

Deep Network Developments

Lecture #4

Viktor Varga
Department of Artificial Intelligence, ELTE IK

Requirements

The content of the slides marked by this symbol **will not be included in the exams / tests.**

Last week - Supervised learning

Given: The training sample, a set of (input, label) pairs

$$\{(x^{(1)}, y^{(1)}), \dots, (x^{(m)}, y^{(m)})\}$$

$$x \in X \subset \mathbb{R}^n, y \in Y \subset \mathbb{R}^k$$

Task: The estimation of the label (the expected output) from the input

i.e., we search for a (hypothesis-)function h_θ , for which:

$$h_\theta(x) = \hat{y} \approx y$$

Last week - Two main tasks in supervised learning

Regression: Continuous labels (The label set is infinite)

$|Y| = \infty$ **Example:** Number of cars or the age of a person

Classification: Discrete labels (The label set is finite)

$|Y| < \infty$ **Example:** Categorization of examples

- What is the profession of the person in the image?

Last week - Example regression tasks

Example tasks for regression:

x_1 : Population of a city y : Number of cars in the city

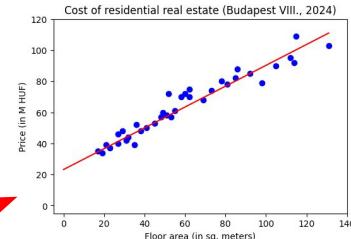
x_1 : Floor area of a flat
 x_2 : Distance from city center y : Price of the flat

x_1 : Weight of a patient
 x_2 : Age of a patient
 x_3 : Sex of a patient y : Cholesterol levels of the patient

Last week - Linear regression

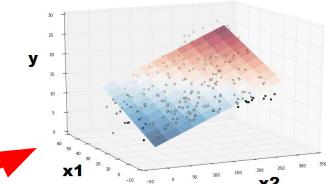
Hypothesis function - **one input variable**:

$$y \approx \hat{y} = h(x) = \theta_1 x + \theta_0$$



Hypothesis function - **two input variables**:

$$y \approx \hat{y} = h(x) = \theta_2 x_2 + \theta_1 x_1 + \theta_0$$



Hypothesis function - **n input variables**:

$$y \approx \hat{y} = h(x) = \theta_n x_n + \theta_{n-1} x_{n-1} + \cdots + \theta_1 x_1 + \theta_0$$

(we cannot visualize the sample space for higher dimensionality...)

Last week - Linear regression

Matrix form

$$\theta = \begin{bmatrix} \theta_0 \\ \dots \\ \theta_n \end{bmatrix} \in \mathbb{R}^n$$

$$x = \begin{bmatrix} 1 & x_1^{(1)} & \dots & x_n^{(1)} \\ \dots & \dots & \dots & \dots \\ 1 & x_1^{(m)} & \dots & x_n^{(m)} \end{bmatrix} \quad \langle x^{(1)}, \theta \rangle = \hat{y}^{(1)} \approx \begin{bmatrix} y^{(1)} \\ \dots \\ y^{(m)} \end{bmatrix} \in \mathbb{R}^m$$

$$h(x) = X\theta = \hat{y} \approx y \quad \text{y_pred} = \text{np.dot}(X, \theta)$$

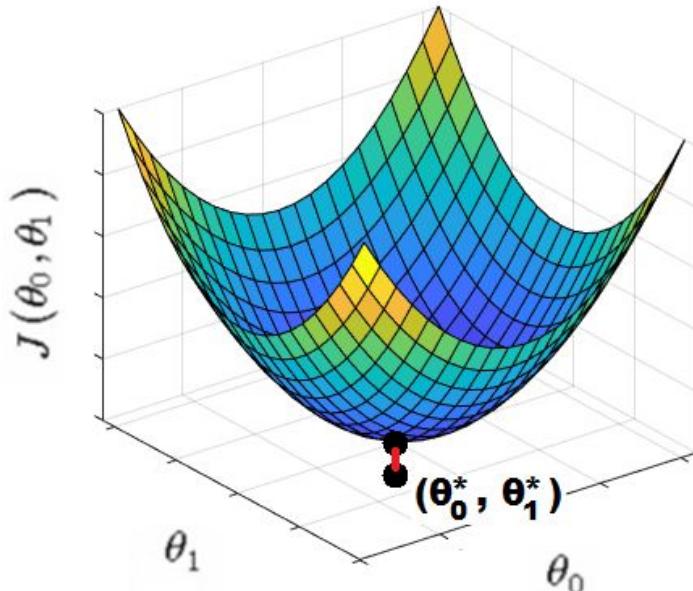
$$\langle x^{(j)}, \theta \rangle = \sum_{i=0}^n x_i^{(j)} \theta_i$$

dot product

Last week - Linear regression with least squares

Goal: Find parameters where the value of the loss function is minimal!

Univariate case:
one input variable, two parameters



$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{j=1}^m (\theta_1 x^{(j)} + \theta_0 - y^{(j)})^2$$

$$\theta_0^*, \theta_1^* = \underset{\theta_0, \theta_1}{\operatorname{argmin}} J(\theta_0, \theta_1)$$

Last week - Linear regression with least squares

Goal: Find parameters where the value of the loss function is minimal!

Multivariate case in matrix form:
n input variables, **n+1** parameters, **m** data points (examples)

$$J(\Theta) = \frac{1}{2m} \|X\theta - y\|_2^2 \quad X \in \mathbb{R}^{m \times n+1}, \theta \in \mathbb{R}^{n+1}$$

(we cannot visualize the loss function in higher dimensionality,
but it is still quadratic and convex)

$$\Theta^* = \underset{\Theta}{\operatorname{argmin}} J(\Theta)$$

Last week - Linear regression with least squares

Gradient descent - multivariate case

repeat until convergence {

for $i \leftarrow 1 \dots n$ {

$$grad_i = \frac{\partial}{\partial \theta_i} J(\theta)$$

$\frac{\partial}{\partial \theta_i} J(\theta) = \frac{1}{m} \sum_{j=1}^m (\theta_n x_n^{(j)} + \dots + \theta_0 x_0^{(j)} - y^{(j)}) x_i^{(j)}$

for $i \leftarrow 1 \dots n$ {

$$\theta_i = \theta_i - \alpha grad_i$$

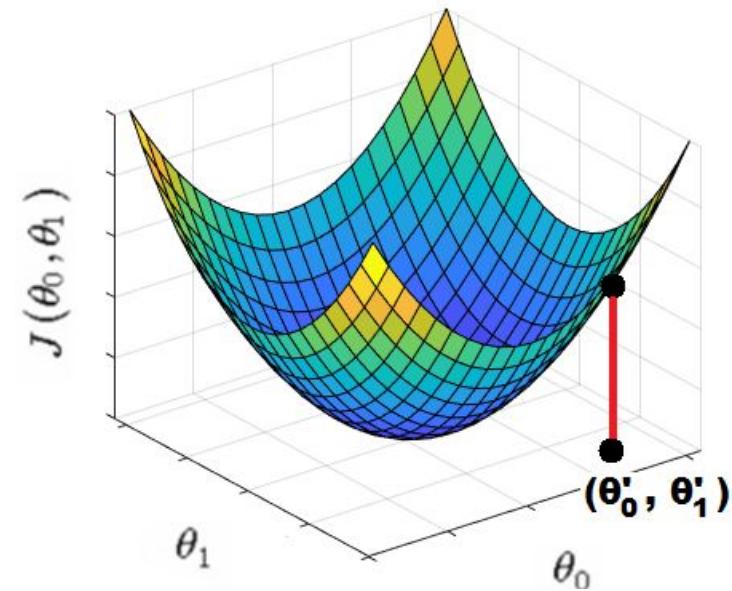
}

}

The slope of the tangent in the θ_i direction

Last week - Linear regression with least squares

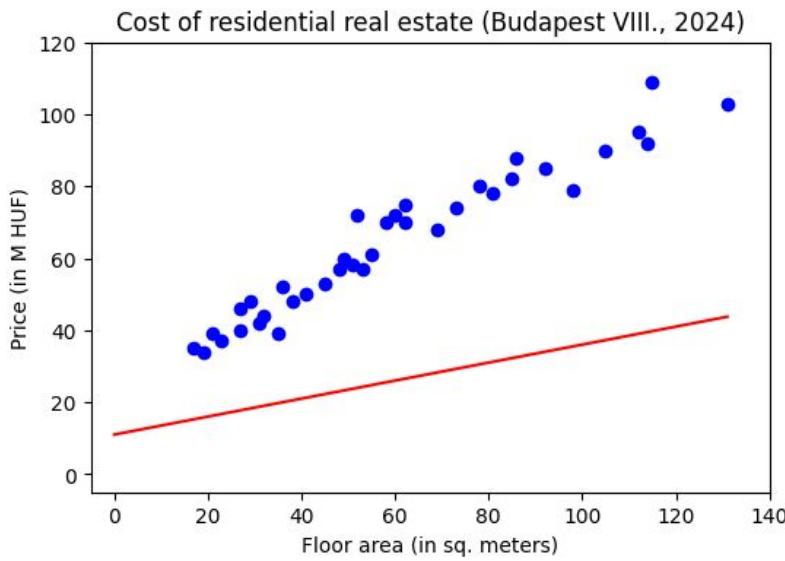
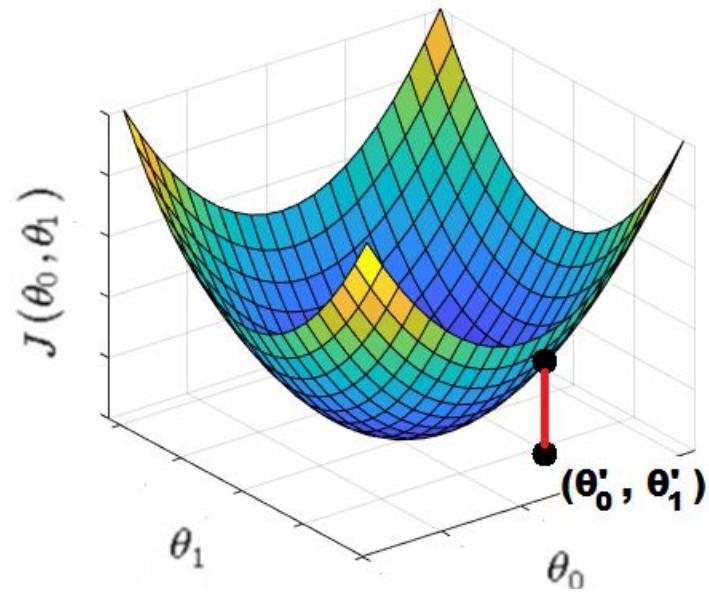
Applying gradient descent, $T = 0$ (before taking the first step)



We can choose the initial parameters randomly.

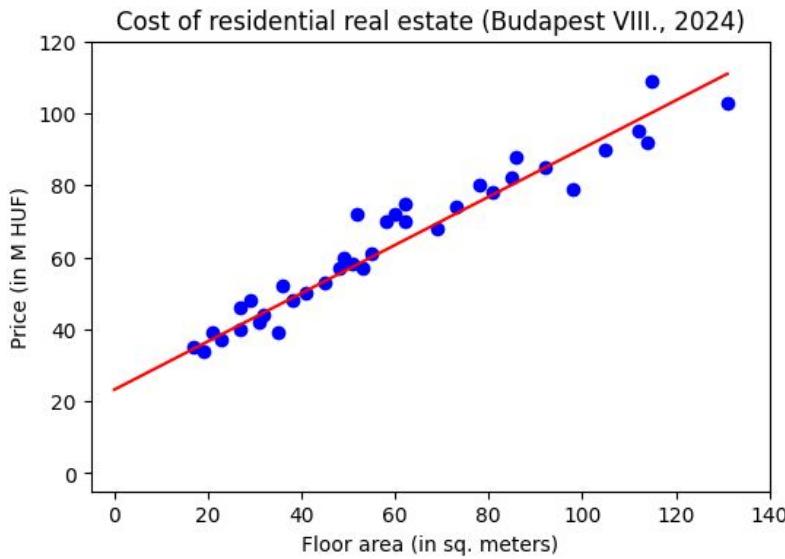
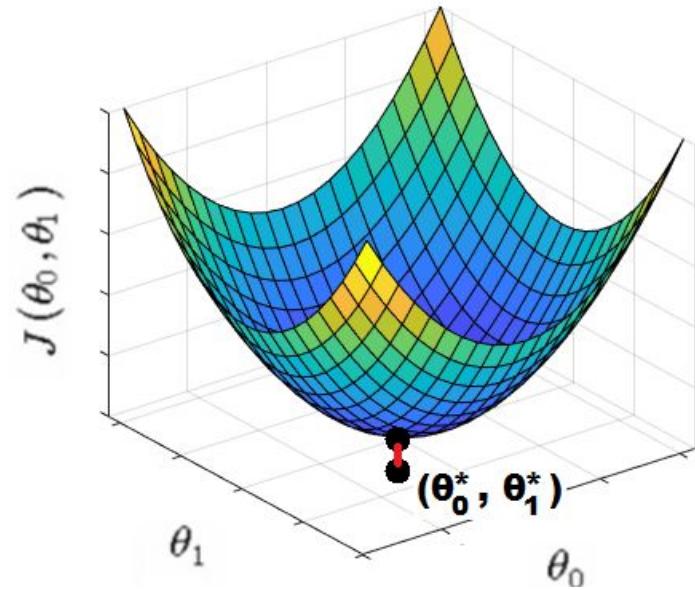
Last week - Linear regression with least squares

Applying gradient descent, $T = 1$



Last week - Linear regression with least squares

Applying gradient descent, $T = < \text{many} >$



Another solution to the least squares method

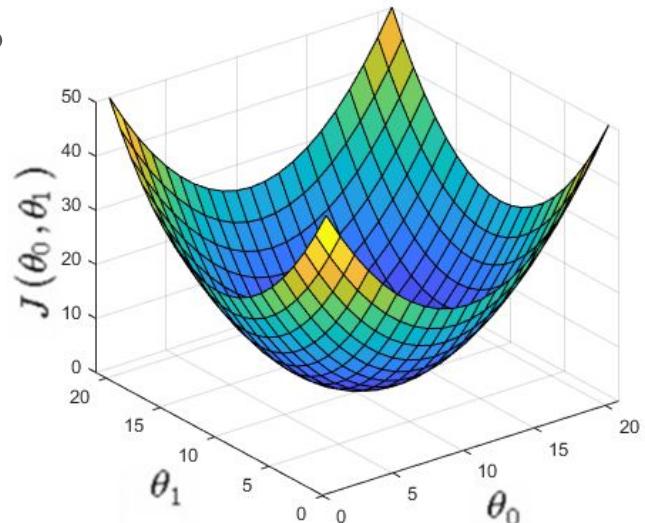
Changes in the loss value during the steps of the gradient descent

Another solution to the least squares method

Changes in the loss value during the steps of the gradient descent

Another solution to the least squares method

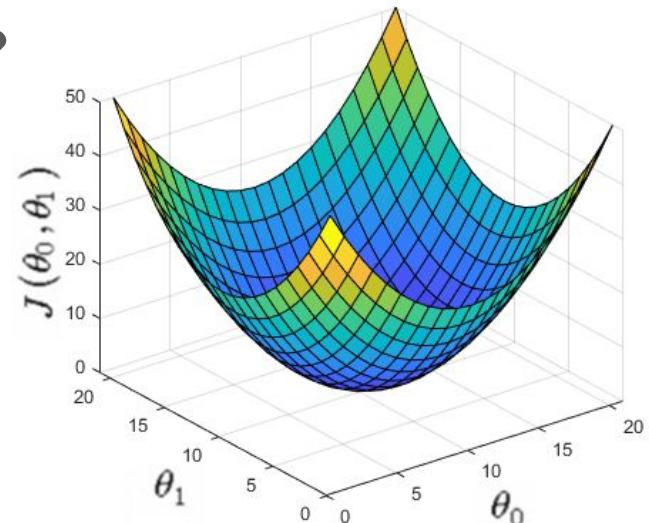
What do we know about the loss function?



