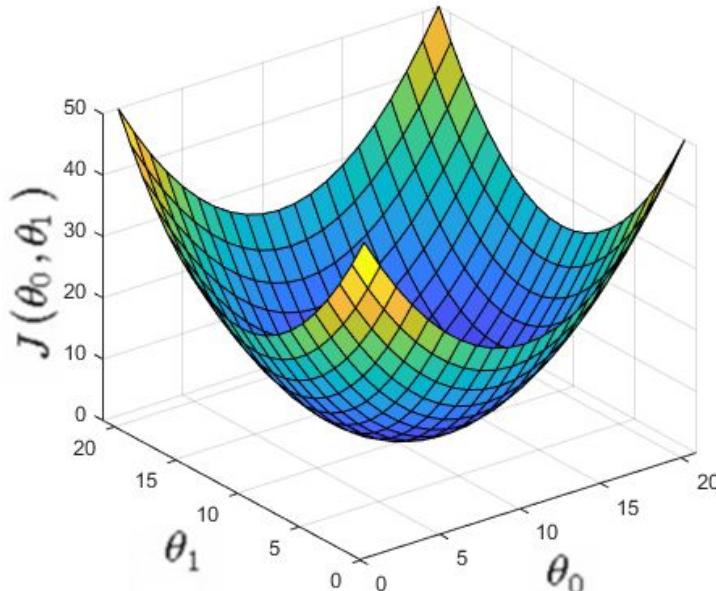
However, the hypothesis function has changed.

What will the loss function graph look like?

Linear regression - The least squares method

Loss function J is still quadratic.

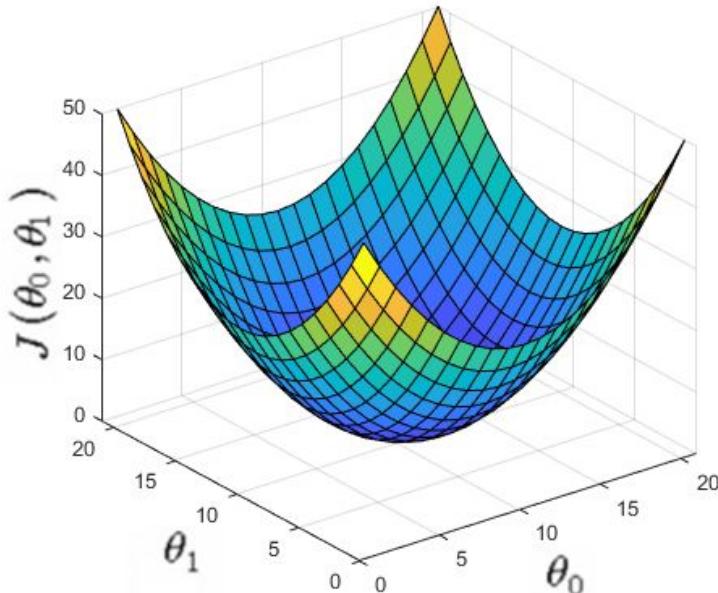
Since we have **two parameters** now, it is an elliptic paraboloid.



$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{j=1}^m (\underbrace{\theta_1 x^{(j)} + \theta_0 - y^{(j)}}_{\hat{y}^{(j)}})^2$$

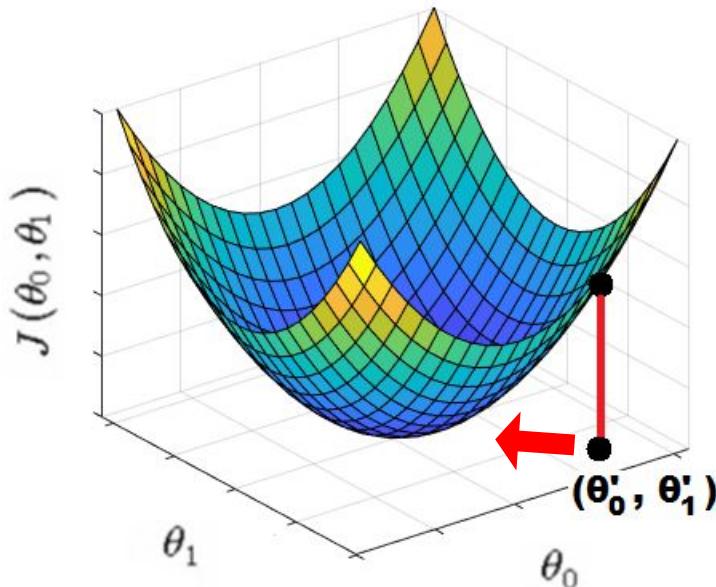
Linear regression - The least squares method

