Deep Network

Developments
Lecture #4

Viktor Varga
Department of Artificial Intelligence, ELTE IK

Requirements

The content of the slides marked by this symbol will not be included in
the exams / tests.

Last week - Supervised learning

Given: The training sample, a set of (input, label) pairs

{(zW,yM),..., (=™, ym)}
rc XCR" yeY C RF

Task: The estimation of the label (the expected output) from the input

|.e., we search for a (hypothesis-)function h@ , for which:

ho(z) =9~y

Last week - Two main tasks in supervised learning

Regression: Continuous labels (The label set is infinite)

|Y| = Q0 Example: Number of cars or the age of a person

Last week - Example regression tasks

Example tasks for regression:

X1

X1
X2

X1
X2
X3

: Population of a city

: Floor area of a flat
: Distance from city center

: Weight of a patient
: Age of a patient
: Sex of a patient

mm) y: Number of cars in the city

l mm) y: Price of the flat

} ‘ y: Cholesterol levels of the patient

Last week - Linear regression /
Hypothesis function - one input variatﬂ:/ L S
y =y =h(z)=0z+ 0

Hypothesis function - two input variables:

s ow ox ow s
B
N O —"

N s ety o
B TR
i '..i ";:gf

Hypothesis function - n input variables:

Y=Y = h(CIZ) —0,x, +0, 1,1+ ---+61x1 + 69

(we cannot visualize the sample
space for higher dimensionality...

Last week - Linear regression (2, 0) =3 2,

_ - i—0
Matrix form o dot product
0= |..]| eR"
_ Loy
1 1 n B 7
1 :13§) 2V ><a3(1)’9> _ y(l) ~ [yW
xr = .. . c R™
RIS zn Y™ _

h(z) = X0 =9~
() y y /\/\' y_pred = np.dot (X, theta)

Last week - Linear regression with least squares

Goal: Find parameters where the value of the loss function is minimal!

Univariate case:
one input variable, two parameters

1 . .
J(O0,0l) — % Z(le(’) + 90 — y(J))z

j=1

J(60,6,)

0y, 07 = argmin J (6, 01)
00a01
©,0)—

s

Last week - Linear regression with least squares

Goal: Find parameters where the value of the loss function is minimal!

Multivariate case in matrix form:
n input variables, n+1 parameters, m data points (examples)

1
J(©) = o—[|X6 - ylls X e Rt g c R

(we cannot visualize the %
loss function in higher
dimensionality,
but it is still quadratic
and convex)

— argmin J(O)
O

Last week - Linear regression with least squares
Gradient descent - multivariate case

repeat until convergence {
fori<~1...n {

0

grad; = %J (9)) 1 & . . .
i _ (4) (4))Y .. ()
\ S~ 5 J(8) = — E (Onzr + -+ gy’ — y(J)):L'i

j=1

fori<1...n { The slope of the tangent in the 06i direction

0, =60, — a grad;
}
}

(Visualization: univariate case)

Last week - Linear regression with least squares

Applying gradient descent, T = 0 (before taking the first step)

- Cost of residential real estate (Budapest VIIl., 2024)

<)
100 1 -
° 4 L4 %
o~ 801 %® o —
@ —
2 ° ° <
= o0 ~
£ 40 N ™
20 - ///‘
0_
0 20 40 60 80 100 120 140

Floor area (in sq. meters)

We can choose the initial parameters randomly.

Last week - Linear regression with least squares

Applying gradient descent, T = 1

Cost of residential real estate (Budapest VIIl., 2024)

120
°
100 1 -
o °* %
°
~ 8041 .. Y —~—
E °,’ &
£ 190 » -
£ 401 N ™
20 -
0_
0 20 40 60 80 100 120 140

Floor area (in sq. meters)

Last week - Linear regression with least squares

Applying gradient descent, T = < many >

Price (in M HUF)

120

100 A

80 A

60 -

Cost of residential real estate (Budapest VIIl., 2024)

0 20 40 60 80 100 120
Floor area (in sq. meters)

140

J(60,6,)

©,0)

s

Another solution to the least squares method

Changes in the loss value during the steps of the gradient descent

Cost function

J | ™~ J=209135.18

Cost

J = 669.51

_ 4

0 100 200 300 400
Iterations

Another solution to the least squares method

Changes in the loss value during the steps of the gradient descent

Cost

Cost function

We need many iterations and we only
approximate the optimal parameters.
Is there no better way?