Another solution to the least squares method

What do we know about the loss function?

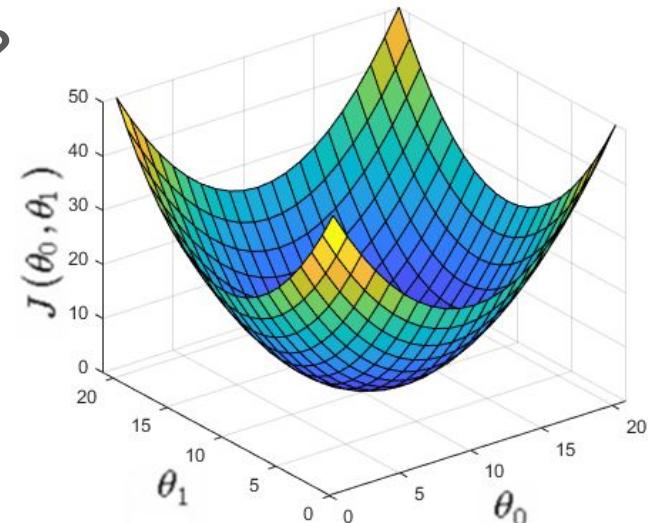
- **Quadratic** (second-degree polynomial, may be multivariate)
 - if the second-degree coefficient is positive, then it is **convex**
 - it has a **single** local (and also global) **minimum**



Another solution to the least squares method

What do we know about the loss function?

- **Quadratic** (second-degree polynomial, may be multivariate)
 - if the second-degree coefficient is positive, then it is **convex**
 - it has a **single** local (and also global) **minimum**



What can we say about the minimum point (the optimal parameters)?

Another solution to the least squares method

$$\forall i = 0 \dots n : \frac{\partial}{\partial \theta_i} J(\theta) = 0$$

In the minimum of the loss function,
all partial derivatives are zero.

$$\frac{\partial}{\partial \theta_i} J(\theta) = \frac{1}{m} \sum_{j=1}^m (\theta_n x_n^{(j)} + \dots + \theta_0 x_0^{(j)} - y^{(j)}) x_i^{(j)} = 0$$

Another solution to the least squares method

$$\forall i = 0 \dots n : \frac{\partial}{\partial \theta_i} J(\theta) = 0$$

$$\frac{\partial}{\partial \theta_i} J(\theta) = \frac{1}{m} \sum_{j=1}^m (\theta_n x_n^{(j)} + \dots + \theta_0 x_0^{(j)} - y^{(j)}) x_i^{(j)} = 0$$

- We can write the above equation for each parameter θ_i (**n+1 equations**).
- We are looking for the value of each parameter θ_i (**n+1 unknowns**).

Derivation of the normal equation is omitted on this course...

Another solution to the least squares method

The **normal equation** - an **exact solution** to the least squares problem

$$\theta = (X^T X)^{-1} X^T y$$

$$\theta = X^+ y$$

Moore-Penrose
pseudoinverse

```
theta = np.matmul(np.linalg.pinv(X) , y)
```

Another solution to the least squares method

The **normal equation** - an **exact solution** to the least squares problem

$$\theta = (X^T X)^{-1} X^T y$$

We can find the optimal parameters to a linear regression problem
(with least squares) in a single step, by using the formula above!
(X, y are known from the data)

Another solution to the least squares method

The **normal equation** - an **exact solution** to the least squares problem

$$\theta = (X^T X)^{-1} X^T y$$

The **regularized (L2) least squares solution**:

$$\theta = (X^T X + \boxed{\lambda I})^{-1} X^T y$$

In practice, we use the regularized version of the normal equation:
By choosing an appropriate lambda value, we ensure the stability of the solution (and thus a valid input to the inverse operation).

Last week - Two main tasks in supervised learning

Regression: Continuous labels (The label set is infinite)

$$|Y| = \infty$$

Example: Number of cars or the age of a person

Classification: Discrete labels (The label set is finite)

$$|Y| < \infty$$

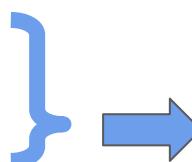
Example: Categorization of examples

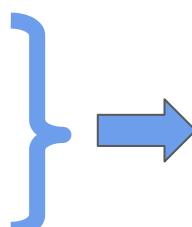
- What is the profession of the person in the image?

Last week - Example (binary) classification tasks

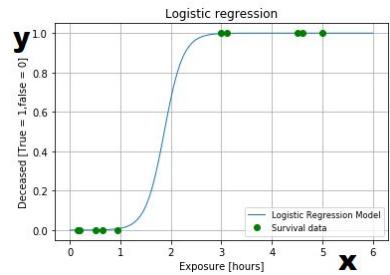
Example tasks for (binary) classification:

x_1 : Duration of exposure to radiation y : Did the person die?

x_1 : Population of a settlement
 x_2 : Annual number of tourists  y : Is the settlement a town?

x_1 : Weight of an animal
 x_2 : Number of hairballs coughed up
 x_3 : Degree of drooling  y : Is it a dog or a cat?

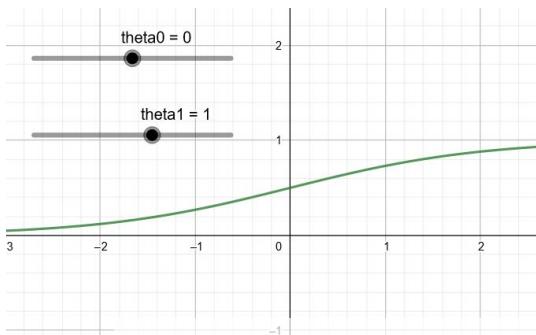
Last week - Logistic regression



$$h_{\theta}(x) = g(\theta_0 + \theta_1 x) = \frac{1}{1+e^{-(\theta_0 + \theta_1 x)}} = \hat{y}$$

$$\theta_0 = 0$$

$$\theta_1 = 1$$



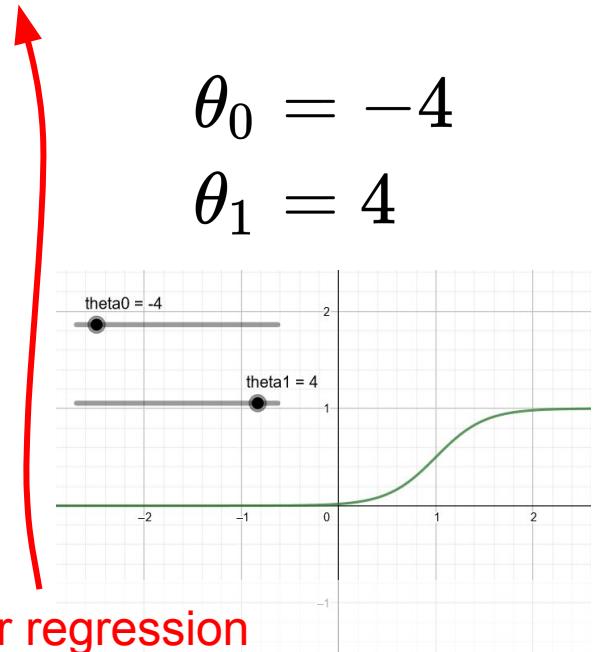
$$\theta_0 = 0$$

$$\theta_1 = 4$$



$$\theta_0 = -4$$

$$\theta_1 = 4$$

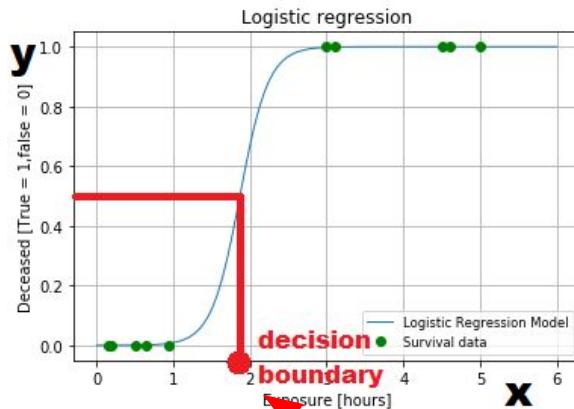


Logistic regression hypothesis: Sigmoid \circ Linear regression

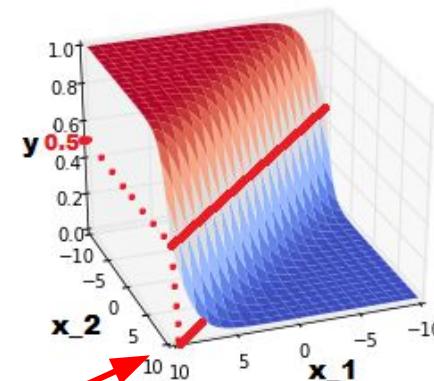
Last week - Logistic regression

Logistic regression - Decision boundary $\{x \mid \hat{y} = h(x) = 0.5\}$

Univariate sample



Bivariate sample



...

decision boundaries

Last week - Logistic regression

Loss function for logistic regression: Logistic loss / Binary cross-entropy

$$J(\theta) = \frac{1}{m} \sum_{j=1}^m [-y^{(j)} \log(h_\theta(x^{(j)})) - (1 - y^{(j)}) \log(1 - h_\theta(x^{(j)}))]$$

$$h_\theta(x) = \frac{1}{1+e^{-(\theta_1 x + \theta_0)}}$$

Logistic loss (using the logistic regression hypothesis) is **convex**
→ a single local (and global) minimum
→ gradient descent will find the globally optimal parameters

Logistic regression in NumPy

```
def __sigmoid(self, z):  
    return 1 / (1 + np.exp(-z) + self.eps)
```

sigmoid function (vectorized)

```
h = self.__sigmoid(np.dot(X, self.theta))
```

the label prediction (y hat)

```
loss = np.mean(-y * np.log(h + self.eps) - \  
              (1 - y) * np.log(1 - h + self.eps))
```

loss value

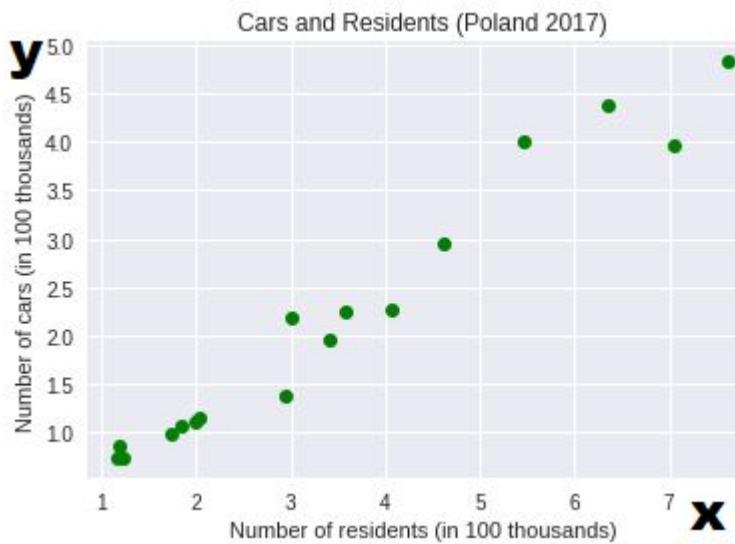
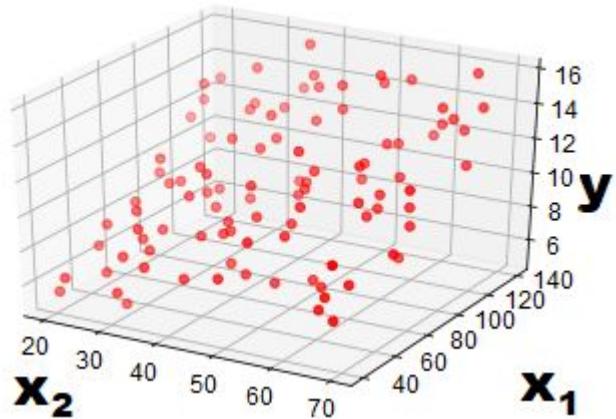
```
gradient = np.dot(X.T, (h - y)) / y.size  
self.theta -= self.lr * gradient
```

a single step of gradient descent

(eps: to avoid division by zero)

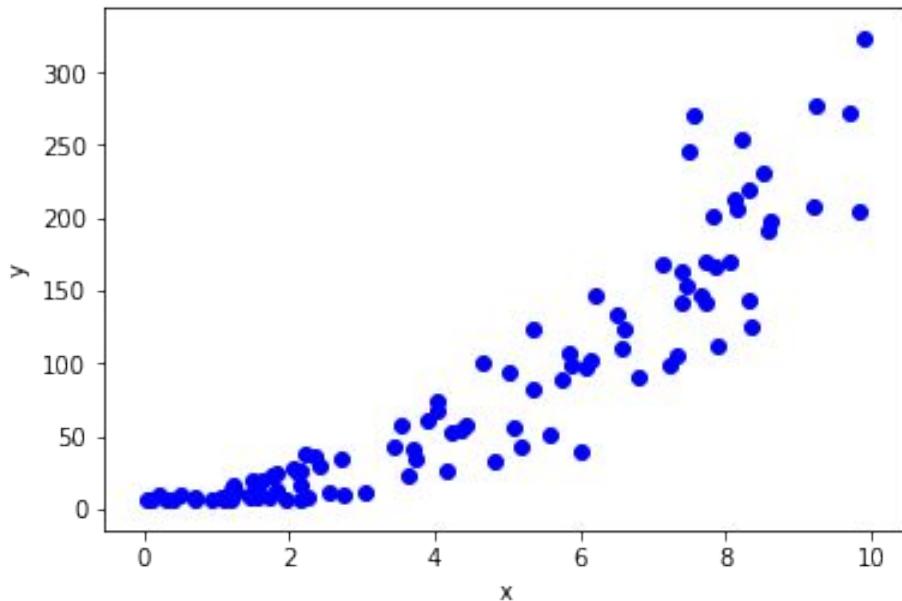
Back to regression...

Linear regression worked well on a sample where the **linear combination of variables** closely approximated the label.