How do we know what direction to take in order to reduce the loss?



Linear regression - The least squares method

How do we know what direction to take in order to reduce the loss?



Let's use the gradient method:

Let's move from θ^* in the direction where the loss function curve slopes downwards!

This direction will be given by the **gradient vector at θ^*** .

The elements of the vector are the **partial derivatives** of the loss function J with respect to each parameter.

Linear regression - The least squares method

The partial derivatives of the loss function

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{j=1}^m (\theta_1 x^{(j)} + \theta_0 - y^{(j)})^2$$

$$\frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = ?$$

$$\frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = ?$$

Linear regression - The least squares method

The partial derivatives of the loss function

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{j=1}^m (\theta_1 x^{(j)} + \theta_0 - y^{(j)})^2$$

$$\frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{j=1}^m (\theta_1 x^{(j)} + \theta_0 - y^{(j)})$$

$$\frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{j=1}^m (\theta_1 x^{(j)} + \theta_0 - y^{(j)}) \cdot x^{(j)}$$

Linear regression - The least squares method

The partial derivatives of the loss function

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{j=1}^m (\theta_1 x^{(j)} + \theta_0 - y^{(j)})^2$$

In **partial differentiation**, we differentiate the function with respect to **one variable**. In this case, **we treat the other variables as constants**.

$$\frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{j=1}^m (\theta_1 x^{(j)} + \theta_0 - y^{(j)})$$

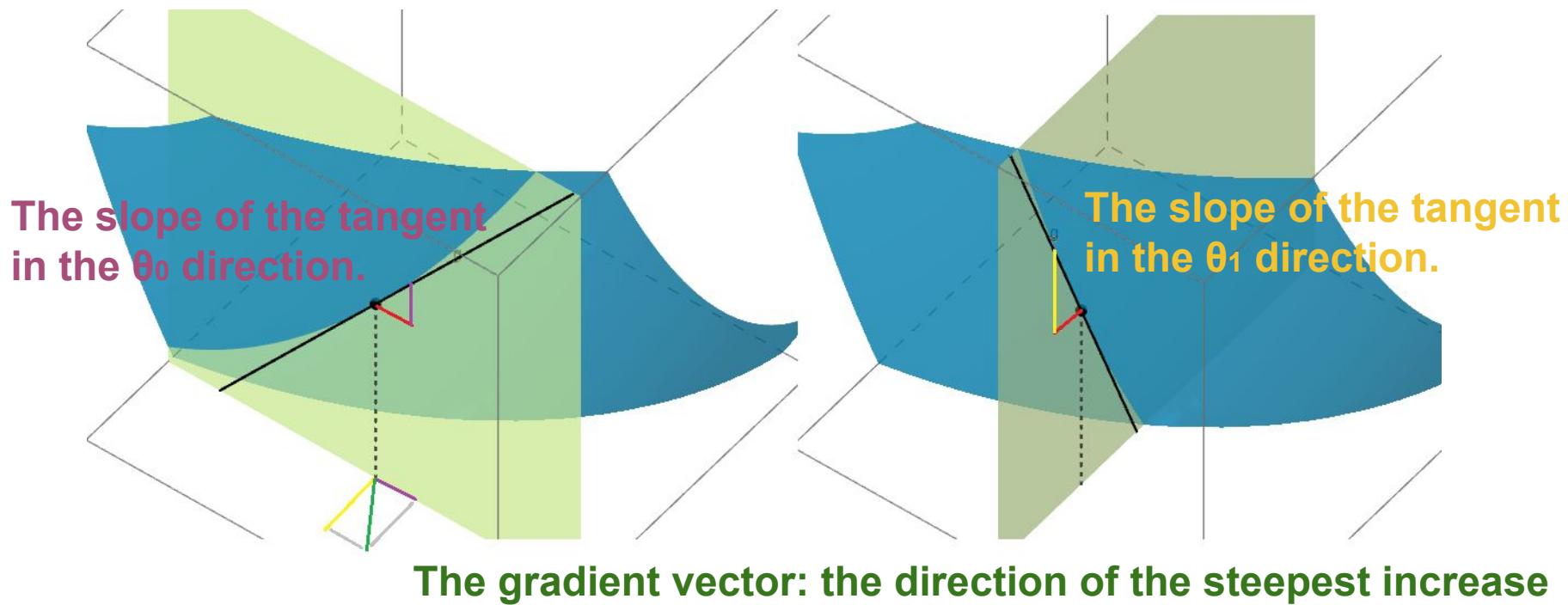
The slope of the tangent in the θ_0 direction.