100 200 300
Iterations

Another solution to the least squares method

What do we know about the loss function?

40

—

& 30
E 20

g
™ 10

Another solution to the least squares method

What do we know about the loss function?

Quadratic (second-degree ~"
.)) QO 304
polynomial, may be multivariate) £,
:10\
— if the second-degree coefficient 2
15 20
is positive, then it is convex i o °

— it has a single local (and also global)
minimum

Another solution to the least squares method

What do we know about the loss function?

- Quadratic (second-degree ~"
.)) QO 304
polynomial, may be multivariate) £,
:10\
— if the second-degree coefficient 2
15
is positive, then it is convex i 10

— it has a single local (and also global)
minimum

What can we say about the minimum point (the optimal parameters)?

Another solution to the least squares method

S . 0 _ In the minimum of the loss function,
Vi=0...n: 00, J(e) =0 all partial derivatives are zero.
692 ™m 0 ¢

J=1

Another solution to the least squares method

;. .0 _
Vi=0...n: 89iJ(0)—0

0 IS () G () .0)
36,70 = 75 200 - o) el =0

— We can write the above equation for each parameter 6i (n+1 equations).

— We are looking for the value of each parameter 6i (n+1 unknowns).

Derivation of the normal equation is omitted on this course...

Another solution to the least squares method

The normal equation - an exact solution to the least squares problem
= (XTX)1XTy

f=X"y
v Moore-Penrose
pseudoinverse

theta = np.matmul (np.linalg.pinv(X), y)

Another solution to the least squares method

The normal equation - an exact solution to the least squares problem

0= (XTX) ' XTy

We can find the optimal parameters to a linear regression problem
(with least squares) in a single step, by using the formula above!
(X, y are known from the data)

Another solution to the least squares method

The normal equation - an exact solution to the least squares problem

= (X"X)'Xy

The regularized (L2) least squares solution:

=(X"X+

Al

_lXTy

In practice, we use the regularized version of the normal equation:
By choosing an appropriate lambda value, we ensure the stability of the
solution (and thus a valid input to the inverse operation).

Last week - Two main tasks in supervised learning

Y| = oo
Classification: Discrete labels (The label set is finite)
‘Y‘ < 0 Example: Categorization of examples

- What is the profession of the person
in the image?

Last week - Example (binary) classification tasks

Example tasks for (binary) classification:

x1: Duration of exposure to radiation ‘ y: Did the person die?

x1: Population of a settlement

x2: Annual number of tourists ‘ y: Is the settlement a town?
x1: Weight of an animal

x2: Number of hairballs coughed up - y: Is it a dog or a cat?

x3: Degree of drooling

Logistic regression

Last week - Logistic regression

he(z) = g(0o + 012) = ——y =¥

FaTES theta0 = 0

etad = theta0 = -4

b= . oy 11T
thetat = 1 thetal =4 thetat = 4
> 1//_ = - —®

3 -2 -1 0 \

Logistic regression hypothesis: Sigmoid ° Linear regression

Last week - Logistic regression
Logistic regression - Decision boundary {z |y = h(z) = 0.5}

Univariate sample Bivariate sample

Logistic regression

=0 g
[=] -
(=] o

: /

JE

~ 06

I

2

£ 04

D

B

802

a

2l — Logistic Regression Model
0.0 | decision e sunival data

boundary 2 5 6

decision boundaries

Last week - Logistic regression

Loss function for logistic regression: Logistic loss / Binary cross-entropy
1 & : : : .
J(0) = = [~y log(hg(z")) — (1 — y9)) log(1 — hg(x))]

m =1

h@ (:13) — L

1+e (012+6p)