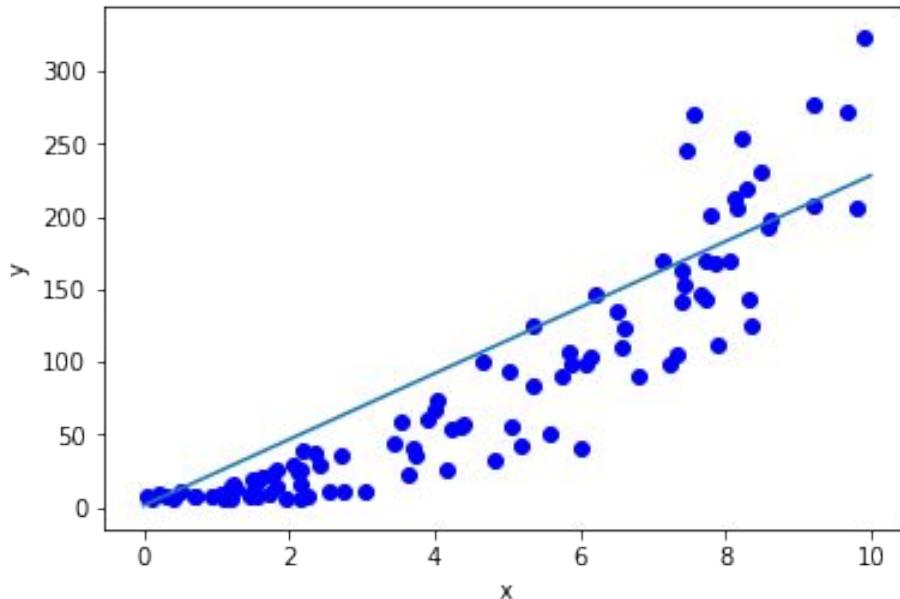
Back to regression...

What can we do when a linear approximation is not suitable?

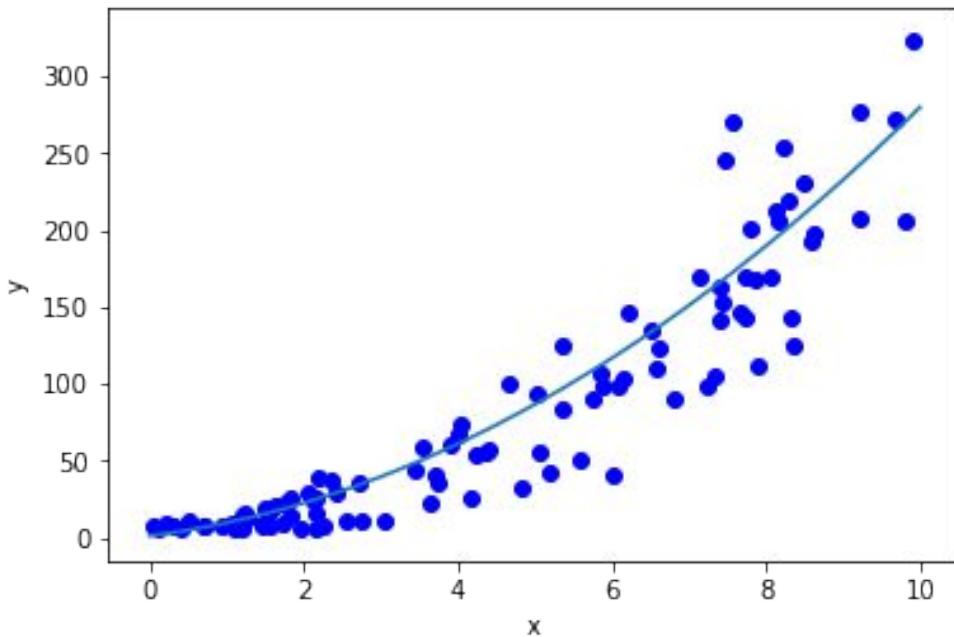


Back to regression...

E.g., let's assume $y \approx ax^2 + bx + c$. In this case, linear regression does not provide very good results. **What can we do?**



Polynomial regression



Polynomial regression

Hypothesis function

Univariate: $h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \dots$

Multivariate, e.g.,: $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2 + \theta_5 x_1 x_2 + \dots$

Loss function (MSE):

$$J(\theta) = \frac{1}{2m} \sum_{j=1}^m \underbrace{(h_{\theta}(x^{(j)}) - y^{(j)})^2}_{\hat{y}^{(j)}}$$

Polynomial regression

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2 + \theta_5 x_1 x_2 + \dots$$

$$J(\theta) = \frac{1}{2m} \sum_{j=1}^m (h_{\theta}(x^{(j)}) - y^{(j)})^2$$

Solution using gradient descent:

The loss function is differentiable.

→ Gradient descent can be used to find good θ coefficients.

Polynomial regression

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2 + \theta_5 x_1 x_2 + \dots$$

$$J(\theta) = \frac{1}{2m} \sum_{j=1}^m (h_{\theta}(x^{(j)}) - y^{(j)})^2$$

Now, we have exponents inside the hypothesis function (and thus the loss).
Is this a problem?

Solution using gradient descent:

The loss function is differentiable.

→ Gradient descent can be used to find good θ coefficients.

Polynomial regression

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2 + \theta_5 x_1 x_2 + \dots$$

$$J(\theta) = \frac{1}{2m} \sum_{j=1}^m (h_{\theta}(x^{(j)}) - y^{(j)})^2$$

Solution using gradient descent:

The loss function is differentiable.

→ Gradient descent can be used to find good θ coefficients.

We do not raise θ parameters to the power.

→ **J remains quadratic with respect to the θ parameters!**

Polynomial regression

Solution in practice:

- Due to exponents, gradients associated with higher-order coefficients can be extremely large/small.
- As we saw in multivariate linear regression, the gradient method is sensitive to this.

Solution?

Polynomial regression

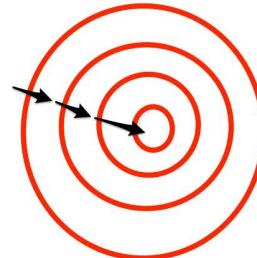
Solution in practice:

- Due to exponents, gradients associated with higher-order coefficients can be extremely large/small.
- As we saw in multivariate linear regression, the gradient method is sensitive to this.

Solution?

Without feature scaling

With feature scaling



Polynomial regression

Solution:

Treat polynomial regression as if it was linear regression!

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2 + \theta_5 x_1 x_2 + \dots$$

... is transformed into:

$$h_{\theta}(x) = \theta_0 + \theta_1 x_{1'} + \theta_2 x_{2'} + \theta_3 x_{3'} + \theta_4 x_{4'} + \theta_5 x_{5'} + \dots$$

Polynomial regression

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2 + \theta_5 x_1 x_2 + \dots$$

... is transformed into:

$$h_{\theta}(x) = \theta_0 + \theta_1 x_{1'} + \theta_2 x_{2'} + \theta_3 x_{3'} + \theta_4 x_{4'} + \theta_5 x_{5'} + \dots$$

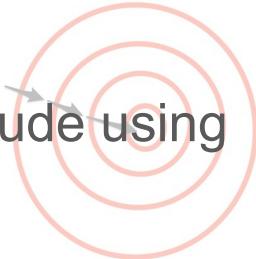
→ we **substitute** and calculate the powers of the variables in advance.

For example: $x_{4'} := x_2^2$

Finally, we bring the new variables to the **same order of magnitude** using feature scaling and solve the problem as a **linear regression**.

Without feature scaling

With feature scaling



Polynomial regression

Univariate case: Vandermonde matrix

$$x = \begin{bmatrix} 1 & x^{(1)} & (x^{(1)})^2 & \dots & (x^{(1)})^n \\ \dots & \dots & \dots & \dots & \dots \\ 1 & x^{(m)} & (x^{(m)})^2 & \dots & (x^{(m)})^n \end{bmatrix} \in \mathbb{R}^{m \times n}$$

$$\theta = \begin{bmatrix} \theta_0 \\ \dots \\ \theta_n \end{bmatrix} \in \mathbb{R}^n \quad y = \begin{bmatrix} y^{(1)} \\ \dots \\ y^{(m)} \end{bmatrix} \in \mathbb{R}^m$$

Feature scaling:

We treat x, x^2, \dots, x^n as separate variables and scale them independently of each other.

$$h(x) = X\theta = \hat{y} \approx y$$

Polynomial regression

Multivariate case, for example:

$$x = \begin{bmatrix} 1 & x_1^{(1)} & x_2^{(1)} & (x_1^{(1)})^2 & (x_1^{(1)})^3 (x_2^{(1)})^2 & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 1 & x_1^{(m)} & x_2^{(m)} & (x_1^{(m)})^2 & (x_1^{(m)})^3 (x_2^{(m)})^2 & \dots \end{bmatrix} \in \mathbb{R}^{m \times n}$$

$$\theta = \begin{bmatrix} \theta_0 \\ \dots \\ \theta_n \end{bmatrix} \in \mathbb{R}^n \quad y = \begin{bmatrix} y^{(1)} \\ \dots \\ y^{(m)} \end{bmatrix} \in \mathbb{R}^m$$

Feature scaling:

We treat x_1, x_2, x_1^2, \dots as separate variables and scale them independently of each other.

$$h(x) = X\theta = \hat{y} \approx y$$

Splitting the sample

The life cycle of the model:

1. We train the model on the **training set**
2. We evaluate the model on the **test set**

The two sets must be **disjoint**!

Splitting the sample

The life cycle of the model:

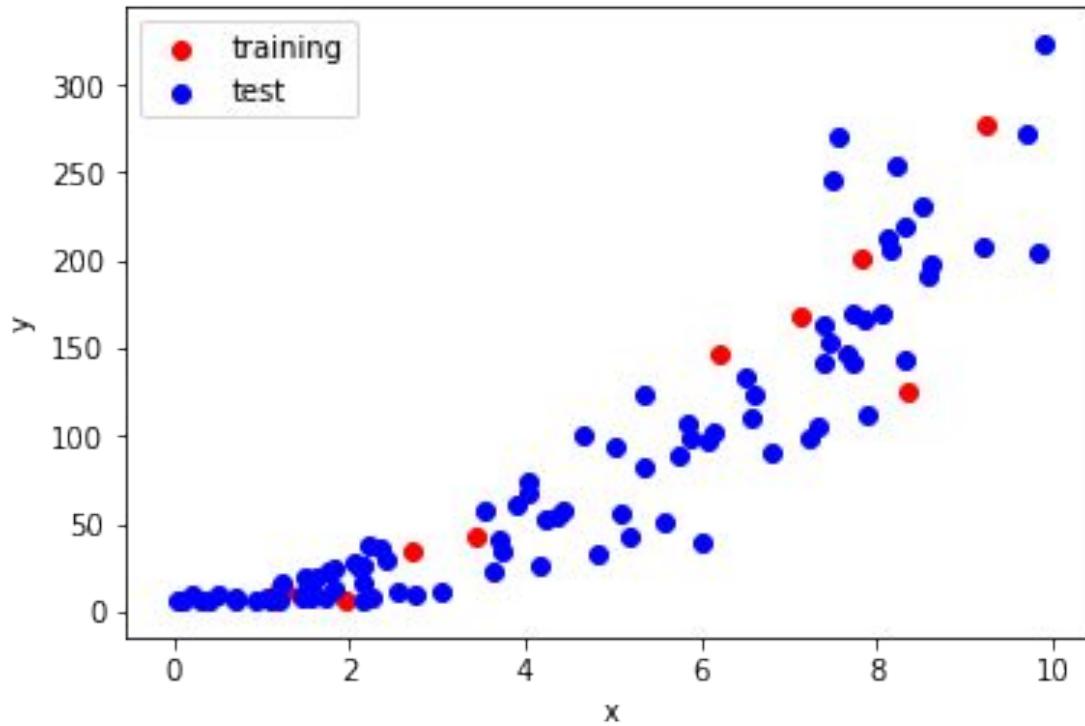
1. We train the model on the **training set**
2. We evaluate the model on the **test set**

The two sets must be **disjoint**!

Do not use the test set for learning!

We use the test set to estimate how our trained model will perform on new data points, not seen during training.

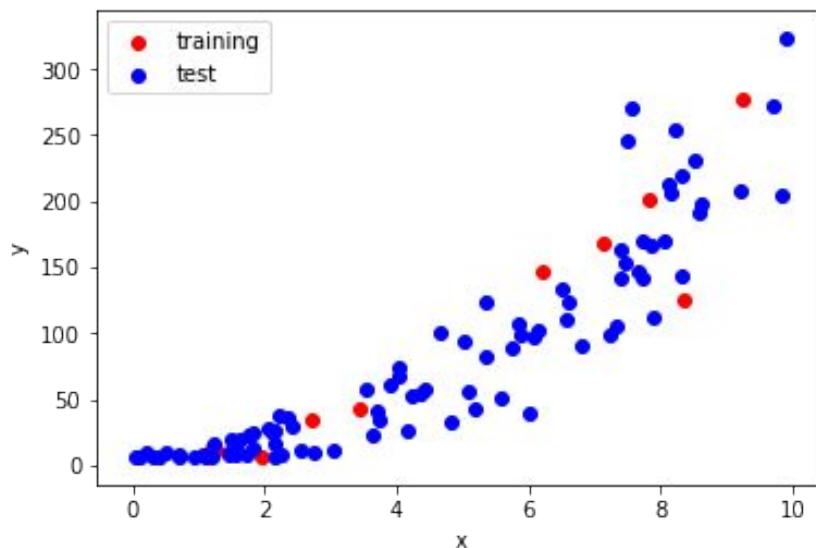
Splitting the sample



Observing the loss curve during training

Perform polynomial regression on the following sample!

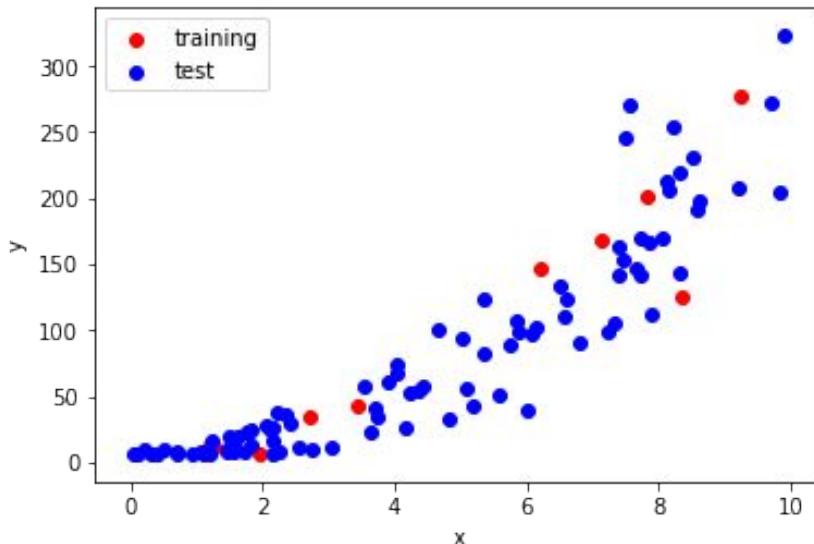
What degree polynomial should we fit?



