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Univariate linear regression

Example tasks so far:

x: Population of a city ‘ y: Number of cars in the city

x: Floor area of a flat ‘ y: Price of the flat

x: Weight of a patient ‘ y: Cholesterol levels of the patient



Univariate linear regression

Example tasks so far:

x: Population of a city ‘ y: Number of cars in the city
x: Floor area of a flat ‘ y: Price of the flat
x: Weight of a patient ‘ y: Cholesterol levels of the patient

We can only learn overly simplified models this way...
Many other factors can influence the value of the label.



Multivariate linear regression

New example tasks with multiple input variables (features):

X1.
X2.

X1.
X2.

X1.
X2.
X3.

Population of a city

GDP per capita in the city l ‘ y: Number of cars in the city

Floor area of a flat
Distance from city center

Weight of a patient
Age of a patient
Sex of a patient

l mm) y: Price of the flat

} mm) y: Cholesterol levels of the patient



Multivariate linear regression

two input variables
Until now: Univariate sample From now on: Bivariate sample
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Multivariate linear regression

Until now: Univariate sample

Hypothesis: Line on a plane

5 Cost of residential real estate (Budapest VIII., 2024)

100 A

80 1

60

Price (in M HUF)

40 A

201

0 20 40 60 80 100 120 140
Floor area (in sq. meters)

two input variables
From now on: Bivariate sample

Hypothesis: Plane in 3D space




Multivariate linear regression

n input variables
Until now: Univariate sample From now on: Multivariate sample

Hypothesis: Line on a plane Hypothesis:
n dimensional hyperplane in an
n+1 dimensional space

Cost of residential real estate (Budapest VIIl., 2024)

=

[=)] @ o N

o o o =}
| L L

Price (in M HUF)

+H
o
L

N
o
L

o
L

a;(j)’y(j) cR = R"™, y(j) cR



Multivariate linear regression
Hypothesis function - one input variable:
y~ 4§ = h(z) =061z + 6
Hypothesis function - two input variables:
Yy~ =h(z)=0xs + 0121 + 0O
Hypothesis function - n input variables:

y= Q — h(ZE) =0phz, + 60,1751 +

“‘+01$1 +90



Multivariate linear regression
Hypothesis function - n input variables:

y~4y=h(x)=0,x, +6, 12, 1 +---+ 6121 + 6
— n input variables, n+1 parameters

|.e., the loss function J: J: R 4R

1 oL - . . \ _
J(0,01,...,0,) = Y Z(Qnmg) 4 9n—1513f£1 4 ... _}_91335]) + 6y — y(J))2
=



Multivariate linear regression

Hypothesis function - n input variables:
y~9Y=nh(x)=0,x, +0p_12p_1+ -+ 0121 + 6

Is there a simpler way to formulate it?



Multivariate linear regression

Hypothesis function - n input variables:
y~9Y=nh(x)=0,x, +0p_12p_1+ -+ 0121 + 6

Is there a simpler way to formulate it?

In vector form: The estimated label is
the dot product of the input variables and parameters!

y~j=h(z)=(0,2Y)=> 6z
1=0



Multivariate linear regression

Hypothesis function - n input variables: Lo == 1

y~9y=h(z) =0z, + 0,12, 1+ -+ 6121 + 6o

In vector form: The estimated label is the
dot product of the input variables and parameters!

Y= h(:r;(j)) _ <9,:13(j)> _ Za@l‘i
i=0

An extra “dummy variable,” xo, must be introduced to obtain
the dot product. The value of xo is always 1.



Multivariate linear regression

Hypothesis function - n input variables: Lo == 1

Y=Y = h(:c) —0,x, + 0, 12,1+ -+ 60121 + 0y

y~§=h(z9)=(0,zY) = Z&imi
i=0

The hypothesis function can be written for all data points at once:

A

y~ 9 =h(z)=X0 X e R™"



c R"

c R™



Multivariate linear regression (2, 0) =3 2,

- - 1=0
90 dot product
6=1|..|| eR"
i ) (1) 7] - Hnr

1 1 ~(1 (1)

1 g 2 | (@)= gV~ [y

> m
T = .. . e R

I P Y™

h — XH — U =~
(:B) y y /\/\' y_pred = np.dot (X, theta)



Multivariate linear regression
Gradient descent - multivariate case

repeat until convergence {
fori<~1...n {

0

grad; = g«] (0) ) 1 & . . .
i _ (4) (4) )Y .. ()
\ S~ 5 J(8) = — E (Onzr + -+ gy’ — y(J))wi

j=1

fori<-1...n { The slope of the tangent in the i direction

0, =60, — a grad;
}
}



Multivariate linear regression

1) Calculate the gradient vector:

Gradient descent - multivariate case S elements are the partial derivatives of
the loss function with respect to each

il parameter 6i.
repeat until convergence { The gradient vector indicates the direction

fori<—1...n { in the current parameters in which the
loss function grows the most.