Logistic loss (using the logistic regression hypothesis) is convex
— a single local (and global) minimum
— gradient descent will find the globally optimal parameters

®

sigmoid function (vectorized)

Logistic regression in NumPy

def sigmoid(self, z):
return 1 / (1 + np.exp(-z) + self.eps)

h = self. sigmoid(np.dot(X, self.theta)) the label prediction (y hat)

loss = np.mean(-y * np.log(h + self.eps) - \\
(1 - y) * np.log(l - h + self.eps)) loss value

gradient = np.dot(X.T, (h - y)) / y.size
self.theta -= self.lr * gradient a single step of gradient descent

(eps: to avoid division by zero)

Back to regression...

Linear regression worked well on a sample where the
linear combination of variables closely approximated the label.

Cars and Residents (Poland 2017)
y 50 =
%\ 45
@ 40 ° °
]

235

Now
(S =]
®

Number of cars (in 100
N
(%) (=]
®

%

1 2 3 4 5 6 7 x
Number of residents (in 100 thousands)

Back to regression... ®

What can we do when a linear approximation is not suitable?

L)
300 1
° ® 9
250 o ®
P
200 - ¥,
™ 150 = .}:'.
® } o®
100 A p o..,o o’
) o%p o
>0 > ". o°.°
o -.‘dou

Back to regression... ®

E.g., let’s assume y =~ az® 4+ bz + c . In this case, linear regression
does not provide very good results. What can we do?

300 4
®

250 o ©®

200 -

150 -

100 -

Polynomial regression

300 -

250 A

200

150 -

100 A

b

10

®

Polynomial regression

Hypothesis function

Univariate: hg(z) = 0y + b1 + Ooz* + . ..

Multivariate, e.g.,. hg(a}) =0y + 0121 + 0229 + 9333% + 04113% + 05129 + ...
Loss function (MSE):
2)(])
L 0N 02
J(0) = — ho(xV) — yV
(6) = 5= (hs(2?) — y)

j=1

Polynomial regression ®

ho(z) = 0y + 6121 + Orx9 + 0327 + 045 + Oz + ...

m

D> _(he(zt)) =y’

j=1

1
J(0) = —

(0) = 5—
Solution using gradient descent:

The loss function is differentiable.
— Gradient descent can be used to find good 0 coefficients.

Polynomial regression ®

hg(at) =0y + 0121 + 60529 + 931@1)+ 941%)+ Osx129 + ...

m . .
Now, we have exponents inside

1 . .
— § : (1)) — 42
J(O) T 9m 4 (h9 (:c ’) y”) the hypothesis function (and thus the loss).
J=1 Is this a problem?

Solution using gradient descent:

The loss function is differentiable.
— Gradient descent can be used to find good 0 coefficients.

Polynomial regression ®

hg(at) =0y + 0121 + 60529 + 931@1)+ 941%)+ Osx129 + ...

m

D> _(he(zt)) =y’

j=1

7(6) = 5

Solution using gradient descent:

The loss function is differentiable.
— Gradient descent can be used to find good 0 coeffigients.

We do not raise 8 parameters to the power.
— J remains quadratic with respect to the 8 parameters!

®

- Due to exponents, gradients associated with higher-order coefficients
can be extremely large/small.

- As we saw in multivariate linear regression,
the gradient method is sensitive to this.

Polynomial regression

Solution in practice:

Solution?

®

- Due to exponents, gradients associated with higher-order coefficients
can be extremely large/small.

- As we saw in multivariate linear regression,
the gradient method is sensitive to this.

Polynomial regression

Solution in practice:

Solution? ithout fFeatur o

= (o)

Polynomial regression ®

Solution:

Treat polynomial regression as if it was linear regression!

hg(m) =0y + 0121 + 0225 + 9333% -+ 9426% + 052129 + ...
... is transformed into:

ho(x) = 60y + 012y + Oy + O35 + Oy + Os + ...

