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Requirements

The content of the slides marked by this symbol will not be included in 
the exams / tests.



Last week - Supervised learning

Given: The training sample, a set of (input, label) pairs

Task: The estimation of the label (the expected output) from the input

           I.e., we search for a (hypothesis-)function        , for which:



Last week - Two main tasks in supervised learning

Regression: Continuous labels         (The label set is infinite)

Example: Number of cars or the age of a person

Classification: Discrete labels           (The label set is finite)

Example: Categorization of examples

- What is the profession of the person 
in the image?



Last week - Example regression tasks

Example tasks for regression:

x1: Population of a city y: Number of cars in the city

x1: Floor area of a flat
x2: Distance from city center   y: Price of the flat

x1: Weight of a patient
x2: Age of a patient   y: Cholesterol levels of the patient
x3: Sex of a patient



Hypothesis function - one input variable:

Hypothesis function - two input variables:

Hypothesis function - n input variables:

Last week - Linear regression

(we cannot visualize the sample 
space for higher dimensionality…



y_pred = np.dot(X, theta)

Last week - Linear regression

dot productMatrix form



Goal: Find parameters where the value of the loss function is minimal!

Last week - Linear regression with least squares

Univariate case: 
one input variable, two parameters



Goal: Find parameters where the value of the loss function is minimal!

Last week - Linear regression with least squares

Multivariate case in matrix form: 
n input variables, n+1 parameters, m data points (examples)

(we cannot visualize the 
loss function in higher 

dimensionality,
but it is still quadratic 

and convex)



Gradient descent - multivariate case

The slope of the tangent in the θi direction

Last week - Linear regression with least squares



Applying gradient descent, T = 0 (before taking the first step)

We can choose the initial parameters randomly.

Last week - Linear regression with least squares
(Visualization: univariate case)



Applying gradient descent, T = 1

Last week - Linear regression with least squares



Applying gradient descent, T = < many >

Last week - Linear regression with least squares



Another solution to the least squares method

Changes in the loss value during the steps of the gradient descent

J = 209135.18

J = 669.51



Changes in the loss value during the steps of the gradient descent

We need many iterations and we only 
approximate the optimal parameters.
Is there no better way?

Another solution to the least squares method



What do we know about the loss function?

Another solution to the least squares method



What do we know about the loss function?

- Quadratic (second-degree
polynomial, may be multivariate)

→ if the second-degree coefficient 
     is positive, then it is convex

→ it has a single local (and also global)
     minimum

Another solution to the least squares method



What do we know about the loss function?

- Quadratic (second-degree
polynomial, may be multivariate)

→ if the second-degree coefficient 
     is positive, then it is convex

→ it has a single local (and also global)
     minimum

What can we say about the minimum point (the optimal parameters)?

Another solution to the least squares method



Another solution to the least squares method

In the minimum of the loss function, 
all partial derivatives are zero.



→ We can write the above equation for each parameter θi (n+1 equations).

→ We are looking for the value of each parameter θi (n+1 unknowns).

Another solution to the least squares method



The normal equation - an exact solution to the least squares problem

Moore-Penrose 
pseudoinverse

theta = np.matmul(np.linalg.pinv(X), y)

Another solution to the least squares method
Derivation of the normal equation is omitted on this course…



The normal equation - an exact solution to the least squares problem

We can find the optimal parameters to a linear regression problem 
(with least squares) in a single step, by using the formula above!

(X, y are known from the data)

Another solution to the least squares method



The normal equation - an exact solution to the least squares problem

The regularized (L2) least squares solution:

Another solution to the least squares method

In practice, we use the regularized version of the normal equation:
By choosing an appropriate lambda value, we ensure the stability of the 

solution (and thus a valid input to the inverse operation).



Last week - Two main tasks in supervised learning

Regression: Continuous labels         (The label set is infinite)

Example: Number of cars or the age of a person

Classification: Discrete labels           (The label set is finite)

Example: Categorization of examples

- What is the profession of the person 
in the image?



Last week - Example (binary) classification tasks

Example tasks for (binary) classification:

x1: Duration of exposure to radiation     y: Did the person die?

x1: Population of a settlement
x2: Annual number of tourists     y: Is the settlement a town?

x1: Weight of an animal
x2: Number of hairballs coughed up     y: Is it a dog or a cat?
x3: Degree of drooling



Last week - Logistic regression

Logistic regression hypothesis: Sigmoid ∘ Linear regression



Last week - Logistic regression

Logistic regression - Decision boundary

Univariate sample      Bivariate sample …

…

decision boundaries



Loss function for logistic regression: Logistic loss / Binary cross-entropy

Last week - Logistic regression

Logistic loss (using the logistic regression hypothesis) is convex
→ a single local (and global) minimum
→ gradient descent will find the globally optimal parameters



Logistic regression in NumPy
def __sigmoid(self, z):

        return 1 / (1 + np.exp(-z) + self.eps)

h = self.__sigmoid(np.dot(X, self.theta))

loss = np.mean(-y * np.log(h + self.eps) - \\

   (1 - y) * np.log(1 - h + self.eps))

gradient = np.dot(X.T, (h - y)) / y.size

self.theta -= self.lr * gradient

sigmoid function (vectorized)

(eps: to avoid division by zero)

the label prediction (y hat)

loss value

a single step of gradient descent



Back to regression…

Linear regression worked well on a sample where the 
linear combination of variables closely approximated the label.