Observing the loss curve during training

Perform polynomial regression on the following sample!

What degree polynomial should we fit?

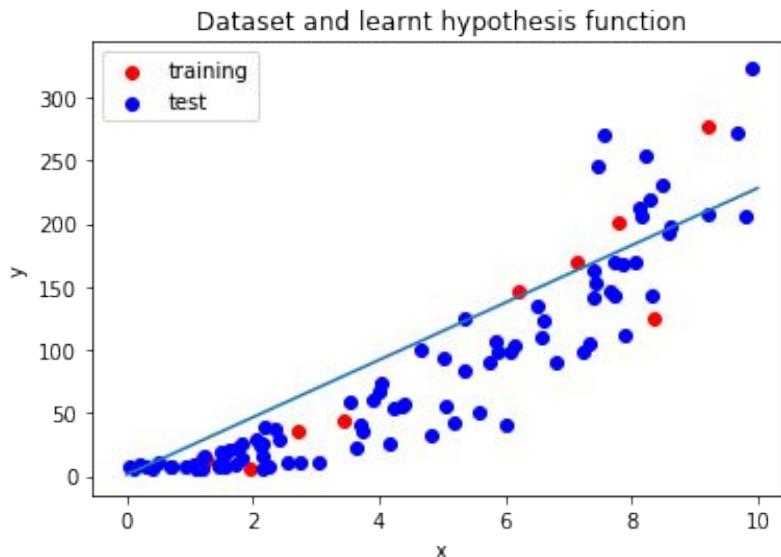


With a single variable, it is clear from looking at the graph that a second-degree polynomial fits the sample well.

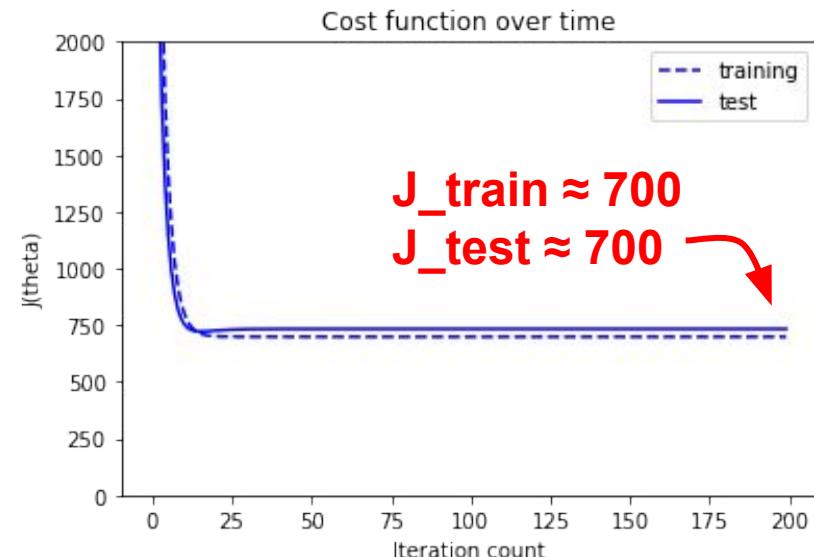
Unfortunately, we cannot visualize the data like this with more than two variables. Therefore, without additional experimentation, we cannot tell what degree polynomial would be ideal.

Observing the loss curve during training: **underfitting**

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$



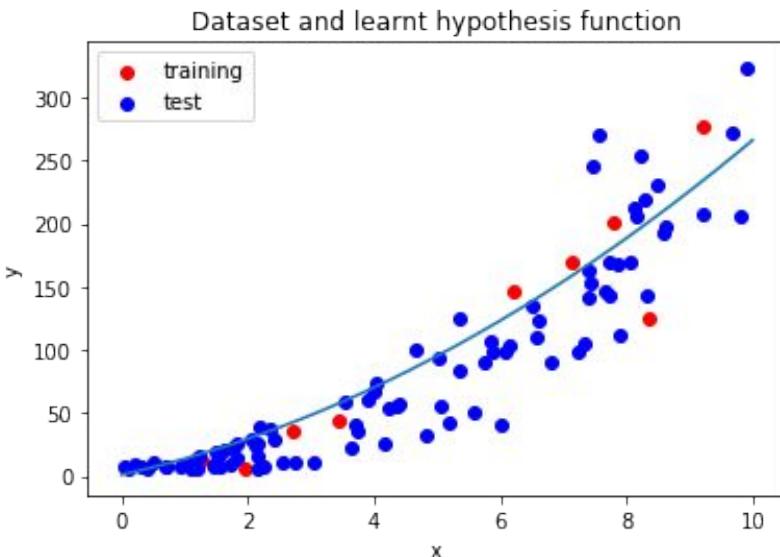
The training and test losses are both (similarly) large.



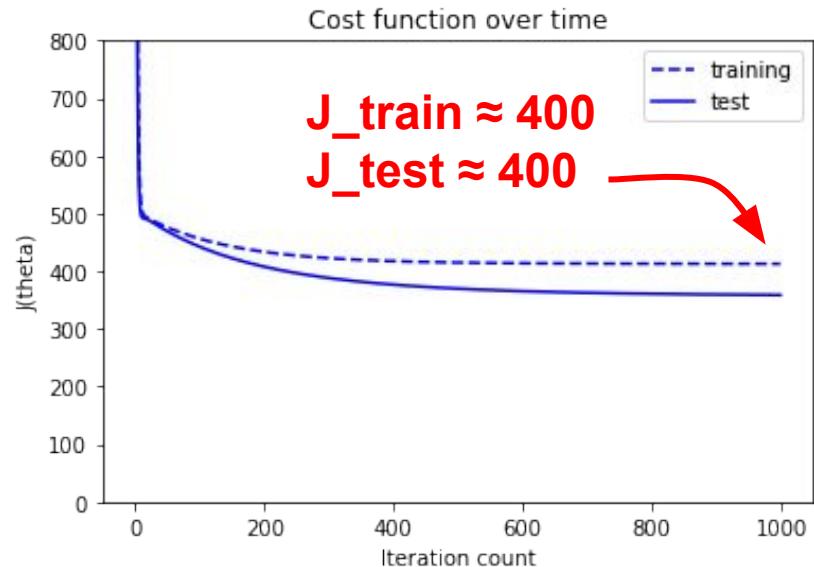
“high bias, low variance”

Observing the loss curve during training: “just right”

$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2$$



Both the training and the test losses are small and both decrease over time.

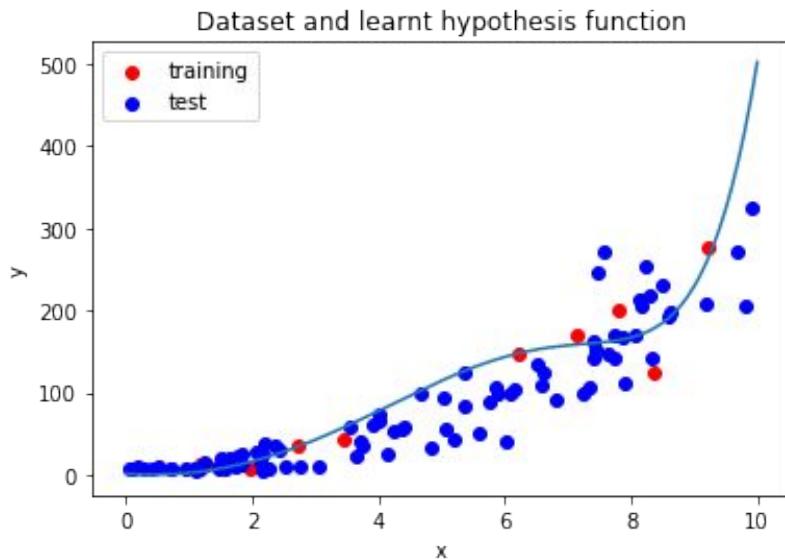
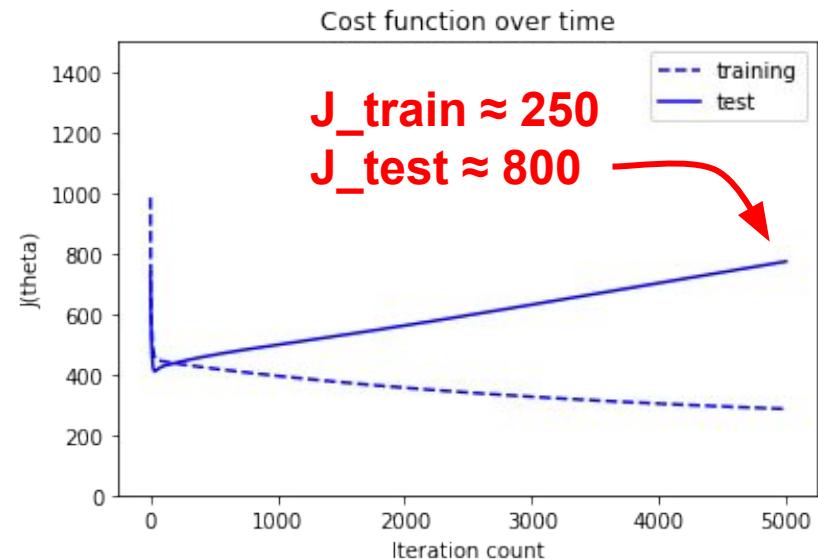


“balancing bias & variance”

Observing the loss curve during training: **overfitting**

$$h_{\theta}(x) = \theta_0 + \theta_1 x + \cdots + \theta_9 x^9$$

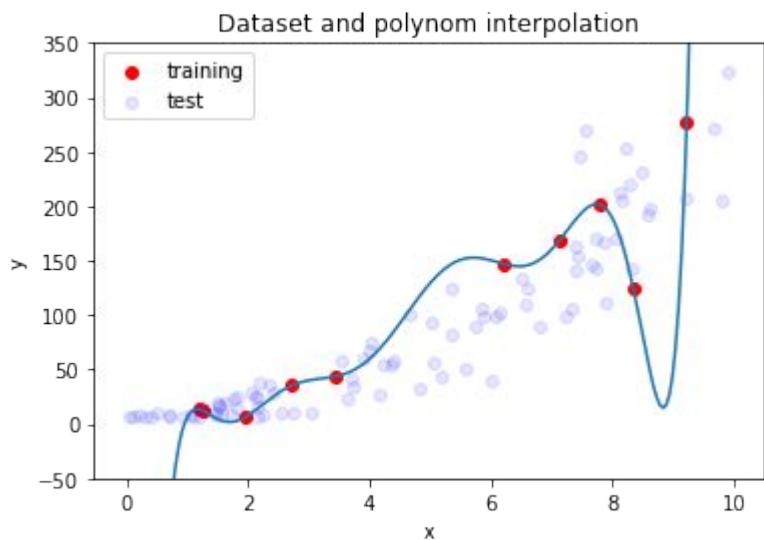
The training loss decreases, but the test loss increases.



“low bias, high variance”

Detour: Polynomial interpolation

With polynomial interpolation, we can even fit a polynomial exactly to the training set.

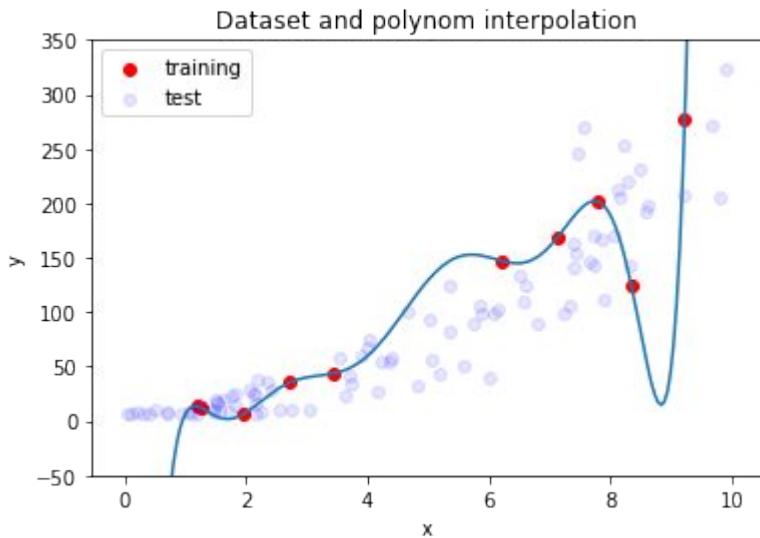


$$J_{\text{train}} = 0$$

$$J_{\text{test}} \approx 252507.67$$

Detour: Polynomial interpolation

With polynomial interpolation, we can even fit a polynomial exactly to the training set. However, this is not useful in machine learning!



$$J_{\text{train}} = 0$$

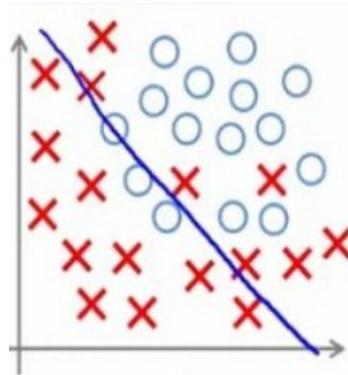
$$J_{\text{test}} \approx 252507.67$$

A ninth-degree polynomial can be fitted to ten points without any error.

If there is enough training data and the hypothesis function is sufficiently complex, a precise fit can be achieved, but this will be very far from the test data.