Polynomial regression ®

ho(z) = 0y + 6121 + Ozz0 + 0323 + 0425 + Osz122 + . ..
... is transformed into:

ho(x) = 60y + 012y + Oy + O35 + Oy + Os + ...
— we substitute and calculate the powers of the variables in advance.
For example: Ty = :13%

Finally, we bring the new variables to the same order of magnitude using
feature scaling and solve the problem as a linear regression.

Polynomial regression

®

Univariate case: Vandermonde matrix

(2)?

()"

c R™

6 Rmxn

Feature scaling:

We treat x, x2, ..., xn as
separate variables and
scale them independently
of each other.

hz)=X0=9g~y

Polynomial regression

1

Multivariate case, for example:

1)

(
Lq Lo

(1) ((1)

Ty
A o (o
e R" Yy =

)2

(z

(1)
1

1
) (5

c R™

®

)2

E Rmxn

Feature scaling:

We treat x1, x2, x13, ... as
separate variables and
scale them independently
of each other.

h(a?)ZX@:Q%y

Splitting the sample
The life cycle of the model.

1. We train the model on the training set
2. We evaluate the model on the test set

The two sets must be disjoint!

Splitting the sample
The life cycle of the model.

1. We train the model on the training set
2. We evaluate the model on the test set

The two sets must be disjoint!

Do not use the test set for learning!
We use the test set to estimate how our trained model will
perform on new data points, not seen during training.

Splitting the sample

300

250 1

200 1

150 -

100 A

@ ftraining
e test

@ ;’ ®
o W%
;B W
o..’o..l.
0’0 ®e

10

Observing the loss curve during training

Perform polynomial regression on the following sample!

What degree polynomial should we fit?

® training []
3001 @ test
@ ®e
250 1 e °®
[
200 - & & ® o
g 0
™ 150 - N g
o
100 - ° [4
P 0." ®
50 - S oo
PN .’. .. Y
0l oo

Observing the loss curve during training

Perform polynomial regression on the following sample!

What degree polynomial should we fit?

300 A

250 1

200 1

150 A

100 A

® training
e test

10

With a single variable, it is clear from
looking at the graph that a second-
degree polynomial fits the sample well.

Unfortunately, we cannot visualize the
data like this with more than two
variables. Therefore, without additional
experimentation, we cannot tell what
degree polynomial would be ideal.

Observing the loss curve during training: underfitting

hg(ic) =60y +0ix

300 -

250 1

200

150

100 A1

Dataset and learnt hypothesis function

@ fraining &
e test

J(theta)

The training and test losses are
both (similarly) large.

Cost function over time

2000
=== fraining
1750 - — - ST

1500

bl | J _train= 700

1000 - k‘ J_test=700 ‘\

750 1 e TTTT— T —=—=—==—==================:

500

250

0 T T T T T T T T T
0 25 50 75 100 125 150 175 200
Iteration count

“high bias, low variance”

Observing the loss curve during training: “just right”

holx) = 6 O 1 + 01?2 Both the training and the test losses are
9() 0 T 01T + 0 small and both decrease over time.

Dataset and learnt hypothesis function 800 Cost function over time
@ ftraining @ === {raining
30 e 00 J train=400 — =
250 - 600 1
200 A __ 5001
3
T 400 A
™ 150 - -}
300 -
100
200 1
50 .
100 -
0 4
T T T T T T 0 T T T T T T
0 B 4 6 8 10 0 200 400 600 800 1000
X Iteration count

“balancing bias & variance”

Observing the loss curve during training: overfitting

hol(x) = 0 O + -+ 4+ Qo 22? The training loss decreases,
9() 0 T 1 T T) but the test loss increases.

Dataset and learnt hypothesis function Cost function over time

5001 @ ftraining 1400 1 === training

e 1200 J train= 250 — =
400

J_test =800
1000 { —
300 1 - i
S 8004 ¥
. &
200 - = 00 - ‘)/
100 el R
200 A1
o 0
0 2 4 6 8 10 0 1000 2000 3000 4000 5000
b Iteration count

“low bias, high variance”

®

With polynomial interpolation, we can even fit a polynomial exactly
to the training set.