9
grad; = --J(0) 9 1 o . . |
i _ (4) (4) )Y.()
\ ~—— 2. J(6) = — E :(gnmn + oo+ bz’ — y(J))mi

fori<—1...n {

J=1

2) Update the parameters:
0; = 0; —agrad; \\e subtract the gradient vector multiplied by the learning

} rate from the old parameters.
(We take one step in the direction of the steepest decrease

' of the loss function...)



Multivariate linear regression

Gradient descent - multivariate case

The loss function remains quadratic, only the number of variables has
Increased.

— |t is still convex, so we are guaranteed to find the optimal solution.



Cost of residential real estate (Budapest VIIl., 2024)
20

Feature scaling

. 1 & . .
Problem: J(6,0:) = o Z(glx(y) + 0y — y9)?

The loss function, as we wish to see...



(Visualization: a single input variable, two parameters)

Feature scaling /

: 1 . .
Problem: J(69,6:) = 7 Z(olm(a) + 0y — yD))?

=1
A
15 4 A

The loss function, as we wish to see... The loss function in reality



(Visualization: a single input variable, two parameters)

Feature scaling I

Problem: J(6y,6,) = — Z(Olw(j) + 0y — yD))?

04
0 20 60 80 100 120 140
m . 1 K Floor area (in sq. meters)
B 0
3

While the coefficients of 81 (= x1) come from
the range [20, 150], the coefficient of Bois 1...

The loss function, as we wish to see... The loss function in reality



Image sources: Jannes Klaas, kaggle.com

Feature scaling

Problem: Gradient descent does not work well on such surfaces...



Image sources: Jannes Klaas, kaggle.com

Feature scaling

Feature scaling: Scaling input variables to the same order of magnitude

Without feature scaling With feature scaling

TEE=—>> ‘




Image sources: Jannes Klaas, kaggle.com

Feature scaling Loss function for 2 parameters -

top view (contour lines)

Feature scaling: Scaling input variables to the same order of magniude

Without feature scaling With feature scaling

CeE=—>

If the input variables vary greatly in magnitude, the
loss function will be extremely elongated. In this
case, convergence will be very slow.

For this reason, it is advisable to
scale the input variables to the
same order of magnitude.



Independently for
Feature scaling each variable:

Feature scaling: Scaling input variables to the same order of magnitude

- Min-max scaling to the [0, 1] interval:

G =z —min;({z})

b ma((aP}) - min (D))

Vi,7:x

- Standardization (mean = 0, standard deviation = 1):

G = ==} p: mean
? (f0) o: standard
o;({z:"}) deviation

Vi,j:x



Independently for

Feature scaling each variablet
Feature scaling: Scaling input variables X4 D
to the same order of magnitude o3| PP——

- Min-max scaling to X, it
the [0, 1] interval: %, | < T .
x.' "™ o [ X ]
- Standardization
(mean = 0, standard dev. = 1): X, | e b W B aE &

-15 -10 -05 00 05 10 15 20



Independently for

Feature scaling each variable!
Feature scaling: Scaling input variables X e W
to the same order of magnitude Nl PRI,
Min-max scaling: More sensitive to outliers \G
- Min-max scaling to Ry \ §
the [0, 1] interval: X, | . : @ i o
x1 <oo ° oo °
- Standardization .
(mean = 0, standard dev. = 1): e

-15 -10 -05 00 05 10 15 20



The two main types of tasks in supervised learning

Y| = oo
Classification: Discrete labels (The label set is finite)
‘Y‘ < 0 Example: Categorization of examples

- What is the profession of the person
in the image?



Classification

Example: Categorize the photos by the animals that appear in them!
What labels should we learn? One possible approach:

For example, let “dog” = 1, “cat” = 2.



