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Last week - The essence of machine learning

We learn to solve the problem without knowing the specific algorithm for 
the solution.

- We define a machine learning model 
with parameters.

- We try to find such parameters 
that will make our model
solve the task as well as possible.

- We define the task and its correct 
solution by showing examples.

“a dog”



Last week - The essence of machine learning

We learn to solve the problem without knowing the specific algorithm for 
the solution.

- We define a machine learning model 
with parameters.

- We try to find such parameters 
that will make our model
solve the task as well as possible.

- We define the task and its correct 
solution by showing examples.



Last week - The essence of machine learning

We learn to solve the problem without knowing the specific algorithm for 
the solution.

- We define a machine learning model 
with parameters.

- We try to find such parameters 
that will make our model
solve the task as well as possible.

- We define the task and its correct 
solution by showing examples.

“a cat”



Last week - Ideal tasks for machine learning

Relying on ML instead of writing an algorithm might be ideal when…

1. We need to solve many slightly different varieties of the same task.
2. An algorithmic solution is unknown or hard to compute.
3. The task can only be formulated by showing examples

Image sources: boardgamegeek.com



Last week - Machine learning

Three main groups of machine learning methods:

- Supervised learning
- Unsupervised learning
- Reinforcement learning



Last week - Supervised learning

Given: The training sample, a set of (input, label) pairs

Task: The estimation of the label (the expected output) from the input

           I.e., we search for a (hypothesis-)function        , for which:



Last week - Supervised learning

Given: The training sample, a set of (input, label) pairs

Task: The estimation of the label (the expected output) from the input

           I.e., we search for a (hypothesis-)function        , for which:

Goal: Find θ that makes     be as 
similar to     as possible!The true label

The predicted label



The two main types of tasks in supervised learning

Regression: Continuous labels         (The label set is infinite)

Example: Number of cars or the age of a person

Classification: Discrete labels           (The label set is finite)

Example: Categorization of examples

- What is the profession of the person 
in the image?



The two main types of tasks in supervised learning

Regression: Continuous labels         (The label set is infinite)

Example: Number of cars or the age of a person

Classification: Discrete labels           (The label set is finite)

Example: Categorization of examples

- What is the profession of the person 
in the image?

Today: A simple method to solve each of the cases.
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Regression: Continuous labels         (The label set is infinite)

Example: Number of cars or the age of a person



Regression

Example: Estimate the number of cars in a particular city given the 
population of that city.

x: The population of a 
     particular city

y: The number of cars in a 
     particular city



Regression

Example: Estimate the number of cars in a particular city given the 
population of that city.

x: The population of a 
     particular city

y: The number of cars in a 
     particular city

A single input variable and a label: 
Our labeled examples can be interpreted
as points located in 
a two-dimensional vector space (a plane).



Regression
(population, 

×1000)
(n. of cars, 

×1000)

Warsaw
 (j = 1)

1760 910

Krakow
(j = 2)

770 465

Lublin
(j = 3)

340 198

... ... ...

the input variable (feature) the label



Linear regression

Hypothesis function for linear regression (not yet complete!)

A very simple (linear) 
hypothesis function:

θ is the parameter of the hypothesis-
function: in this case, 
this is going to be the slope of the line.



Linear regression

Hypothesis function for linear regression (not yet complete!)

A very simple (linear) 
hypothesis function:

θ is the parameter of the hypothesis-
function: in this case, 
this is going to be the slope of the line.

We are looking for a parameter θ 
such that h(x) closely 
approximates the true y labels.
For example, the hypothesis function 
h(x) = 0.65*x fits this particular 
sample well, so a good parameter is 
θ = 0.65.



Linear regression

How do we determine how good the estimate is?

?
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How do we determine how good the estimate is?

With the help of the loss function J:

The loss function indicates how much the actual label differs from our 
estimate for given parameter values.

?



Supervised learning - Loss function

How do we determine how good the estimate is?

With the help of the loss function J:

The loss function indicates how much the actual label differs from our 
estimate for given parameter values.

?

The loss must be a single number 
(scalar). If the y label consists of multiple 
variables, then instead of the absolute 
value, we will need, for example, a norm... 