Detour: Polynomial interpolation

Dataset and polynom interpolation J_traln = O

T J_test = 252507.67

300 test

350

250 1

200 A

10

Detour: Polynomial interpolation ®

With polynomial interpolation, we can even fit a polynomial exactly
to the training set. However, this is not useful in machine learning!

Dataset and polynom interpolation J_traln = O

T J_test = 252507.67

300 A test

A ninth-degree polynomial can be fitted to
ten points without any error.

If there is enough training data and the
hypothesis function is sufficiently complex, a
precise fit can be achieved, but this will be

- very far from the test data.

x — “Extreme overfitting”

Image source: Andrew Ng Machine learning video series

Under- and overfitting in case of classification

Under-fitting Appropriate-fitting Over-fitting
(too simple to (forcefitting — too
explain the good to be true)

variance)

Image source: Andrew Ng Machine learning video series

Under- and overfitting in case of classification

Classification with two input variables (top view of the sample/hypothesis graph)

The learned decision boundary inthree cases: T

Overly simple;-adequately expressive, and overly ng - too
complex models! be true)

Image source: Andrew Ng Machine learning video series

Under- and overfitting in case of classification

Classification with two input variables (top view of the sample/hypothesis graph)

Under-fitting Appropriate-fitting Over-fitting

(too SI"T‘F"E o An overly complex model is 'capable of "memorizing"
e:grf;:cte)e individual training examples and precisely shaping the
decision boundary around them (significant overfitting).

Image source: Andrew Ng Machine learning video series

Under- and overfitting in case of classification

Classification with two input variables (top view of the sample/hypothesis graph)

/ Under-fitting Appropriate-fitting Over-fitting

Logistic regression learns a linear decision surface, ;t“rut:)o
thus overfitting is not expected
(unless the training set size is minimal).

Image source: sastanin @ Stack Exchange

Overfitting in deep neural networks

Example: Categorizing photos

If the deep network is powerful enough and has enough learnable
parameters, it may learn the task in an undesirable way.

Image source: sastanin @ Stack Exchange

Overfitting in deep neural networks

Example: Categorizing photos

If the deep network is powerful enough and has enough learnable
parameters, it may learn the task in an undesirable way.

For example, it "memorizes"
every single image in the training
set with a specific pattern.

...even a unique JPEG compression
artifact!

Avoiding underfitting and overfitting

Our goal is to ensure that our model does not underfit or overfit.
Instead, we want to find the "just right" model!

How can we avoid underfitting and overfitting?

Avoiding underfitting and overfitting

Our goal is to ensure that our model does not underfit or overfit.
Instead, we want to find the "just right" model!

How can we avoid underfitting and overfitting?

Whether under- or overfit, the trained model will perform
poorly when we try to estimate labels for new, unlabeled
examples that were not seen during training

— therefore, we want to avoid these phenomena.

How to deal with underfitting?

Underfitting: The complexity of our model is too low to accurately
approximate the labels from the input. The task is too difficult.

Solution: A more complex model is needed to reduce estimation error.

How to deal with underfitting?

Underfitting: The complexity of our model is too low to accurately
approximate the labels from the input. The task is too difficult.

Solution: A more complex model is needed to reduce estimation error.

Example: We can try to use linear regression for complex tasks, such as
estimating the age of celebrities from photographs. However, the model is
severely underfitted, as linear regression can only produce age estimates from
a linear combination of pixel brightness, which is not a good approach for age
estimation. A more complex model, such as a convolutional neural network, may

be more suitable for the task.

How to deal with overfitting?

Overfitting: The model is complex enough to accurately learn the
specifics of individual elements of the training set, losing its ability to

generalize.
The overfitted model performs poorly on the test set.

How to deal with it?

How to deal with overfitting?

Overfitting: The model is complex enough to accurately learn the
specifics of individual elements of the training set, losing its ability to

generalize.
The overfitted model performs poorly on the test set.

Solutions:

- Use a simpler model (e.g., fewer parameters)!