Classification

Example: Categorize the photos by the animals that appear in them!
What labels should we learn? One possible approach:
For example, let “dog” = 1, “cat” = 2.

We can use regression. The category label closest to the estimate is the
one we estimate.



Classification

Example: Categorize the photos by the animals that appear in them!
What if we have more than two categories?
For example, let “dog” = 1, “cat” = 2, “parrot” = 3.

What'’s the problem with that?



Classification

Example: Categorize the photos by the animals that appear in them!
What if we have more than two categories?

For example, let “dog” = 1, “cat” = 2, “parrot” = 3.

What’s the problem with that?

In case of regression, we assume:

Y2 dog + V2 parrot = 1 cat ;

We need a different approach...



Classification

Example: Categorize the photos by the animals that appear in them!
Let’s estimate probabilities!

Label: What is the probability that a data point belongs to a given
category?



Binary classification

The simplest case: Binary classification (two categories)

h(z) = P(x is a cat)
h(x) =1 — P(z is a dog)

Y
Y

The estimate is a continuous value. Let P = 0.5 be the threshold.



Binary classification

The simplest case: Binary classification (two categories)

h(z) = P(x is a cat)
h(x) =1 — P(z is a dog)

Y
Y

The estimate is a continuous value. Let P = 0.5 be the threshold.

If our estimate (y hat) is greater than 0.5, we say “It's a cat.”
If it is less than 0.5, we say “It's a dog.”



Binary classification

The simplest case: Binary classification (two categories)

h(z) = P(x is a cat)
h(x) =1 — P(z is a dog)

Y
Y

The estimate is a continuous value. Let P = 0.5 be the threshold.

What can we do if our hypothesis function estimates a value
outside the interval [0,1]?



Binary classification

What can we do if our hypothesis function estimates a value
outside the interval [0,1]?



Binary classification

What can we do if our hypothesis function estimates a value
outside the interval [0,1]?

Estimates less than 0 can be considered as 0, and estimates greater than
1 can be considered as 1.



Binary classification

What can we do if our hypothesis function estimates a value
outside the interval [0,1]?

Estimates less than 0 can be considered as 0, and estimates greater than
1 can be considered as 1.

Since we are estimating probabilities, the labels are continuous values
In practice, so we can try linear regression!



Classification solved with linear regression - a counterexample

Example: We exposed people to radioactivity for a certain period of time.
Will they survive?

Linear regression

=O]
|y
o

1,false
[==]
0

Deceased [True
(=]
NS

—— Linear Regression Model
| @ Survival data

0 1 2 3 4 5
Exposure [hours]



Classification solved with linear regression - a counterexample

Example: We exposed people to radioactivity for a certain period of time.
Will they survive?

Linear regression

=O]
|y
o

y: Did they die?
(1: yes, 0: no)

1.false
[==]
0

'he fitted hypothesis

Deceased [True
(=]
o

—— Linear Regression Model
0.0 1 *e o i " @ Survival data

0 1 2 3 4 5
wrs]
How do we estimate a category (yes/no)? x: Duration of exposure (hours)



Classification solved

Decision boundary:

with linear regression - a counterexample

1z |§ = h(z) = 0.5}

Predictions with Linear regression
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: —— Linear Regression Model
: ® Training data
0.0 oo - Test data (predictions for new patients)
* threshold (decision boundary)
0 1 2 3 - 5 6

Exposure [hours]



Classification solved with linear regression - a counterexample

Decision boundary:

=0]

1,false

Deceased [True

12 A1
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Predictions with Linear regression

decision bounda
E / —— Linear Regression r-1;1del ‘
: ® Training data

' Test data (predictions for new patients)

* threshold (decision boundary)

0 1 2 3 a 5 £

Exposure [hours]

1z |§ = h(z) = 0.5}

... the set of x inputs where the
estimate of the hypothesis
function is exactly 0.5
(assuming that h is continuous)
— typically a (hyper)surface

- one variable: a point
- two variables: a line or curve
in the plane



Classification solved with linear regression - a counterexample

Decision boundary:
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1,false
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Predictions with Linear regression

decision bounda
E / —— Linear Regression r-1;1del ‘
: ® Training data

' Test data (predictions for new patients)

* threshold (decision boundary)

0 1 2 3 a 5 £

Exposure [hours]

1z |§ = h(z) = 0.5}

The decision boundary learned
by linear regression in this
specific example: x = 2.25

That is, our estimate will be that
the person died if they were
exposed to radiation for more
than 2 and a quarter hours.