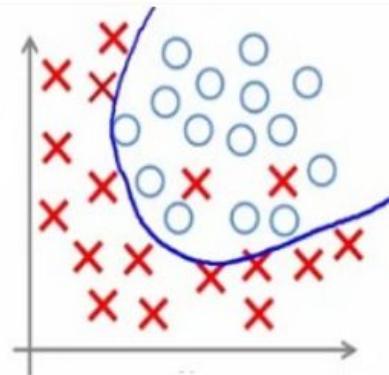
→ “Extreme overfitting”

Under- and overfitting in case of classification

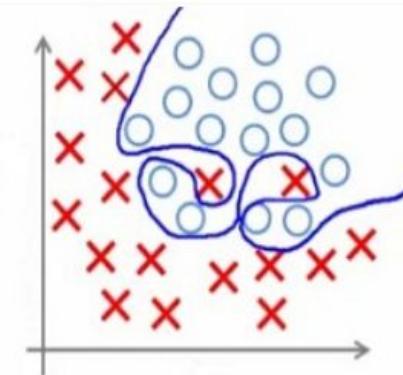


Under-fitting

(too simple to
explain the
variance)



Appropriate-fitting

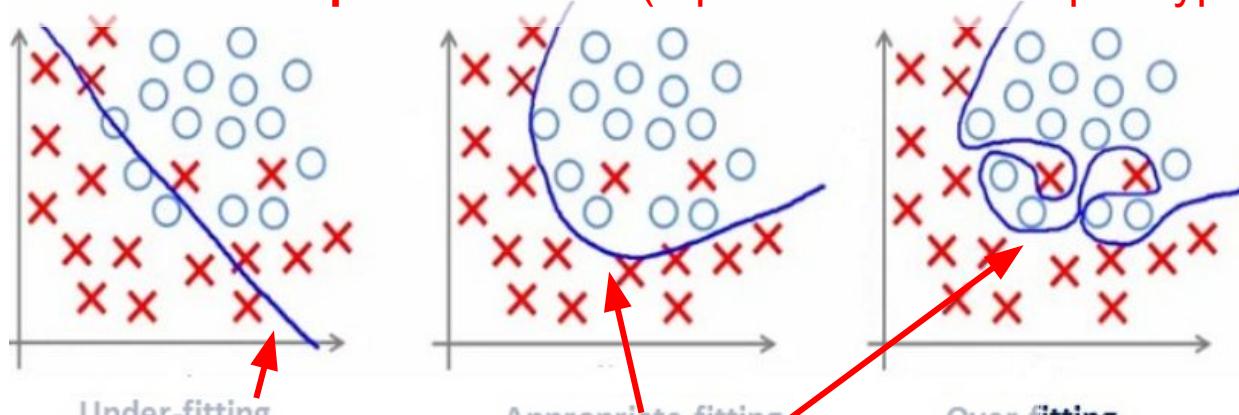


Over-fitting

(forcefitting -- too
good to be true)

Under- and overfitting in case of classification

Classification with two input variables (top view of the sample/hypothesis graph)



The learned decision boundary in three cases:

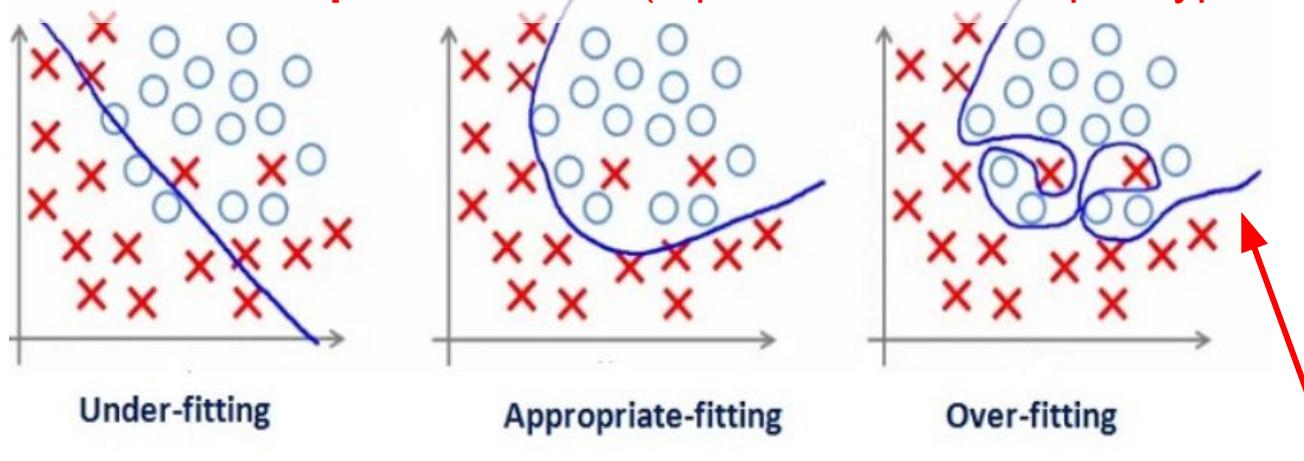
Overly simple, adequately expressive, and overly complex models.

(underfitting -- too little variance)

(overfitting -- too good to be true)

Under- and overfitting in case of classification

Classification with two input variables (top view of the sample/hypothesis graph)



Under-fitting

Appropriate-fitting

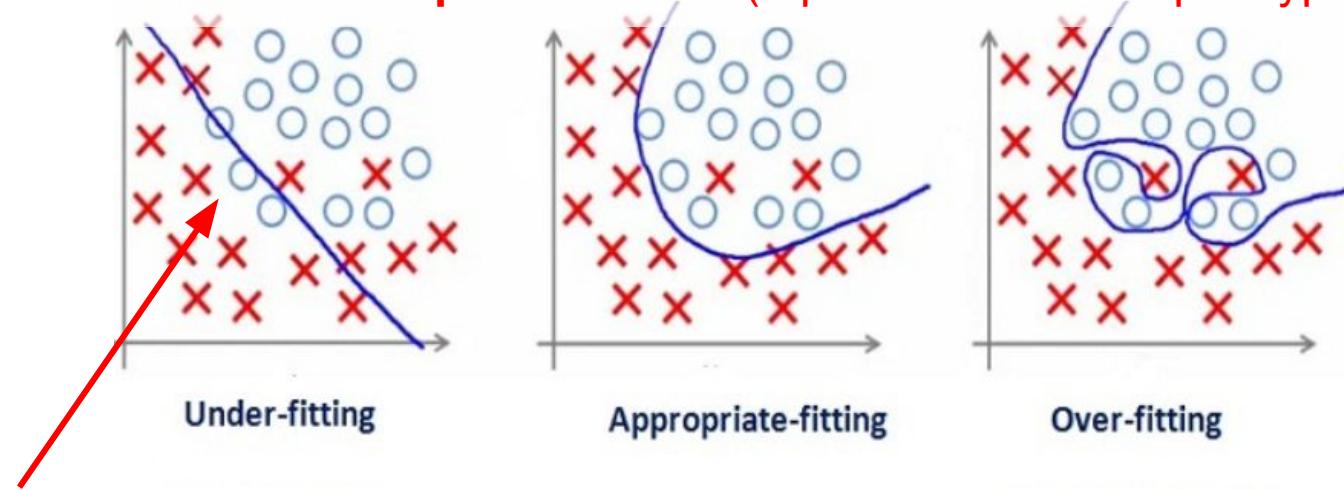
Over-fitting

(too simple to
explain the
variance)

An overly complex model is capable of "memorizing" individual training examples and precisely shaping the decision boundary around them (**significant overfitting**).

Under- and overfitting in case of classification

Classification with two input variables (top view of the sample/hypothesis graph)



Logistic regression learns a linear decision surface,
thus overfitting is not expected
(unless the training set size is minimal).

(too simple to
explain the
variance)
(forcefitting -- too
good to be true)

Overfitting in deep neural networks

Example: Categorizing photos

If the deep network is powerful enough and has enough learnable parameters, it may learn the task in an undesirable way.

Overfitting in deep neural networks

Example: Categorizing photos

If the deep network is powerful enough and has enough learnable parameters, it may learn the task in an undesirable way.

For example, it "memorizes" **every single image in the training set** with a specific pattern.
...even a unique JPEG compression artifact!

Avoiding underfitting and overfitting

Our goal is to ensure that our model does not underfit or overfit. Instead, we want to find the "just right" model!

How can we avoid underfitting and overfitting?

Avoiding underfitting and overfitting

Our goal is to ensure that our model does not underfit or overfit. Instead, we want to find the "just right" model!

How can we avoid underfitting and overfitting?

Whether under- or overfit, the trained model will perform poorly when we try to estimate labels for new, unlabeled examples that were not seen during training
— therefore, **we want to avoid these phenomena.**

How to deal with **underfitting**?

Underfitting: The complexity of our model is too low to accurately approximate the labels from the input. The task is too difficult.

Solution: A more complex model is needed to reduce estimation error.

How to deal with **underfitting**?

Underfitting: The complexity of our model is too low to accurately approximate the labels from the input. The task is too difficult.

Solution: A more complex model is needed to reduce estimation error.

Example: We can try to use linear regression for complex tasks, such as estimating the age of celebrities from photographs. However, the model is **severely underfitted**, as linear regression can only produce age estimates from a linear combination of pixel brightness, which is not a good approach for age estimation. A more complex model, such as a convolutional neural network, may be more suitable for the task.

How to deal with **overfitting**?

Overfitting: The model is complex enough to accurately learn the specifics of individual elements of the training set, losing its ability to generalize.

The overfitted model performs poorly on the test set.

How to deal with it?

How to deal with **overfitting**?

Overfitting: The model is complex enough to accurately learn the specifics of individual elements of the training set, losing its ability to generalize.

The overfitted model performs poorly on the test set.

Solutions:

- Use a simpler model (e.g., fewer parameters)!

How to deal with **overfitting**?

Overfitting: The model is complex enough to accurately learn the specifics of individual elements of the training set, losing its ability to generalize.

The overfitted model performs poorly on the test set.

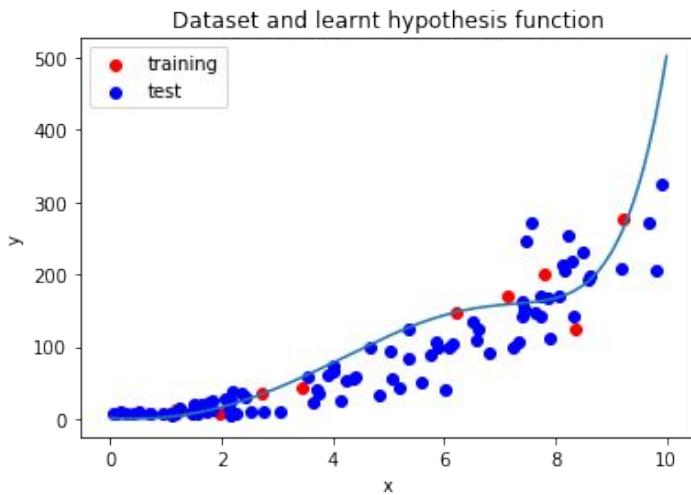
Solutions:

- Use a simpler model (e.g., fewer parameters)!
- Obtain more training data!

How to deal with **overfitting**?

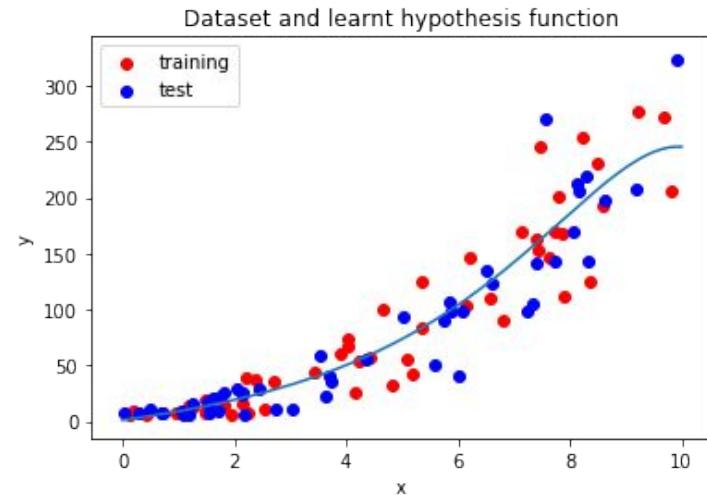
Obtain more training data!

$$h_{\theta}(x) = \theta_0 + \theta_1 x + \cdots + \theta_9 x^9$$



$$|X_{train}| = 10$$

$$\begin{aligned} J_{\text{train}} &\approx 250 \\ J_{\text{test}} &\approx 800 \end{aligned}$$



$$|X_{train}| = 50$$

$$\begin{aligned} J_{\text{train}} &\approx 400 \\ J_{\text{test}} &\approx 400 \end{aligned}$$

How to deal with **overfitting**?

Obtain more training data!

Problem: Typically, we have no access to enough labeled training data to prevent overfitting in a deep neural network with hundreds of millions of parameters.

We need alternative methods...

How to deal with **overfitting**?

Overfitting: The model is complex enough to accurately learn the specifics of individual elements of the training set, losing its ability to generalize.

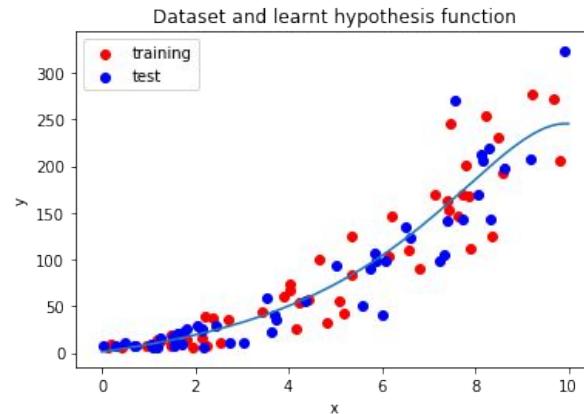
The overfitted model performs poorly on the test set.

Solutions:

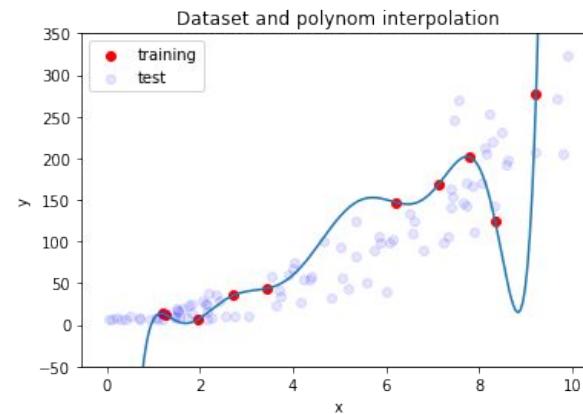
- Use a simpler model (e.g., fewer parameters)!
- Obtain more training data!
- Regularization methods (e.g., L2 regularization)

How to deal with **overfitting**?

Observation: When fitting higher-degree polynomials, the **coefficients** (the θ parameters) typically **increase** as the fit becomes more and more accurate.



$$\theta = [1., 7.46, 0.82, 0.06, 0.005, 0.0004, 0., 0., 0., 0., 0.]$$



$$\theta = [-2229., 7234., -9545., 6756., -2843., 743., -121., 12.05, -0.66, 0.015]$$

How to deal with **overfitting**?

Observation: When fitting higher-degree polynomials, the **coefficients** (the θ parameters) typically **increase** as the fit becomes more and more accurate.

Penalizing large coefficients (parameters) can help!

How?

How to deal with **overfitting**?

Observation: When fitting higher-degree polynomials, the **coefficients** (the θ parameters) typically **increase** as the fit becomes more and more accurate.

Let's include a penalty in the loss function:

Pl.:
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \cdots + \theta_9 x^9$$

$$J(\theta) = \frac{1}{2m} \sum_{j=1}^m (h(x)^{(j)} - y^{(j)})^2 + \boxed{\lambda \sum_{i=1}^n \theta_i^2}$$

How to deal with **overfitting**?

Observation: When fitting higher-degree polynomials, the **coefficients** (the θ parameters) typically **increase** as the fit becomes more and more accurate.

Let's include a penalty in the loss function:

Pl.: $h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_9 x^9$

MSE loss: Penalizing the label estimation error

$$J(\theta) = \underbrace{\frac{1}{2m} \sum_{j=1}^m (h(x)^{(j)} - y^{(j)})^2}_{\text{MSE loss}} + \boxed{\lambda \sum_{i=1}^n \theta_i^2}$$

L2-regularization term:
Penalizing large parameters

When $\lambda = 0$: The original model without regularization

When λ is too high: It is easier to minimize the loss by learning all zero parameters instead of solving the task...