How to deal with overfitting?

Overfitting: The model is complex enough to accurately learn the
specifics of individual elements of the training set, losing its ability to

generalize.
The overfitted model performs poorly on the test set.

Solutions:

- Obtain more training datal!

How to deal with overfitting?

Obtain more training data! hg (a:) =60y +601x+---+ 69 z”

Dataset and learnt hypothesis function Dataset and learnt hypothesis function
5001 @ training e training @
o test 3001 @ test
4001 250
300 1 200 -
200
100 A
100 -
SO P
0 0
0 2 4 6 8 10 0 2 4 6 8 10
b X
X.. . | =10 J_train = 250 X.. . | =50 J_train =400
train | — train | —

J test =800 J test=400

How to deal with overfitting?

Obtain more training data!

Problem: Typically, we have no access to enough labeled training data
to prevent overfitting in a deep neural network with hundreds of millions of

parameters.

We need alternative methods...

How to deal with overfitting?

Overfitting: The model is complex enough to accurately learn the
specifics of individual elements of the training set, losing its ability to

generalize.
The overfitted model performs poorly on the test set.

Solutions:

- Regularization methods (e.g., L2 regularization)

How to deal with overfitting?

Observation: When fitting higher-degree polynomials, the coefficients
(the B parameters) typically increase as the fit becomes more and more
accurate.

Dataset and learnt hypothesis function Dataset and polynom interpolation

> 150 A1

0 2 4 6 8 10 0 2 4 6 8 10

0=1[1.,7.46,0.82, 0.06, 0.005, 0 = [[-2229., 7234., -9545., 6756.,
0.0004, 0.,0.,0.,0.,,0.] -2843., 743., -121., 12.05, -0.66, 0.0195]

How to deal with overfitting?

Observation: When fitting higher-degree polynomials, the coefficients
(the B parameters) typically increase as the fit becomes more and more

accurate.
Penalizing large coefficients (parameters) can help!

How?

How to deal with overfitting?

Observation: When fitting higher-degree polynomials, the coefficients
(the @ parameters) typically increase as the fit becomes more and more
accurate.

Let's include a penalty in the loss function:

Pl.: hg(CB) :90 +91£U—|-'°°-|-995139

How to deal with overfitting?

Observation: When fitting higher-degree polynomials, the coefficients
(the B parameters) typically increase as the fit becomes more and more

accurate. L2-regularization term:
Penalizing large parameters
Let's include a penalty in the loss function:

When A = 0: The original

Pl.: hO (CE) — 90 + 91513 WS 99 CI)g model without regularization
MSE loss: Penalizing the label estimation error Whgn Als .to.o .h'gh: tis
l easier to minimize the loss
1 ™ _ R n by learning all zero
J(0) = v, Z(h(m)(]) —y)2 4)\2922 parameters instead of
M= i=1 solving the task...

How to deal with overfitting?

Observation: When fitting higher-degree polynomials, the coefficients
(the @ parameters) typically increase as the fit becomes more and more
accurate.

Let's include a penalty in the loss function:

Pl.: hg(CE) =X} —|—91£U—|-'°°—|-995139

MSE loss: Penalizing the label estimation error
A

| \ :
1 & . . n The bias parameter (60)
J(0) = o E (R(x)) — y)?2 + X % 2‘912 is not penalized.
j=1 i

How to deal with overfitting?

L2 regularization: he (33) =60) +0x+ -+ 99:139

| Xprain| = 10 J(6) = —

- 2m

Dataset and learnt hypothesis function

5001 @ training
e test

400 -

300 -

200 1

100 A

m

j=1

Z(h(w)(j) —y)? 4)‘ZH?
i=1

Dataset and learnt hypothesis function

@ ftraining

How to deal with overfitting?
L2 regularization: he (:B) =60y +601x+---+ 6y z”
Xirain| =10 (0) = -3 @) — 49y +[r 3¢
1=1

Can also help when training data is scarce.