The greater the error in our estimate 
with a given parameter θ, the greater the loss is in θ. 
In case of most loss functions: a loss value of 0 indicates a perfect estimate.



Linear regression - The least squares method

When using the least squares method, our loss function is:

We define the loss as the squared differences of true labels and 
estimates.
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Linear regression - The least squares method

When using the least squares method, our loss function is:

We define the loss as the squared differences of true labels and 
estimates. We take the mean of these errors over the training dataset.
→ Mean Squared Error (MSE) loss 



Linear regression - The least squares method



Linear regression - The least squares method

Our goal:

→ We search for the optimal parameter (θ*) that minimizes the loss, 
i.e., the mean squared error of our label prediction from the true label.



Linear regression - The least squares method

Our goal:

How do we find the optimal parameter θ*?

x, y are known constants. 
They simply come from the dataset.

We are looking for a good θ.



Linear regression - The least squares method

How do we find the optimal parameter θ*?

Naive approach (1): 
Grid search - Evaluate J(θ) in several θ values
(parameters)!



Linear regression - The least squares method

How do we find the optimal parameter θ*?

Naive approach (1): 
Grid search - Evaluate J(θ) in several θ values
(parameters)!

For example, here, from the parameter 
values θ = {-1, 0, 1, 2, 3},

 the loss is the smallest in θ = -1



Linear regression - The least squares method

How do we find the optimal parameter θ*?

Naive approach (1): 
Grid search - Evaluate J(θ) in several θ values
(parameters)!

Later, we will have 
more than one parameters…



How do we find the optimal parameter(s) θ*?

Naive approach (1): 
Grid search - Evaluate J(θ) in several θ points 
(parameter combinations)!

Linear regression - The least squares method



How do we find the optimal parameter(s) θ*?

Naive approach (1): 
Grid search - Evaluate J(θ) in several θ points 
(parameter combinations)!

Linear regression - The least squares method

Grid search: For each parameter, we choose a finite 
number of possible values. We try each combination 

of the possible values across all parameters. 

Practically, we evaluate the loss function in 
each point of a grid defined in the parameter space.



How do we find the optimal parameter(s) θ*?

Naive approach (1): 
Grid search - Evaluate J(θ) in several θ points 
(parameter combinations)!

Linear regression - The least squares method

Any problem?



How do we find the optimal parameter(s) θ*?

Naive approach (1): 
Grid search - Evaluate J(θ) in several θ points 
(parameter combinations)!

Linear regression - The least squares method

Problem: When our model will have more than one 
parameters, the parameter space will also become 

multidimensional:

 the number of parameter combinations to 
evaluate grows exponentially with the number of 

dimensions!



How do we find the optimal parameter(s) θ*?

Naive approach (2): Let's examine the neighbors of point θ! Let's move 
in the direction where the loss decreases!

Starting point: θ = 3

θ = 2? J(2) < J(3) → good direction

θ = 4? J(4) > J(3) → wrong direction

Linear regression - The least squares method



How do we find the optimal parameter(s) θ*?

Naive approach (2): Let's examine the neighbors of point θ! Let's move 
in the direction where the loss decreases!

Linear regression - The least squares method

This is a more efficient method than grid search. 

However, as the number of parameters increases, the 
number of directions to be tested 

also increases exponentially...
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This is a more efficient method than grid search. 
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also increases exponentially...



How do we find the optimal parameter(s) θ*?

Naive approach (2): Let's examine the neighbors of point θ! Let's move 
in the direction where the loss decreases!

Linear regression - The least squares method

There is something we haven't considered yet…

We know the formula for the loss function!



Linear regression - The least squares method

Loss function J is quadratic.

Since we only have a single θ parameter, now J is a parabola.



Our goal: 

   How do we get from θ' to θ*?

Initial (actual) parameter 
value: θ’

Optimal parameter value: θ*

Linear regression - The least squares method



How do we get from θ' to θ*?

Linear regression - The least squares method

Let's see which direction the loss 
function slopes most steeply 
downwards at the 
current parameter value θ'!

What determines the slope of J at a 
given point θ'?



How do we get from θ' to θ*?

Linear regression - The least squares method

Let's see which direction the loss 
function slopes most steeply 
downwards at the 
current parameter value θ'!