$$\frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{j=1}^m (\theta_1 x^{(j)} + \theta_0 - y^{(j)}) \cdot x^{(j)}$$

The slope of the tangent in the θ_1 direction.

Linear regression - The least squares method

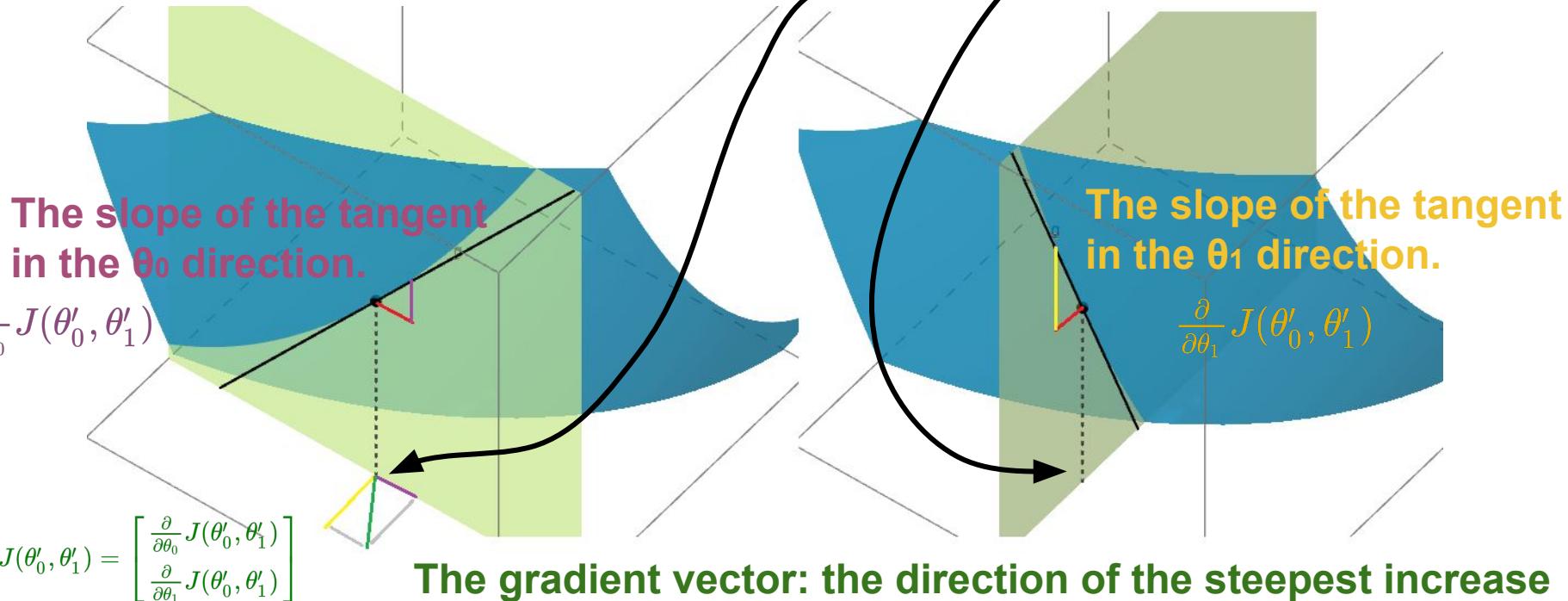
The partial derivatives of the loss function