Dataset and learnt hypothesis function Dataset and learnt hypothesis function
5001 @ training @ fraining
e test 300 A
4001 250
300 1 200 -
- -
150
200 1
100
100 -
50 g
0 1 0
0 2 4 6 8 10 0 2 4 6 8 10

How to deal with overfitting?

L2 regularization: ho (a:) = 90 + 91513 + -+ (99 wg
1 m n
J(0) = +HA 62
(0)= 5 207~ 430

L2 regularization is not only effective for polynomial regression.

Experience shows that, in general, weights (parameters) also increase in
the case of neural networks when overfitting occurs.

L2 regularization is just one example. There are many types of regularization
methods that reduce overfitting by applying some kind of constraint during learning.

How to deal with overfitting?

Overfitting: The model is complex enough to accurately learn the
specifics of individual elements of the training set, losing its ability to

generalize.
The overfitted model performs poorly on the test set.

Solutions:

- Early stopping

How to deal with overfitting?

Early stopping: Overfitting often inevitably occurs after a certain number
of iterations when training deep neural networks. Early stopping is
generally an effective solution.

AJ Stop here

How to deal with overfitting?

Early stopping: Overfitting often inevitably occurs after a certain number
of iterations when training deep neural networks. Early stopping is

generally an effective solution. Stop training if Jiest does not

improve anymore and use the
parameters from this state

How to deal with overfitting?

Early stopping:
y PpINg New loop condition: Loop, while Jtest keeps reducing.

fori<—1...n {
0
gradi—a—oiJ(H)
}

fori<—1...n {

0; =0, — agrad;

}
}

How to deal with overfitting?

Early stopping:
y PpINg New loop condition: Loop, while Jtest keeps reducing.

repeat-until convergenee— { (We should be patient for a

fori<—1...n { J while and not stop on the first
o sign of a plateauing test loss!)

grad; = 8101-‘] (9) A 2
test
} |

fori<—1...n {

0; =0, — agrad;
}
}

How to deal with overfitting?

Early stopping:
y PpINg New loop condition: Loop, while Jtest keeps reducing.

fori<—1...n {
0
g'ra,di—a—eiJ(H)
}

fori<—1...n {

0; =0, — agrad;

}

}

Can we see the problem with this technique?

Early stopping
We stated that we should not train the model using the test set.

What is actually happening?

Early stopping

We stated that we should not train the model using the test set.

What is actually happening?

We adjust the model to the test set,
as we stop training when we have
presumably achieved the smallest
possible error on the test set.

This is cheating...

Splitting the sample
New approach:

Training set, validation set, test set

For example, 50%, 25%, 25% of the sample

Splitting the sample
New approach:

Training set, validation set, test set

For example, 50%, 25%, 25% of the sample

In critical applications, proportions can change, e.g., 20%, 10%, 70%.
We expect the test set to enable us to estimate the future performance of the trained
model as accurately as possible, based on data that was unseen during training.

Validation set, hyperparameters

We will use the validation set to optimize the following parameters:

- Learning rate (alpha)
- Polynomial degree, or neural network architecture
(layers, number of neurons, etc.)
- Number of iterations for the gradient method (early stopping)

Such parameters are called hyperparameters.

We will use the validation set to find optimal hyperparameters.

Hyperparameters

Finding the model with the lowest errors thus consists of two
optimization tasks.

Until now: 6* = argming J(6)

From now: *,0* = argmin, argming Jy(6)

b

p*: Optimal hyperparameters W: hyperparameters

Model training procedure
The task: ¥*, 0" = argminy argming Jy(6)

1) Select a new hyperparameter configuration W.
2) Optimize the model parameters (8) on the training set with gradient descent.

3) Evaluate the trained model on the validation set, then GOTO 1

Finally:

* := The hyperparameter configuration with the best performance on the

validation set.
* := The trained model parameters with hyperparameters W*.

Evaluate model with parameters 8* and hyperparameters W* on the test set.

Optimizing hyperparameters

Gradient descent cannot generally be used for this purpose
(It is not always possible to specify a differentiable loss function w.r.t.
hyperparameters).