How to deal with **overfitting**?

Observation: When fitting higher-degree polynomials, the **coefficients** (the θ parameters) typically **increase** as the fit becomes more and more accurate.

Let's include a penalty in the loss function:

Pl.: $h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_9 x^9$

MSE loss: Penalizing the label estimation error

$$J(\theta) = \underbrace{\frac{1}{2m} \sum_{j=1}^m (h(x)^{(j)} - y^{(j)})^2}_{\text{The bias parameter } (\theta_0) \text{ is not penalized.}} + \lambda \sum_{i=1}^n \theta_i^2$$

The **bias** parameter (θ_0) is not penalized.

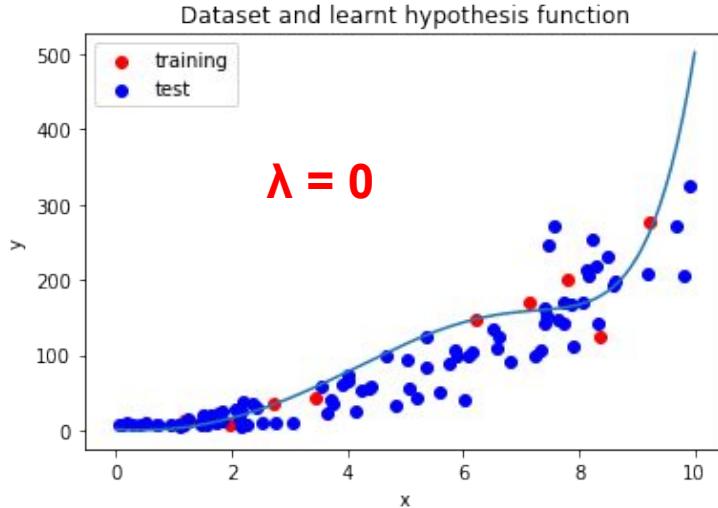
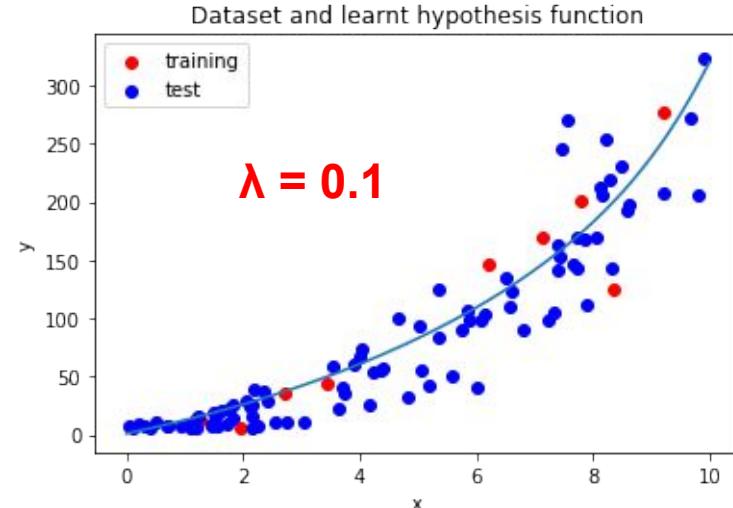
How to deal with **overfitting**?

L2 regularization:

$$h_{\theta}(x) = \theta_0 + \theta_1 x + \cdots + \theta_9 x^9$$

$$|X_{train}| = 10$$

$$J(\theta) = \frac{1}{2m} \sum_{j=1}^m (h(x)^{(j)} - y^{(j)})^2 + \boxed{\lambda \sum_{i=1}^n \theta_i^2}$$



How to deal with **overfitting**?

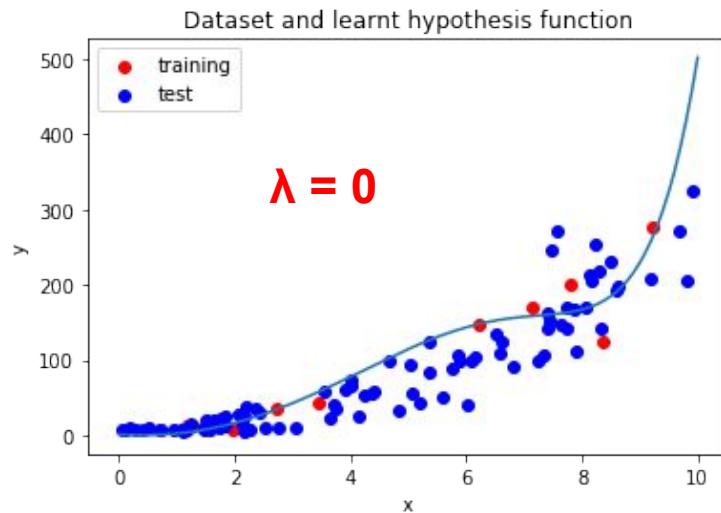
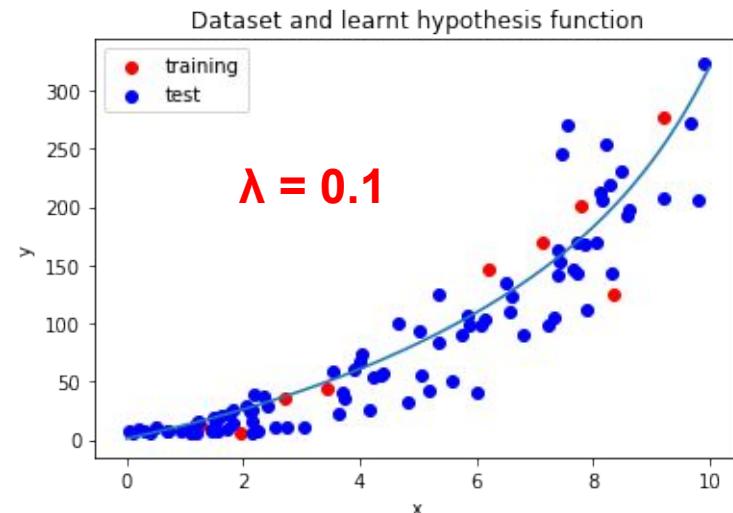
L2 regularization:

$$h_{\theta}(x) = \theta_0 + \theta_1 x + \cdots + \theta_9 x^9$$

$$|X_{train}| = 10$$

$$J(\theta) = \frac{1}{2m} \sum_{j=1}^m (h(x)^{(j)} - y^{(j)})^2 + \boxed{\lambda \sum_{i=1}^n \theta_i^2}$$

Can also help when training data is scarce.



How to deal with **overfitting**?

L2 regularization:

$$h_{\theta}(x) = \theta_0 + \theta_1 x + \cdots + \theta_9 x^9$$

$$J(\theta) = \frac{1}{2m} \sum_{j=1}^m (h(x)^{(j)} - y^{(j)})^2 + \boxed{\lambda \sum_{i=1}^n \theta_i^2}$$

L2 regularization is not only effective for polynomial regression.

Experience shows that, in general, weights (parameters) also increase in the case of neural networks when overfitting occurs.

L2 regularization is just one example. There are many types of regularization methods that reduce overfitting by applying some kind of constraint during learning.

How to deal with **overfitting**?

Overfitting: The model is complex enough to accurately learn the specifics of individual elements of the training set, losing its ability to generalize.

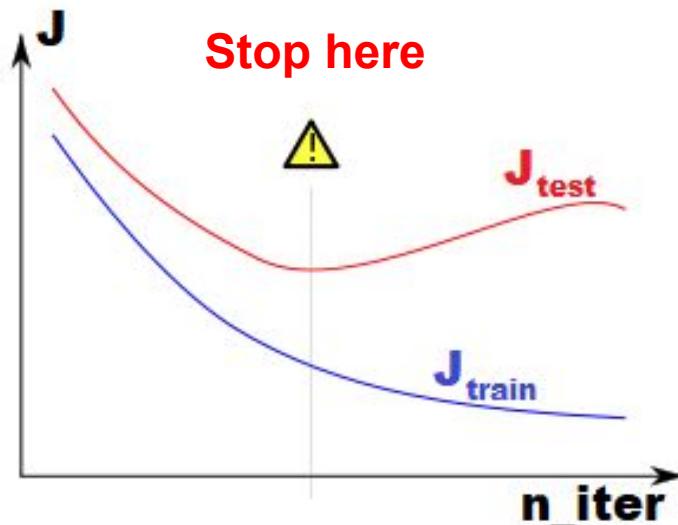
The overfitted model performs poorly on the test set.

Solutions:

- Use a simpler model (e.g., fewer parameters)!
- Obtain more training data!
- Regularization methods (e.g., L2 regularization)
- Early stopping

How to deal with **overfitting**?

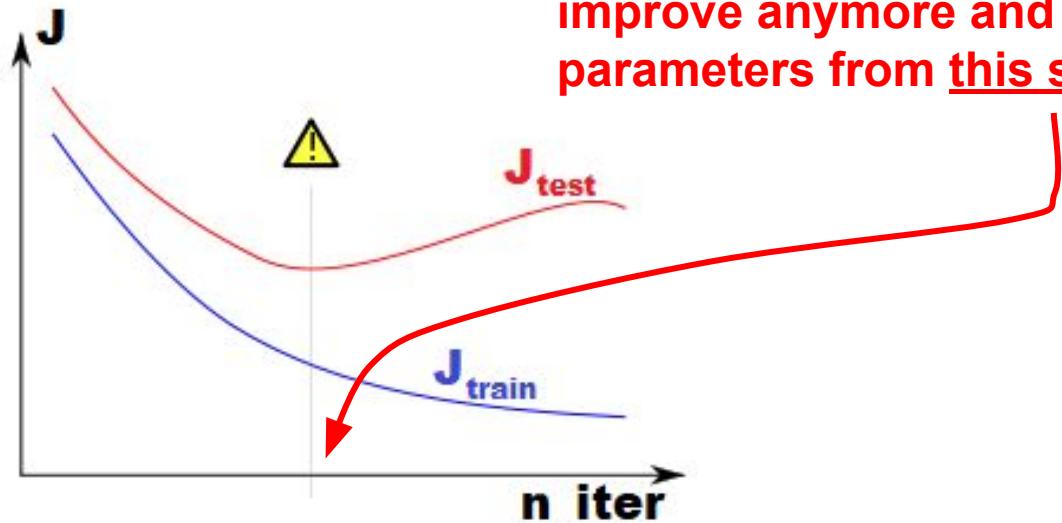
Early stopping: Overfitting often inevitably occurs after a certain number of iterations when training deep neural networks. **Early stopping** is generally an effective solution.



How to deal with **overfitting**?

Early stopping: Overfitting often inevitably occurs after a certain number of iterations when training deep neural networks. **Early stopping** is generally an effective solution.

Stop training if J_{test} does not improve anymore and use the parameters from this state



How to deal with **overfitting**?

Early stopping:

~~repeat until convergence~~ {

 for $i \leftarrow 1 \dots n$ {

$grad_i = \frac{\partial}{\partial \theta_i} J(\theta)$

 }

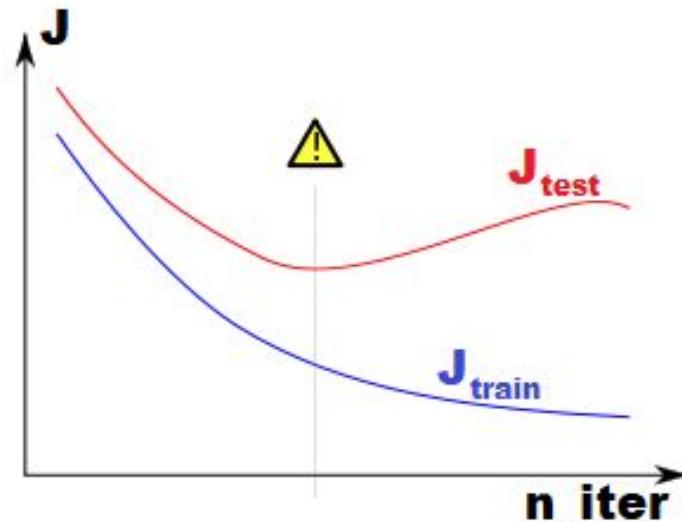
 for $i \leftarrow 1 \dots n$ {

$\theta_i = \theta_i - \alpha grad_i$

 }

}

New loop condition: Loop, while J_{test} keeps reducing.



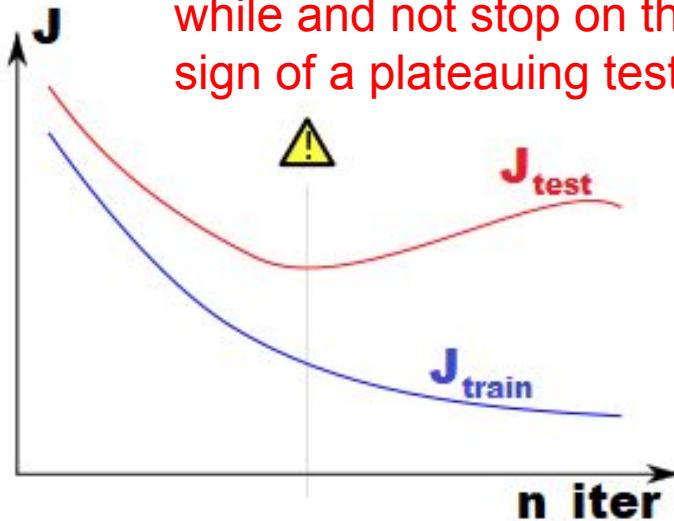
How to deal with **overfitting**?

Early stopping:

```
repeat until convergence {  
    for i ← 1 ... n {  
         $grad_i = \frac{\partial}{\partial \theta_i} J(\theta)$   
    }  
    for i ← 1 ... n {  
         $\theta_i = \theta_i - \alpha grad_i$   
    }  
}
```

New loop condition: Loop, while J_{test} keeps reducing.

(We should be **patient** for a while and not stop on the first sign of a plateauing test loss!)



How to deal with **overfitting**?

Early stopping:

~~repeat until convergence~~ {

 for $i \leftarrow 1 \dots n$ {

$grad_i = \frac{\partial}{\partial \theta_i} J(\theta)$

 }

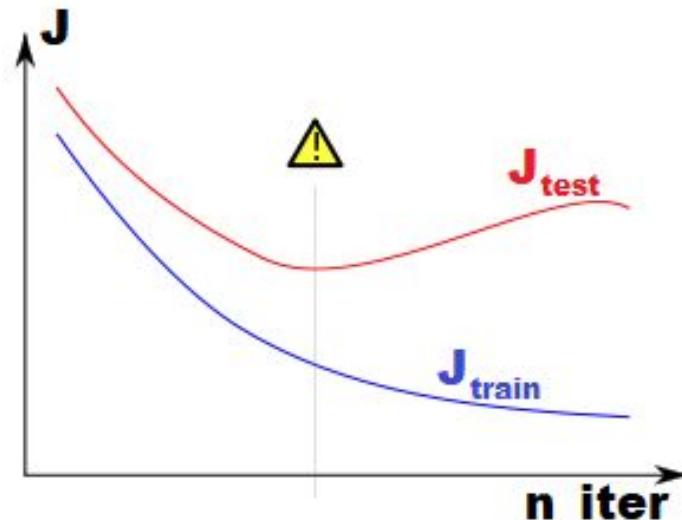
 for $i \leftarrow 1 \dots n$ {

$\theta_i = \theta_i - \alpha grad_i$

 }

}

New loop condition: Loop, while J_{test} keeps reducing.