Linear regression - The least squares method

The partial derivatives of the loss function

The point of the actual parameters (θ'_0, θ'_1)



Linear regression - The least squares method

The gradient descent algorithm with two parameters:

repeat until convergence {

$$grad_0 := \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$grad_1 := \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_0 := \theta_0 - \alpha \cdot grad_0$$

$$\theta_1 := \theta_1 - \alpha \cdot grad_1$$

}

Linear regression - The least squares method

The gradient descent algorithm with two parameters:

repeat until convergence {

$$grad_0 := \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$\frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{j=1}^m (\theta_1 x^{(j)} + \theta_0 - y^{(j)})$$

$$grad_1 := \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{j=1}^m (\theta_1 x^{(j)} + \theta_0 - y^{(j)}) \cdot x^{(j)}$$

$$\theta_0 := \theta_0 - \alpha \cdot grad_0$$

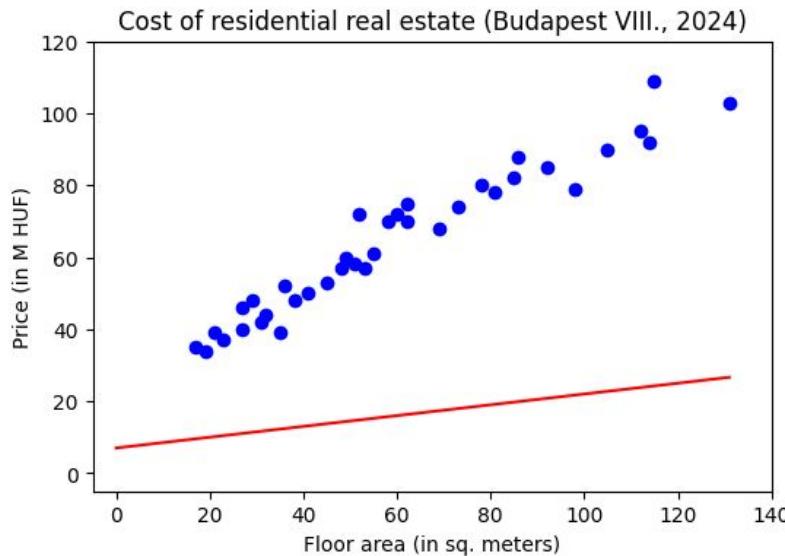
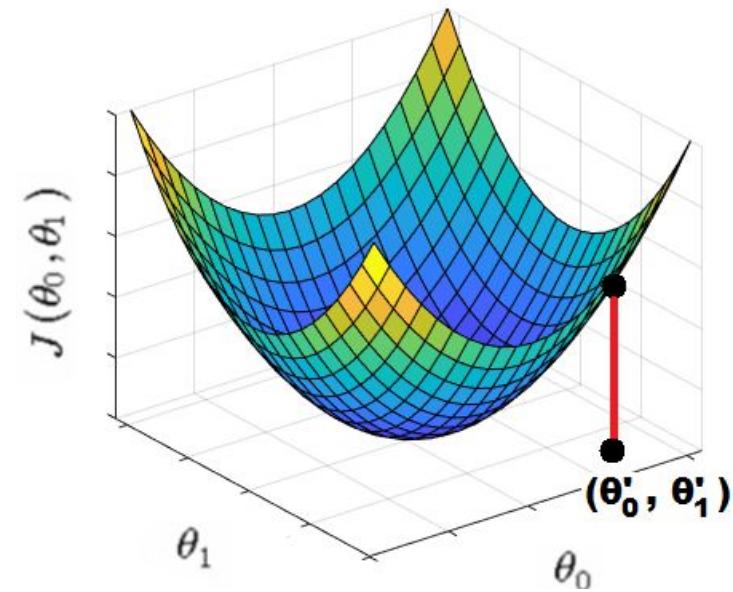
$$\theta_1 := \theta_1 - \alpha \cdot grad_1$$