Classification solved with linear regression - a counterexample

Could there be a problem
With th iS approach? Predictions with Linear regression
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Classification solved with linear regression - a counterexample

Could there be a problem
with this approach? e 7

Q

= 0]
=}
o

1. false

=}
o
f

Let’s add a single new data point!

=}
NN
.

We found a dead person
who had been exposed to
radiation for a full week.

Deceased [True
o
N

1 @ ! ! ! ! . @ Survival data
-

=}
o

0 25 50 75 100 125 150 175

- . . Exposure [hours]
What does linear regression learn this way?



Classification solved with linear regression - a counterexample

10 A1

Deceased [True = 1, false = 0]

I
N

0.0 1

Linear regression

I
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L
=

—— Linear Regression Model
® Training data
Test data {predictions for new patients)

* threshold (decision boundary)

0 1 2 3 3 5 6

Exposure [hours]
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: —— Linear Regression Model

: ® Training data

! Test data (predictions for new patients)
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Classification solved with linear regression - a counterexample

Linear regression

10 A1 T L2 ] D
e Incorrectly classified
g | data points
£ |
§ 0.4 - '

: 0.2 1 i

® Training data

—— Linear Regression Model

@ Test data (predictions for new patients)

Exposure [hours]

0.0 rT=—eot—o—= * ghreshold (decision boundary]
0 1 2 3 ( H 5

6

The new data point significantly influenced the decision

=0]

1.false

Deceased [True

10 A1

0.8 4

0.6 1

0.4

0.2 4

0.0

Linear regression

The new data point (x = 168 hours)

-+ significantly modifies the learned

hypothesis function of the linear
regression.

—— Linear Regression Maodel
@® Training data
@ Test data (predictions for new patients)

* threshold (decision boundary) /

0

boundary: it now falls at 3 hours and 48 minutes.

5 50 75 100 125 150 175
Exposure [hours]



Classification solved with linear regression - a counterexample

Linear regression is not ideal for learning classification tasks,
as it is very sensitive to outliers.

Instead of a straight line, what could we fit to the data points?



Classification - The sigmoid function

Sigmoid function

"""""""""""""" ' g(Z) — 1_|_t—z

Maps between 0 and 1:
|deal for estimating probabilities!

75 100



Classification - hypothesis function

How does this become a hypothesis function?

- Linear regression hypothesis function: hg (:13) — 91$ + 90 — @

1
1+e*

- Sigmoid function: g(Z) —



Classification - hypothesis function

How does this become a hypothesis function?

- Linear regression hypothesis function: hg (:13) — 91$ + 90 — @

- Sigmoid function: g(z) = 1+1€_z
Logistic regression: hg (:13) — g(@lw + 90) — : — 3?

1-+e—(012+69)



Classification - hypothesis function

Hypothesis function of (univariate) logistic regression:

hg(x) = g(61x + 0y) = 1

1_|_e—(91 $+90

How do the parameters affect the shape of the curve?

https://www.geogebra.org/graphing/f5x9h7cr

) — Y


https://www.geogebra.org/graphing/f5x9h7cr

Classification - hypothesis function

he(z) = g(br1z +60) = 4y = ¥

1+e(¢12+6p)

theta0 = 0
.

90 — O . tgzta1 =. 1




Classification - hypothesis function

he(z) = g(br1z +60) = 4y = ¥

1+e(¢12+6p)

6, — 4 aanis




Classification - hypothesis function

he(z) = g(br1z +60) = 4y = ¥

1_|_e—(91.’13+90)

theta0 = -4

2
— 4 thetal =4
1 ] 1

0o

01




Logistic regression

1) Training / fitting: We fit the hypothesis function to the dataset.