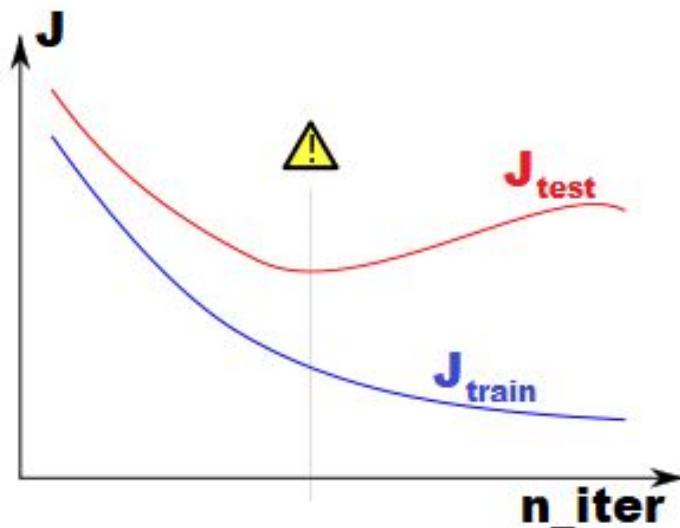


Can we see the problem with this technique?

Early stopping

We stated that we should not train the model using the test set.

What is actually happening?



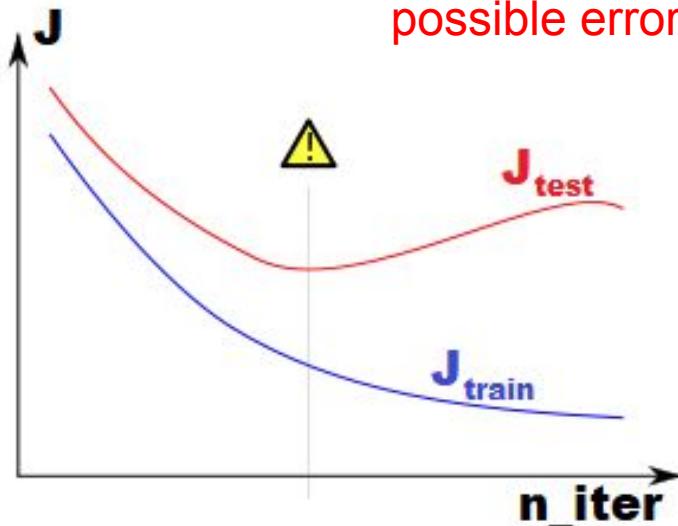
Early stopping

We stated that we should not train the model using the test set.

What is actually happening?

We adjust the model to the test set, as we stop training when we have presumably achieved the smallest possible error on the test set.

This is cheating...



Splitting the sample

New approach:

Training set, **validation set**, test set

For example, 50%, 25%, 25% of the sample

Splitting the sample

New approach:

Training set, **validation set**, test set

For example, 50%, 25%, 25% of the sample

In critical applications, proportions can change, e.g., 20%, 10%, 70%.

We expect the test set to enable us to estimate the future performance of the trained model as accurately as possible, based on data that was unseen during training.

Validation set, hyperparameters

We will use the validation set to optimize the following parameters:

- *Learning rate (alpha)*
- *Polynomial degree, or neural network architecture
(layers, number of neurons, etc.)*
- *Number of iterations for the gradient method (early stopping)*
- ...

Such parameters are called **hyperparameters**.

We will use the validation set to find optimal hyperparameters.

Hyperparameters

Finding the model with the lowest errors thus consists of two optimization tasks.

Until now: $\theta^* = \operatorname{argmin}_{\theta} J(\theta)$

From now: $\psi^*, \theta^* = \operatorname{argmin}_{\psi} \operatorname{argmin}_{\theta} J_{\psi}(\theta)$

ψ^* : Optimal hyperparameters

ψ : hyperparameters

Model training procedure

The task: $\psi^*, \theta^* = \operatorname{argmin}_\psi \operatorname{argmin}_\theta J_\psi(\theta)$

- 1) Select a new hyperparameter configuration Ψ .
- 2) Optimize the model parameters (θ) on the **training set** with gradient descent.
- 3) Evaluate the trained model on the **validation set**, then GOTO 1

Finally:

- Ψ^* := The hyperparameter configuration with the best performance on the validation set.
- θ^* := The trained model parameters with hyperparameters Ψ^* .
- Evaluate model with parameters θ^* and hyperparameters Ψ^* on the **test set**.

Optimizing hyperparameters

Gradient descent cannot generally be used for this purpose

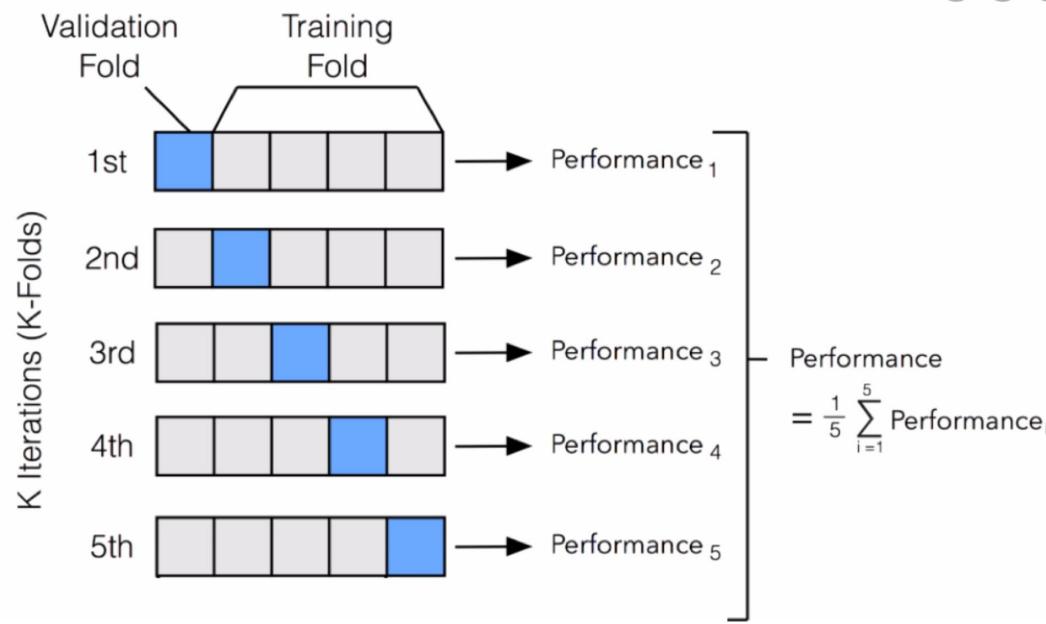
(It is not always possible to specify a differentiable loss function w.r.t. hyperparameters).

Common techniques:

- Manual trial and error
- Grid search
- Random search
- Bayesian optimization
- Evolutionary/genetic algorithms
- ...

Selecting the validation set

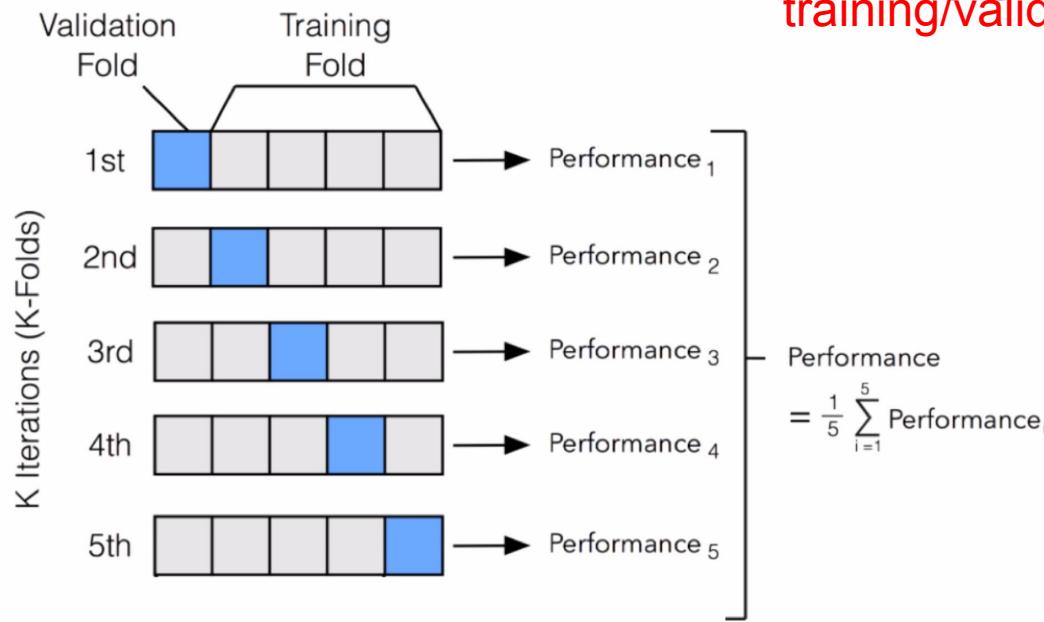
Cross validation



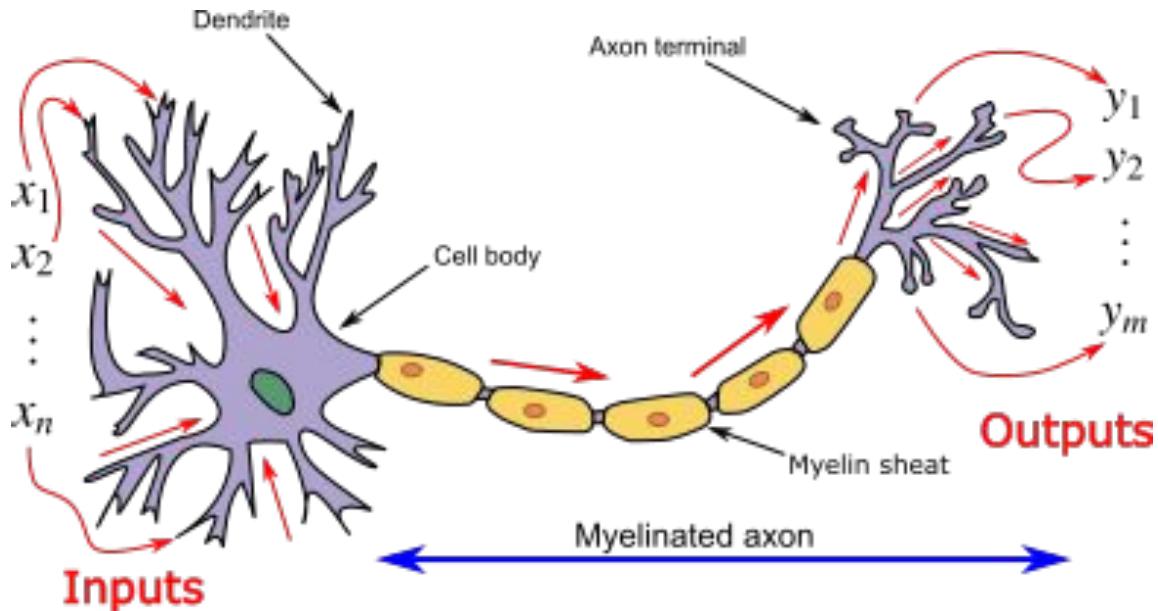
Selecting the validation set

Cross validation

A popular technique for evaluating hyperparameters. It is most useful **when we have little data available for training/validation.**

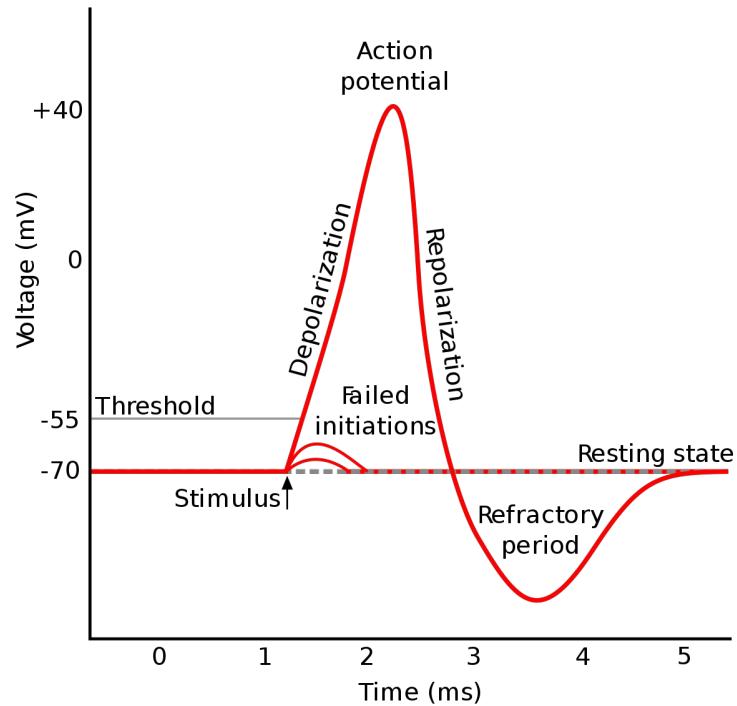


The biological neuron model



The functioning of biological neurons simplified

The functioning of brain cells



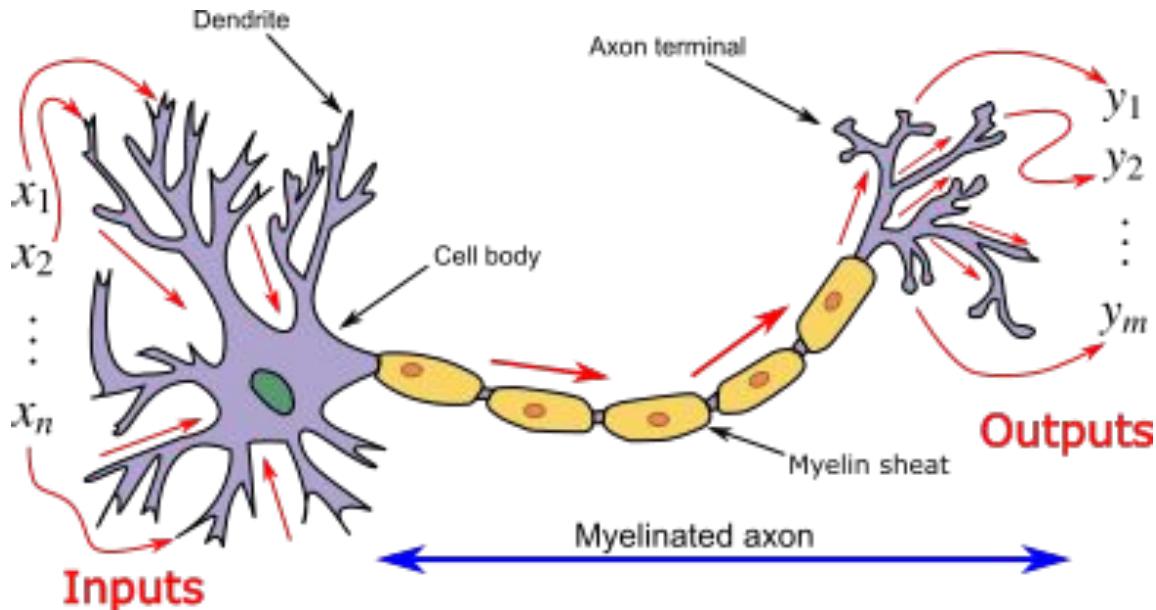
The functioning of biological neurons simplified