}

alpha: the learning rate;
the size of the steps can be scaled with it

Linear regression - The least squares method

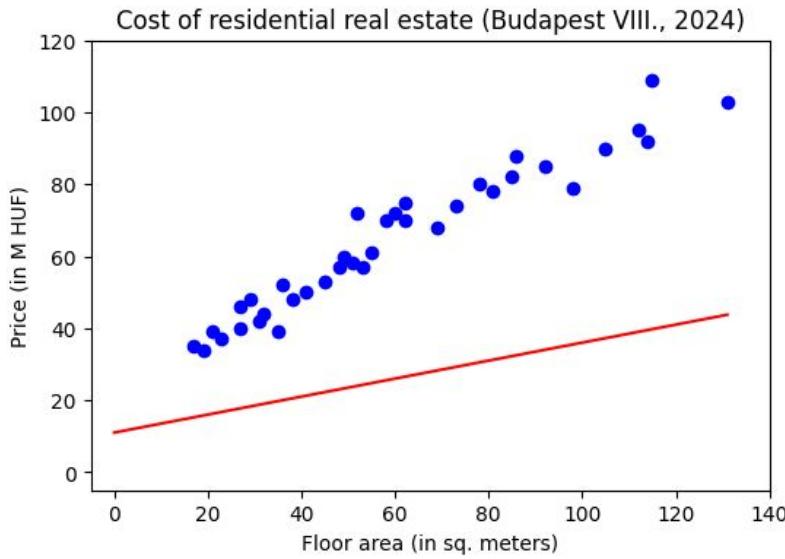
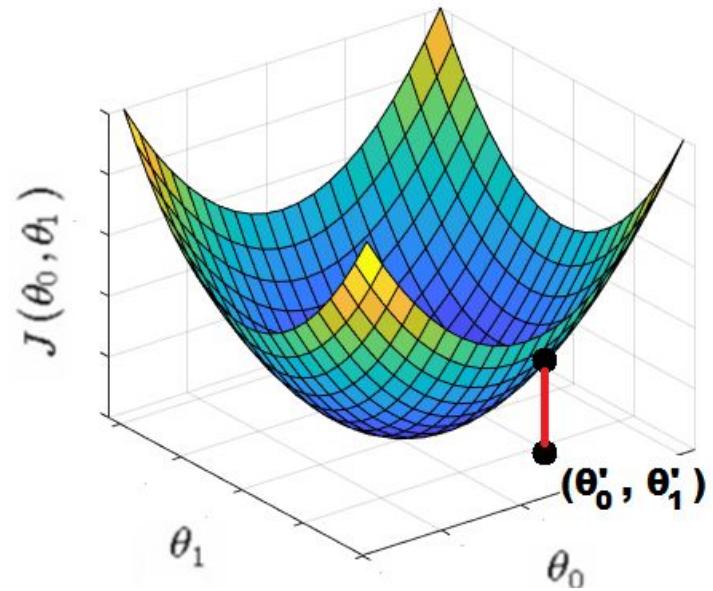
Applying gradient descent, $T = 0$ (before taking the first step)



We can choose the initial parameters (θ_0, θ_1) randomly.