Logistic regression

o 1= o
= o [=4)
s L L
———
—_
=

ed [True = 1 false = 0] &
o

o
N
s
e

D
o
b=
°|
w
5@
5
5:0
- 0
1.8




Logistic regression
1) Training / fitting: We fit the hypothesis function to the dataset.
Decision boundary:  {z |y = h(z) = 0.5}

Decision boundary:
The set of x input points where h(x) = 0.5. P

|
o
"

=0]
o
(=]

— In our case, the decision boundary is
a single value on the x axis: = 1.9 hours

= 1,false
o
(=]

sed [True
=}
F<y

[=]
N

—— Logistic Regression Model
® Surviva | data

o
o

.0, 1 2 3 4 5 6
decision boundaryexposure [hours)



Logistic regression
1) Training / fitting: We fit the hypothesis function to the dataset.

Decision boundary:  {z |y = h(z) = 0.5}

2) Estimating labels to new data points:
- If h(x) < 0.5 — We estimate label: “0".
- If h(x) 2 0.5 — We estimate label: “1”.

ased [True = 1,false = 0]

0 1 2
decision boundaryexposure [hours)



Logistic regression

1)

2)

Training / fitting: We fit the hypothesis function to the dataset.
Decision boundary:  {z |y = h(z) = 0.5}

Decision boundary: x = 1.9 hours

Logistic regression

10 A

VI

S e

Estimating labels to new data points:
If x < 1.9 hours — We estimate label: “0”.
If x 2 1.9 hours — We estimate label: “1”.

ased [True = 1,false = 0]

® Survival data

0 1 2
decision boundaryexposure [hours]



Logistic regression

“We fit the hypothesis function to the dataset...”

How? What type of loss function should we use?
Is Mean Squared Error (MSE) loss a good choice?

1 & . .
_ (DY — ,00))2
I(0) = 5 D (ha(e?) 4/
where, hg (ZB) — g(g]_w + 90) — 1—|—6_(£1$+90) — g



Logistic regression

J(0) = 1 i(ho(w(j)) _ y(j)@

2m ‘3

MSE loss




Logistic regression

1 «— :
J(0) = o ;(hg(x(-”) — y(”)p MSE loss
where, hg (:13) — 9(9133 + 90) — ] e—(zwﬁf’o) — Q

Problem: The sigmoid is not convex, nor is its square...

— There may be multiple local minima
— Gradient descent does not necessarily
find the optimal solution



Logistic regression

Loss function for logistic regression:

_ J —log(hy(z)) ify =1
0 = { —109(10— he(z)) ify=0

where hg (:l}) — 9(91$ + 00) — 1 =9

1+e(612+6p)




Logistic regression

Loss function for Cost function
- . . —y =]
: B

logistic regression

[ log(he(@))  ity=1
J(0) = { —log(le— hg(xz)) ify=0

It can be derived that:
The loss function is convex. 117

(The second derivative of the | . . . | |
. . Vo 0.0 02 04 06 08 10
loss function is always positive) h thetax



Logistic regression

Loss function for Cost function
- . . —y =]
: B

logistic regression

_J —log(hy(z)) ify=1
70 = { —109(10— ho(z)) ify=0

Combining the two cases N
into a single equation?

0.0 02 0.4 06 0.8 10
h_theta(x)



Logistic regression

Loss function, combined form (logistic loss, binary crossentropy):

_ | —log(hg(z)) ify =1
70) = { log(1— hy(x)) ify—0

\ 4

J(0) = % f:[—y“’ log(he(z9))) — (1 — y) log(1 — hg(z"))]

\ J \ J
| I

= 0, if the true label (y) is 0 = 0, if the true label (y) is 1




Logistic regression

We need derivatives for gradient descent...
1 m

J(0) = — ;[—y“) log(he(z"))) — (1 — y)) log(1 — hy(z'")))]
ho(z) = 1_|_e_($1x+60)

5,70 = L (ha(a?) ~ 09

o 0) = = (ho(z?) — )l



Logistic regression

Gradient descent for logistic regression:

repeat until convergence {

g'r'a,do = B;ZOJ(OO’Hl) /

gradl = 8%1.](00,91) —

(90 = 00 — Q- g'r'ado
91 = 01 — - gra,dl




Logistic regression

Gradient descent for logistic regression:

repeat until convergence 9 _ 1 v @)y — @
0 {/ 00, 7(6) m ;(he (@7) = y7)
grado = a—e()J(eo, (91) 5 |
) — —J(0) = — (he(w(j)) _ y(j))x(j)
gT'CLdl - 3_91J(90’ 01) 891 m J:Zl
O ;=60 — - grady Remember: The hypothesis function is

not linear here!