The functioning of brain cells

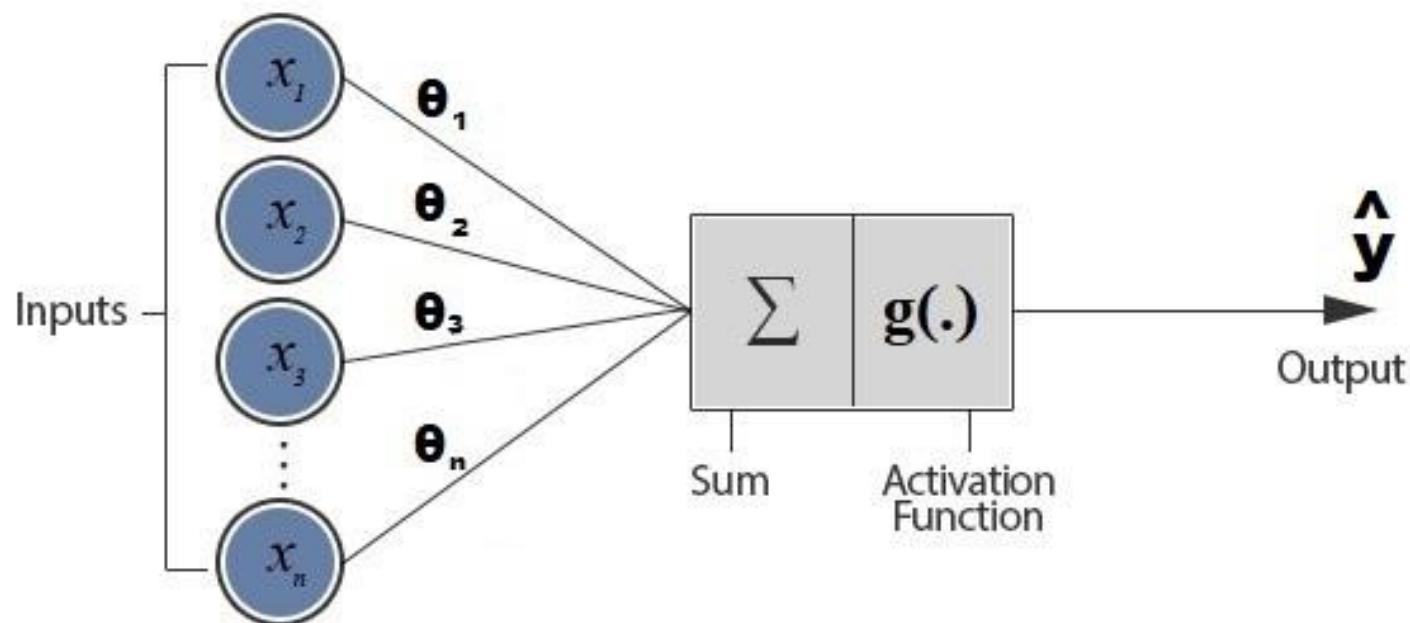
- **Membrane potential:** The voltage difference between the inner and outer walls of the cell
- **In the absence of input**, the membrane potential **continuously decreases** to a resting level.
- The membrane potential **increases in response to input**.
- **Inputs** arriving at different branches (dendrites) are amplified or attenuated (can also be negative) with **different weights**.
- When the membrane potential **reaches a threshold** (specific to each neuron), the neuron **“fires”** and charge passes through the output.

The biological neuron model

What does its functioning resemble?

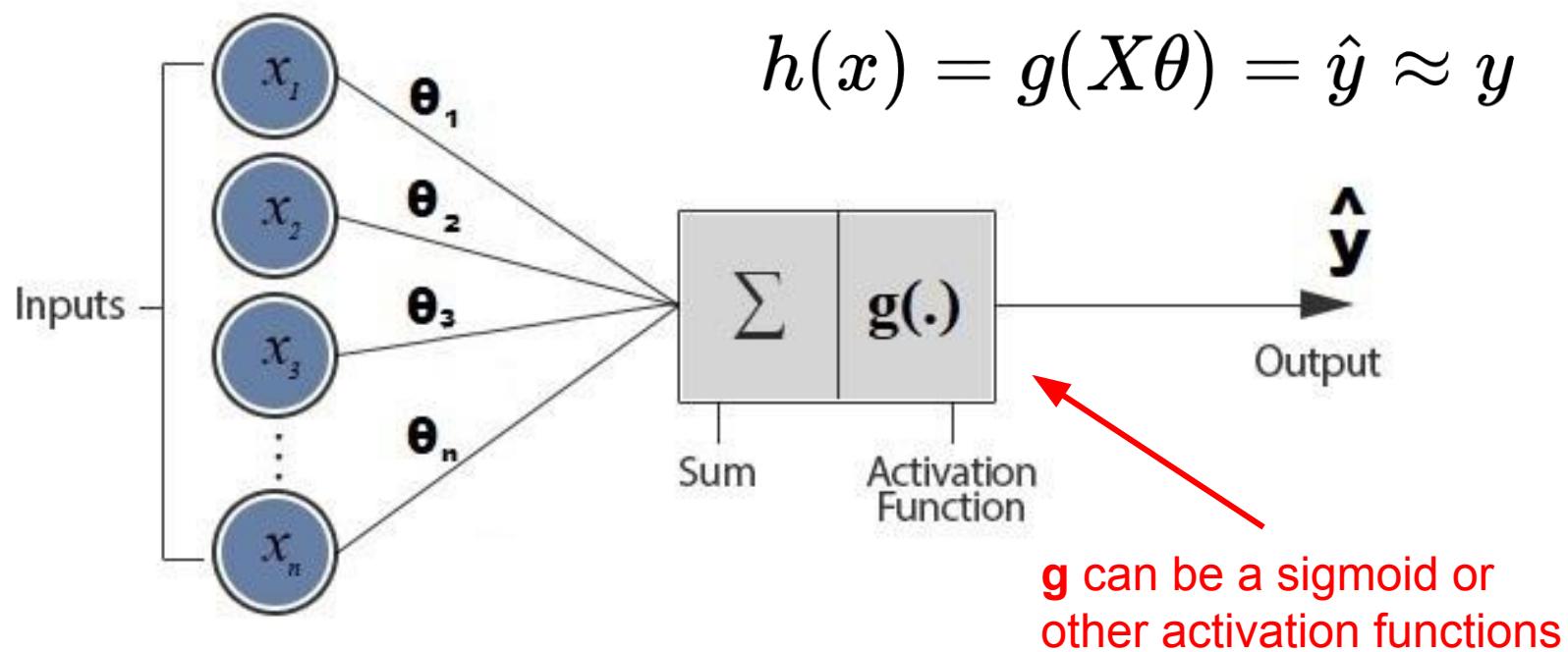


The artificial neuron model (Rosenblatt, 1958)



The simplified, discretized model of a biological neuron. **What does it resemble?**

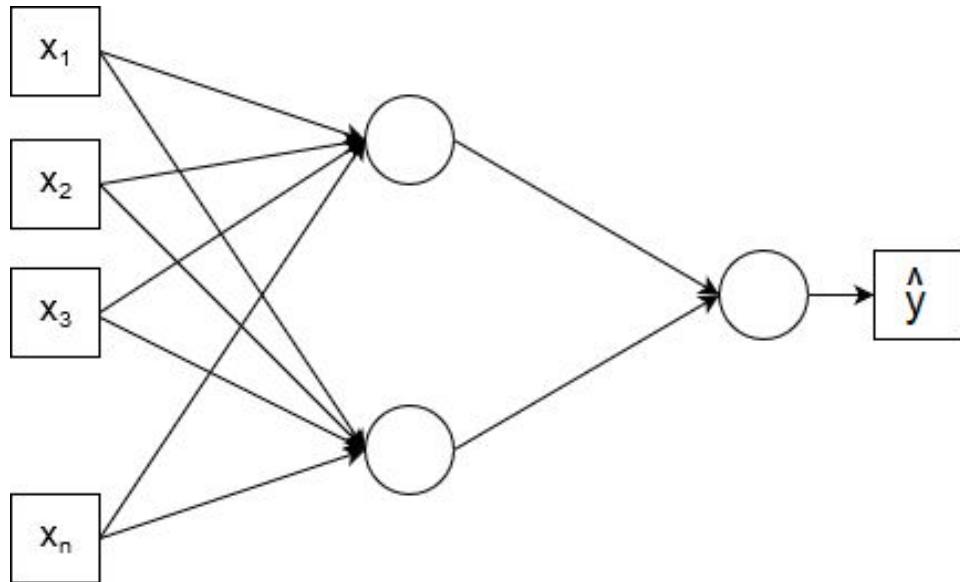
The artificial neuron model (Rosenblatt, 1958)



An artificial neuron is a (multivariate) logistic regression if g is sigmoid!

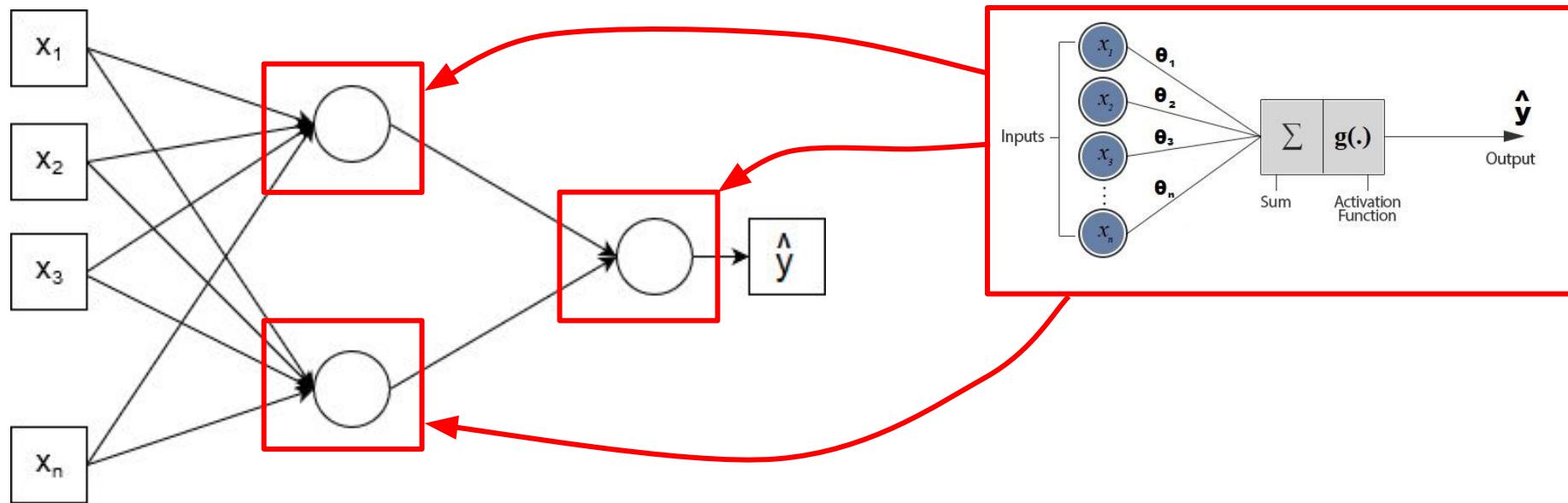
Building blocks of neural networks

Artificial neurons are the building blocks of one of the basic types of artificial neural networks (the Multilayer Perceptron, MLP).



Building blocks of neural networks

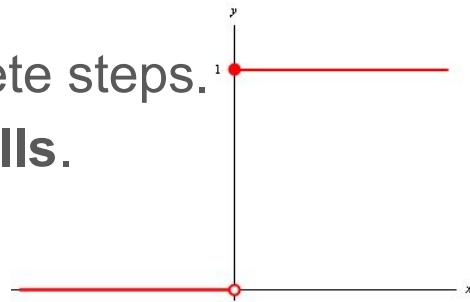
Artificial neurons are the building blocks of one of the basic types of artificial neural networks (the Multilayer Perceptron, MLP).



The functioning of biological neurons simplified

Differences from the artificial neuron model:

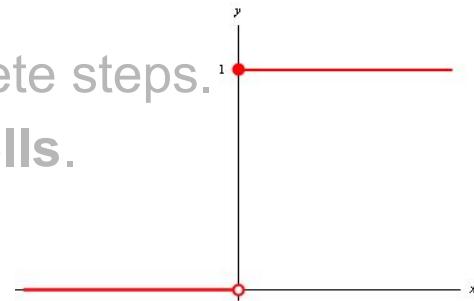
- Continuous signal in the nerve cell instead of discrete steps.
→ **Sum in artificial neurons, integral in nerve cells.**



The functioning of biological neurons simplified

Differences from the artificial neuron model:

- Continuous signal in the nerve cell instead of discrete steps.
→ **Sum in artificial neurons, integral in nerve cells.**
- In a nerve cell, nonlinearity does not have to be continuous (Heaviside step function).
→ **In an artificial neuron, continuous, a differentiable nonlinearity is required.**

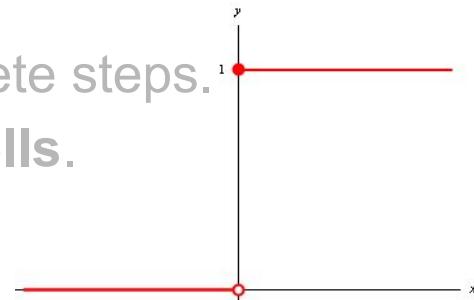


(and the derivative should not be zero everywhere...)

The functioning of biological neurons simplified

Differences from the artificial neuron model:

- Continuous signal in the nerve cell instead of discrete steps.
→ **Sum in artificial neurons, integral in nerve cells.**
- In a nerve cell, nonlinearity does not have to be continuous (Heaviside step function).
→ **In an artificial neuron, continuous, a differentiable nonlinearity is required.**
- The weight of a nerve cell is either always negative or always positive; the sign does not change (excitor vs. inhibitor)
→ **In an artificial neuron, the sign of the weight can change.**



Summary

May be included in tests / exam:

- Identifying and handling of under- and overfitting, hyperparameters, validation set
- Artificial neural network model

Will not be included in tests / exam:

- Polynomial regression
- Polynomial interpolation
- The biological neuron model and differences from the artificial model