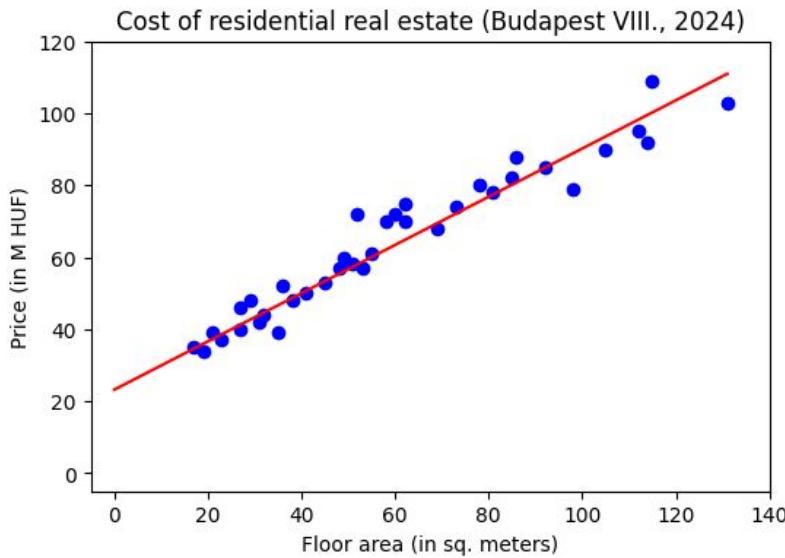
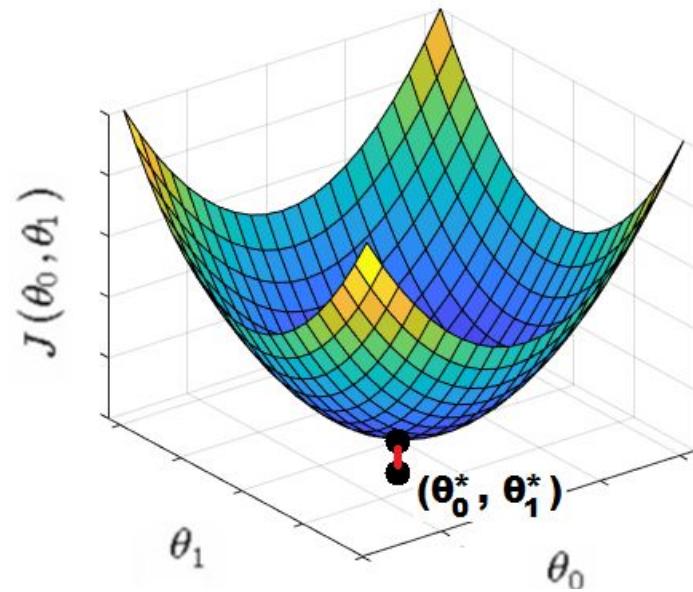
Linear regression - The least squares method

Applying gradient descent, $T = 1$



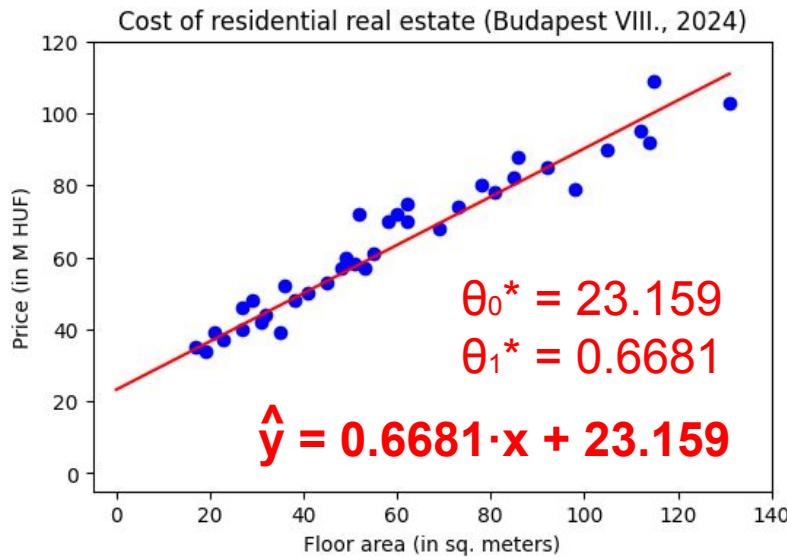
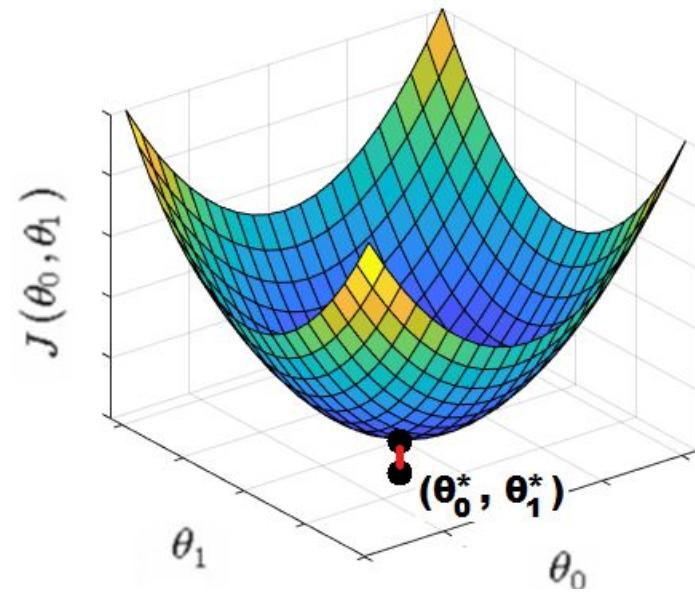
Linear regression - The least squares method