91 = 01 — - gradl 1
} Q(w) — 1+e(01x—@




Univariate binary classification

Example tasks with a single input variable:

x: Duration of exposure to radiation ‘ y: Did the person die?
x: Population of a settlement ‘ y: Is the settlement a town?

x: Weight of an animal mm) vy:lIsitadogora cat?



Multivariate binary classification

Example tasks with multiple input variables (features):

x1: Duration of exposure to radiation

X2

X1
X2

X1
X2
X3

- Distance to radiation source

: Population of a settlement
: Annual number of tourists

: Weight of an animal
: Number of hairballs coughed up
: Degree of drooling

l m®) y: Did the person die?
l mm) y: Is the settlement a town?

} mm) y:lIsitadogoracat?



Multivariate logistic regression

Hypothesis function in case of two input variables:

1false = 0]
o
[=+] o

o
o

Deceased [True
o o
N =

o
o

Logistic regression

— o9 00

—— Logistic Regression Model
® Survival data

2 3 4 5 6
Exposure [hours] x

I

instead

??77?



Multivariate logistic regression

Hypothesis function in case of two input variables:

1false = 0] g

Deceased [True

o
N

o
(s3]

Logistic regression

00

® Survival data

—— Logistic Regression Model

2 3 4 5
Exposure [hours]

6

X

I

instead




Multivariate logistic regression

Decision boundary in case of two input variables:

1,false

Deceased [True

0] g

Logistic regression

*»—e

‘decisione surivaldata

—— Logistic Regression Model

I

instead

boundary i 5
Exposure [hours]

N

6
X 019 3 x 1

univariate decision boundary (point on x axis)



Multivariate logistic regression

Decision boundary in case of two input variables:

Logistic regression

le 1 «® o

v 0.
109 )

2 ] yo.
= 06 instead

:

£ 04

3

(]

—— Logistic Regression Model
decisione sunival data

0 1 boundary i 5 6 o

Exposure [hours]
bivariate decision boundary (Ilne in the input plane) J

'i




Multivariate logistic regression

Decision boundary in case of two input variables:

—” -
(—l—P—'—'ﬂ—l-H—ioH—l—'d-'-'-l-x'-) instead o e £°

decision bhoundary

The same from the top view...



Multivariate logistic regression (20, 0) = S 2,

90 dot product
0=1..|| eR"”
L 6|
1 g zl) '><m(1§,9> g((z®,6)) = g ~[ y® ]
x = ..
1 xgm) xﬁ{") _ i y(m) |




Multivariate linear / logistic regression
Gradient descent - multivariate case

repeat until convergence { Linear regression:

fori<1...n { 9 1 oM ) O GG
J 9 _ — 0’)’1, o + o« o _I_ 0 — J \
grad; = 2-J(0) «/ 9, (6) = — ;( z 0zl — y)a!
} Logistic regression:
fori<1...n m , .
{ O )=~ : — — 0| Y
0; = 0; — o grad; 00, M <= | 1 4 e~ (Oual+-+80a(")

}
}

The slope of the tangent in the 06i direction



Multivariate linear / logistic regression

Gradient descent - multivariate case 1) Calculate the gradient vector:
lts elements are the partial derivatives of

the loss function with respect to each

repeat until convergence { barameter 6.
fori<—1...n { The gradient vector indicates the direction
grad; = 3%‘7(9) in the current parameters in which the

loss function grows the most.
¥

fori< 1...n
{ 2) Update the parameters:

0; = 0; — a grad; \\e subtract the gradient vector multiplied by the learning

} rate from the old parameters.
1 (We take one step in the direction of the steepest decrease

of the loss function...)



Logistic regression
What have we achieved?

Logistic regression can be used to perform binary classification.

Gradient descent can find the globally optimal solution
for logistic regression.

Logistic regression
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Logistic regression
What have we achieved?

Logistic regression can be used to perform binary classification.

Gradient descent can find the globally optimal solution
fOr IOgIStIC reg reSSIOn Logistic regression
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Don't get confused: Logistic regression estimates
the probability of belonging to a category, which is a
continuous value.

However, the estimate is constrained between 0 and
1, so it can't be used to solve arbitrary regression
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problems. We'll use it to estimate probabilities, i.e., to
solve (binary) classification problems.
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