What determines the slope of J at a 
given point θ'?

The derivative of J at point θ'.



How do we define the derivative of a function?

Linear regression - The least squares method



How do we define the derivative of a function?

Linear regression - The least squares method



How do we define the derivative of a function?

The difference quotient:

The slope of the chord connecting 
the two points on the function curve:
(z, f(z)) and (z+a, f(z+a))

Linear regression - The least squares method



How do we define the derivative of a function?

Linear regression - The least squares method

The derivative of a function at point z 
is the limit of the slope of the chord 
when a approaches zero…
… if this limit exists and is finite.



How do we define the derivative of a function?

Linear regression - The least squares method

The derivative of a function at point z 
is the limit of the slope of the chord 
when a approaches zero…
… if this limit exists and is finite.

This limit is equal to the slope of the 
tangent to the curve at point z.



How do we know what direction to take in order to reduce the loss?

Linear regression - The least squares method

Let's move from θ' in the direction 
where the loss function curve slopes 
downwards.

To do this, we need to calculate the 
derivative of the loss function J.



We need to calculate the derivative of the loss function J.

Do we have to use the difference quotient formula?

Linear regression - The least squares method



We need to calculate the derivative of the loss function J.

Do we have to use the difference quotient formula?

Linear regression - The least squares method

Not necessarily! 
We have higher level tools.



The rules of symbolic differentiation

Linear regression - The least squares method

A list of all rules: 
https://homepage.cs.uiowa.edu/~stroyan/CTLC3rdEd/3rdCTLCText/Chapters/ch6.pdf 

https://homepage.cs.uiowa.edu/~stroyan/CTLC3rdEd/3rdCTLCText/Chapters/ch6.pdf


The derivative of the loss function:

Linear regression - The least squares method



The derivative of the loss function:
Remember: x and y are known 
values from the training set, 
only θ is unknown.

Linear regression - The least squares method



The derivative of the loss function:

Linear regression - The least squares method



The derivative of the loss function: Derivative of the composition of 
two differentiable functions 
(chain rule of calculus):
f(g(z))’ = f’(g(z)) · g’(z)

Leibniz notation for partial differentiation: 
J is differentiated with respect to θ. Here we 
only have one variable (θ), so there is no 
question as to what we are differentiating 
with respect to...

Linear regression - The least squares method



Gradient descent

We repeatedly step with θ in the direction where 
the slope of the loss function is greatest at the current θ parameter value.

Linear regression - The least squares method



Gradient descent

We repeatedly step with θ in the direction where 
the slope of the loss function is greatest at the current θ parameter value.

Linear regression - The least squares method



Gradient descent

We repeatedly step with θ in the direction where 
the slope of the loss function is greatest at the current θ parameter value.

Gradient of J: Vector pointing in the 
direction of the maximum increase of J; 
its elements are the partial derivatives of J 
at a given point 
(here still only single-valued)

alpha: the learning rate;
the size of the steps can be scaled with it

Linear regression - The least squares method



Gradient descent

We repeatedly step with θ in the direction where 
the slope of the loss function is greatest at the current θ parameter value.

We subtract the gradient from the 
current parameter value, as we are 
looking for the steepest descent.

Linear regression - The least squares method



Applying gradient descent, T = 0 (before taking the first step)

We can choose the initial parameter value (θ) randomly.

θ = 2.0

J(θ) = 209135.18

Linear regression - The least squares method



Applying gradient descent, T = 1

θ = 1.212

J(θ) = 34818.94

Linear regression - The least squares method



Applying gradient descent, T = < many >

θ* = 0.6768

J(θ*) = 669.51

Linear regression - The least squares method



Linear regression - The least squares method

Changes in the loss value during the steps of the gradient descent

J = 209135.18

J = 669.51



Linear regression

What have we achieved?

We trained a simple (linear) regression model.

We will be able to estimate labels 
for new, unlabeled examples.



Linear regression

What have we achieved?

We trained a simple (linear) regression model.

We will be able to estimate labels 
for new, unlabeled examples.

For example, for a city with a 
population of 550 000, we estimate

0.6768 * 550 000 = 372 240 cars.



What’s missing?