Applying gradient descent, $T = < \text{many} >$



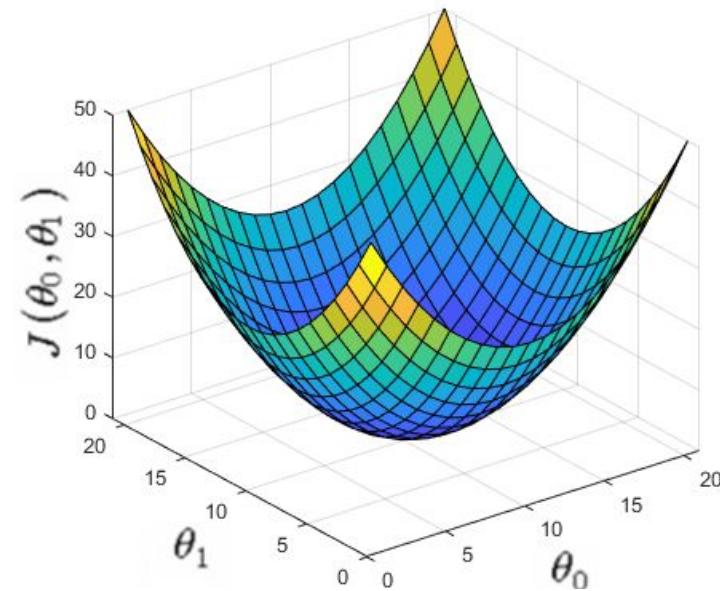
Linear regression - The least squares method

Applying gradient descent, $T = < \text{many} >$



Linear regression - The least squares method

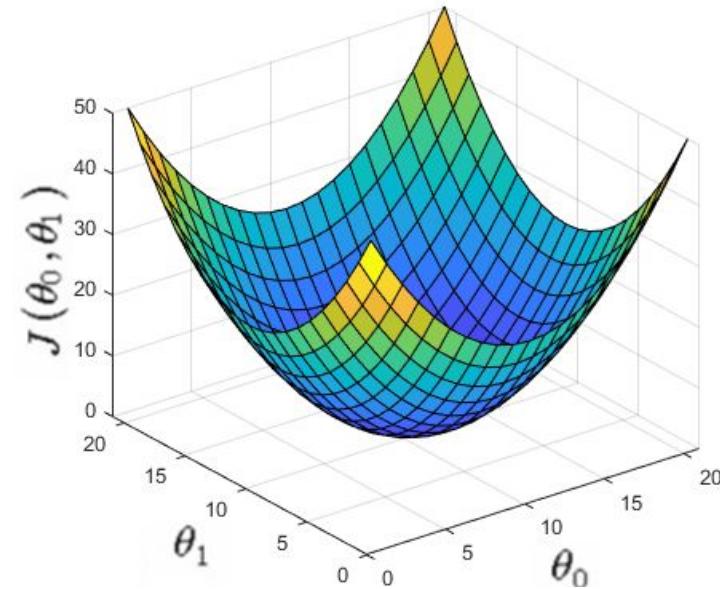
Is it guaranteed that we will find the optimal solution
(minimum MSE loss) for linear regression using gradient descent?