Common techniques:
- Manual trial and error
- Grid search
- Random search
- Bayesian optimization
- Evolutionary/genetic algorithms

Image source: https://medium.com/analytics-vidhya/

Selecting the validation set

Cross validation

Validation Training
Fold Fold
1st — Performance
»
% 2nd . — Performance ,
Hr
=
@ 3rd . — Performances |- Pperformance
Q ;38
© =73 Z Performance,
o 4th . — Performance 4 =
>
5th .—> Performance g

Image source: https://medium.com/analytics-vidhya/

Seleoting the validation set A popular technique for

evaluating hyperparameters.
It is most useful when we
have little data available for
training/validation.

Cross validation

Validation Training
Fold Fold
1st — Performance
»
% 2nd . — Performance ,
Hr
=
® 3rd . — Performances |- Pperformance
Q ;38
© =73 Z Performance,
o 4th . — Performance 4 =
>
5th .—> Performance g

Image source: Egm4313.s12 at English Wikipedia

The biological neuron model

I‘Q —

Outputs

Myelin sheat

Myelinated axon

r o

The functioning of biological neurons simplified @

The functioning of brain cells

Action

potential
+40
z 5
£ S 2
o O I °
=) IS 12
S o)
=) =.
= =3 5
() [V}
Q 4
o
>

55 Threshold

70 k_\\ Resting state

St|mulusT Refractory
period

0 1 2 3 4 5
Time (ms)

The functioning of biological neurons simplified ®

The functioning of brain cells

- Membrane potential: The voltage difference between the inner and
outer walls of the cell

- In the absence of input, the membrane potential continuously
decreases to a resting level.

- The membrane potential increases in response to input.

- Inputs arriving at different branches (dendrites) are amplified or
attenuated (can also be negative) with different weights.

- When the membrane potential reaches a threshold (specific to each
neuron), the neuron “fires” and charge passes through the output.

The biological neuron model :

What does its functioning resemble?

Dendrite

Axon terminal

..
/ 2
I

lJ —

Cell body
_/
Outputs

Myelin sheat

T——
'Q»o

Myelinated axon

-

The artificial neuron model (Rosenblatt, 1958)

e,
e A
2
y
Inputs — 0. Z g(,) .
Output
0, | |
Sum Activation
Function

The simplified, discretized model of a biological neuron. What does it resemble?

The artificial neuron model (Rosenblatt, 1958)

0, hiz) =9(X0) =9 =y
0, 9
Inputs — 0. Z o(.) B
Output
. | | \
Sum Activation
Function

g can be a sigmoid or
other activation functions

An artificial neuron is a (multivariate) logistic regression if g is sigmoid!

Building blocks of neural networks

Artificial neurons are the building blocks of one of the basic types of
artificial neural networks (the Multilayer Perceptron, MLP).

x
w
<>

Building blocks of neural networks

Artificial neurons are the building blocks of one of the basic types of
artificial neural networks (the Multilayer Perceptron, MLP).

X4 / \

Inputs —
X2

nnnnnn

e~]

oy,

ol S

The functioning of biological neurons simplified ®

Differences from the artificial neuron model:

- Continuous signal in the nerve cell instead of discrete steps.:
— Sum in artificial neurons, integral in nerve cells.

The functioning of biological neurons simplified ®

Differences from the artificial neuron model:

- In a nerve cell, nonlinearity does not have to be

continuous (Heaviside step function).
— In an artificial neuron, continuous, a differentiable nonlinearity

is required.

O
¢

(and the derivative should not be zero everywhere...)

The functioning of biological neurons simplified ®

Differences from the artificial neuron model:

- The weight of a nerve cell is either always negative or always positive;
the sign does not change (excitor vs. inhibitor)
— In an artificial neuron, the sign of the weight can change.

Summary

May be included in tests / exam:

- ldentifying and handling of under- and overfitting, hyperparameters,
validation set
- Atrtificial neural network model

Will not be included in tests / exam:

- Polynomial regression
- Polynomial interpolation
- The biological neuron model and differences from the artificial model