Linear regression



What’s missing?

New dataset: Apartment prices as a function of floor space.
Problem: Smaller apartments are in higher demand, so their price per square meter 
rate is higher.
→ Does not fit well with the straight line passing through the origin...

Linear regression



What’s missing?

Our model so far has been too limited. The hypothesis function was a 
straight line that had to pass through the origin...

In addition to the slope, we also introduce a "constant" (bias / intercept) 
parameter.

Former hypothesis: 

New hypothesis: 

Linear regression



Linear regression

The new hypothesis function:



Linear regression

The new hypothesis function:

θ1 the slope of the line

θ0 is the value where the line 
intersects the y-axis 
(the bias / intercept).



Linear regression - The least squares method

The loss function is still the Mean Squared Error (MSE):

However, the hypothesis function has changed.
What will the loss function graph look like?



Loss function J is still quadratic.

Since we have two parameters now, it is an elliptic paraboloid.

Linear regression - The least squares method



How do we know what direction to take in order to reduce the loss?

Linear regression - The least squares method



How do we know what direction to take in order to reduce the loss?

Linear regression - The least squares method

Let's use the gradient method: 
Let's move from θ' in the direction where 
the loss function curve slopes downwards!

This direction will be given by the gradient 
vector at θ'. 
The elements of the vector are the 
partial derivatives of the loss function J 
with respect to each parameter.



The partial derivatives of the loss function

Linear regression - The least squares method



The partial derivatives of the loss function

Linear regression - The least squares method



The partial derivatives of the loss functionIn partial differentiation, we 
differentiate the function with 
respect to one variable. In this 
case, we treat the other 
variables as constants.

The slope of the tangent
in the θ0 direction.

The slope of the tangent
in the θ1 direction.

Linear regression - The least squares method



The partial derivatives of the loss function

Linear regression - The least squares method

The slope of the tangent
in the θ0 direction.

The gradient vector: the direction of the steepest increase

The slope of the tangent
in the θ1 direction.



The partial derivatives of the loss function

Linear regression - The least squares method

The slope of the tangent
in the θ0 direction.

The gradient vector: the direction of the steepest increase

The slope of the tangent
in the θ1 direction.

The point of the actual 
parameters



The gradient descent algorithm with two parameters:

Linear regression - The least squares method



The gradient descent algorithm with two parameters:

alpha: the learning rate;
the size of the steps can be scaled with it

Linear regression - The least squares method



Applying gradient descent, T = 0 (before taking the first step)

We can choose the initial parameters (θ0, θ1) randomly.

Linear regression - The least squares method



Applying gradient descent, T = 1

Linear regression - The least squares method



Applying gradient descent, T = < many >

Linear regression - The least squares method



Applying gradient descent, T = < many >

θ0* = 23.159
θ1* = 0.6681

y = 0.6681·x + 23.159^

Linear regression - The least squares method



Is it guaranteed that we will find the optimal solution 
(minimum MSE loss) for linear regression using gradient descent?

Linear regression - The least squares method



Is it guaranteed that we will find the optimal solution 
(minimum MSE loss) for linear regression using gradient descent?

Yes, if the step size (alpha) 
is sufficiently small.

Linear regression - The least squares method



Is it guaranteed that we will find the optimal solution 
(minimum MSE loss) for any function using gradient descent?

Linear regression - The least squares method

Image sources: spektr @ scicomp.stackexchange.com



Is it guaranteed that we will find the optimal solution 
(minimum MSE loss) for any function using gradient descent?

No. We can reach 
one of the local minimum points, 
but if the loss function is not convex, 
then it is not guaranteed 
that this will be the global minimum.

Linear regression - The least squares method

Image sources: spektr @ scicomp.stackexchange.com



Is it guaranteed that we will find the optimal solution 
(minimum MSE loss) for any function using gradient descent?

No. We can reach 
one of the local minimum points, 
but if the loss function is not convex, 
then it is not guaranteed 
that this will be the global minimum.

Linear regression - The least squares method

Image sources: spektr @ scicomp.stackexchange.com

Mountain hiking in fog: We want to reach the deepest point 
of the terrain, but we can only feel which direction the terrain 
slopes downwards most under our feet...