Linear regression - The least squares method

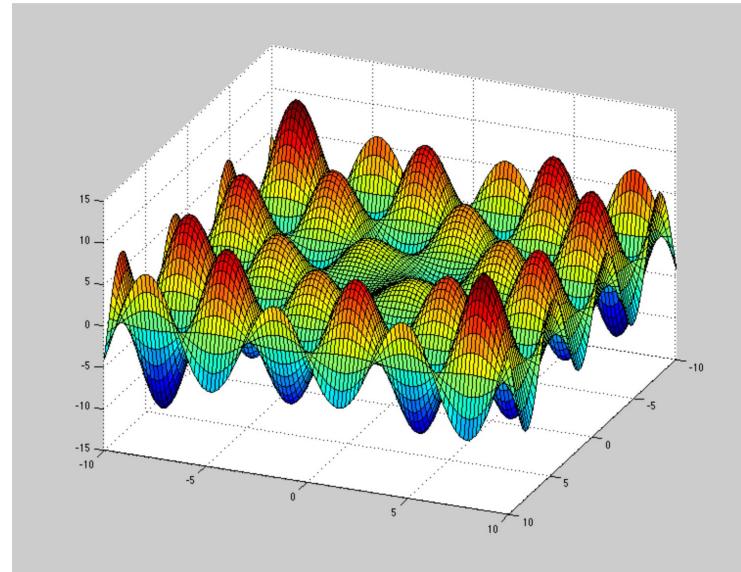
Is it guaranteed that we will find the optimal solution (minimum MSE loss) for linear regression using gradient descent?

Yes, if the step size (alpha) is sufficiently small.



Linear regression - The least squares method

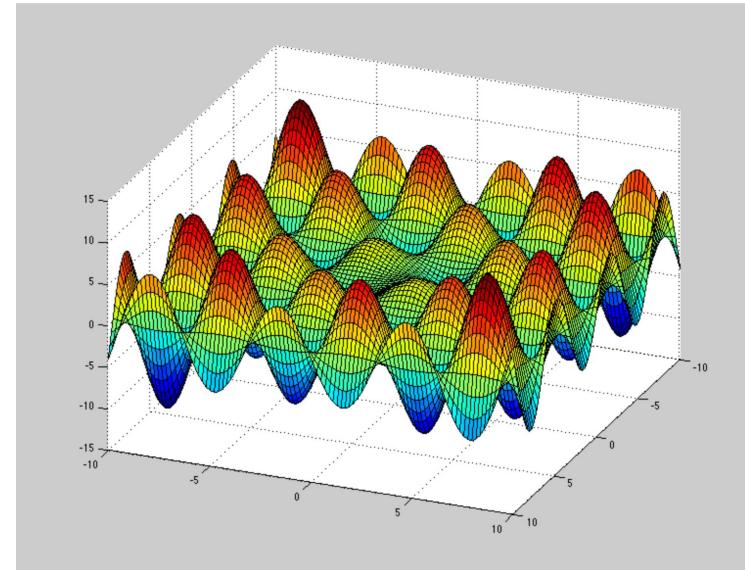
**Is it guaranteed that we will find the optimal solution
(minimum MSE loss) for any function using gradient descent?**



Linear regression - The least squares method

Is it guaranteed that we will find the optimal solution (minimum MSE loss) for any function using gradient descent?

No. We can reach one of the **local minimum points**, but if the loss function is **not convex**, then it is **not guaranteed** that this will be the **global minimum**.



Linear regression - The least squares method

Is it guaranteed that we will find the optimal solution (minimum MSE loss) for any function using gradient descent?

No. We can reach one of the **local minimum points**, but if the loss function is **not convex**, then it is **not guaranteed**

Mountain hiking in fog: We want to reach the deepest point of the terrain, but we can only feel which direction the terrain slopes downwards most under our feet...