Back to regression…

What can we do when a linear approximation is not suitable?



E.g., let’s assume                                   . In this case, linear regression 
does not provide very good results. What can we do?

Back to regression…



Polynomial regression



Hypothesis function 

Univariate: 

Multivariate, e.g.,: 

Loss function (MSE):

Polynomial regression



Solution using gradient descent:

The loss function is differentiable.
→ Gradient descent can be used to find good θ coefficients.

Polynomial regression



Solution using gradient descent:

The loss function is differentiable.
→ Gradient descent can be used to find good θ coefficients.

Polynomial regression

Now, we have exponents inside
 the hypothesis function (and thus the loss). 

Is this a problem?



Solution using gradient descent:

The loss function is differentiable.
→ Gradient descent can be used to find good θ coefficients.

We do not raise θ parameters to the power.
→ J remains quadratic with respect to the θ parameters!

Polynomial regression



Solution in practice:

- Due to exponents, gradients associated with higher-order coefficients 
can be extremely large/small.

- As we saw in multivariate linear regression, 
the gradient method is sensitive to this.

Solution?

Polynomial regression



Solution in practice:

- Due to exponents, gradients associated with higher-order coefficients 
can be extremely large/small.

- As we saw in multivariate linear regression, 
the gradient method is sensitive to this.

Solution?

Polynomial regression



Solution:

Treat polynomial regression as if it was linear regression! 

… is transformed into:

Polynomial regression



… is transformed into:

→ we substitute and calculate the powers of the variables in advance.

For example: 

Finally, we bring the new variables to the same order of magnitude using 
feature scaling and solve the problem as a linear regression.

Polynomial regression



Univariate case: Vandermonde matrix

Feature scaling:
We treat x, x², …, xⁿ as 
separate variables and 
scale them independently 
of each other.

Polynomial regression



Multivariate case, for example:

Polynomial regression

Feature scaling:
We treat x1, x2, x1², … as 
separate variables and 
scale them independently 
of each other.



Splitting the sample

The life cycle of the model:

1. We train the model on the training set
2. We evaluate the model on the test set

The two sets must be disjoint!



Splitting the sample

The life cycle of the model:

1. We train the model on the training set
2. We evaluate the model on the test set

The two sets must be disjoint!

Do not use the test set for learning! 
We use the test set to estimate how our trained model will 

perform on new data points, not seen during training.



Splitting the sample



Observing the loss curve during training

Perform polynomial regression on the following sample!

What degree polynomial should we fit?



Perform polynomial regression on the following sample!

What degree polynomial should we fit?
With a single variable, it is clear from 
looking at the graph that a second-
degree polynomial fits the sample well.

Unfortunately, we cannot visualize the 
data like this with more than two 
variables. Therefore, without additional 
experimentation, we cannot tell what 
degree polynomial would be ideal.

Observing the loss curve during training



 The training and test losses are 
both (similarly) large.

“high bias, low variance”

J_train ≈ 700
J_test ≈ 700

Observing the loss curve during training: underfitting



 Both the training and the test losses are 
small and both decrease over time.

“balancing bias & variance”

J_train ≈ 400
J_test ≈ 400

Observing the loss curve during training: “just right”



Observing the loss curve during training: overfitting

 The training loss decreases, 
but the test loss increases.

“low bias, high variance”

J_train ≈ 250
J_test ≈ 800



Detour: Polynomial interpolation

With polynomial interpolation, we can even fit a polynomial exactly 
to the training set.

J_train = 0
J_test ≈ 252507.67



With polynomial interpolation, we can even fit a polynomial exactly 
to the training set. However, this is not useful in machine learning!

J_train = 0
J_test ≈ 252507.67

A ninth-degree polynomial can be fitted to 
ten points without any error.
If there is enough training data and the 
hypothesis function is sufficiently complex, a 
precise fit can be achieved, but this will be 
very far from the test data.
→ “Extreme overfitting”

Detour: Polynomial interpolation



Under- and overfitting in case of classification

 

Image source: Andrew Ng Machine learning video series



 Classification with two input variables (top view of the sample/hypothesis graph)

The learned decision boundary in three cases: 
Overly simple, adequately expressive, and overly 
complex models.

Under- and overfitting in case of classification

Image source: Andrew Ng Machine learning video series



 

An overly complex model is capable of "memorizing" 
individual training examples and precisely shaping the 
decision boundary around them (significant overfitting).

Under- and overfitting in case of classification
Classification with two input variables (top view of the sample/hypothesis graph)

Image source: Andrew Ng Machine learning video series



 

Logistic regression learns a linear decision surface,
thus overfitting is not expected 
(unless the training set size is minimal).

Image source: Andrew Ng Machine learning video series

Under- and overfitting in case of classification
Classification with two input variables (top view of the sample/hypothesis graph)



Example: Categorizing photos

If the deep network is powerful enough and has enough learnable 
parameters, it may learn the task in an undesirable way.

Overfitting in deep neural networks

Image source: sastanin @ Stack Exchange



Overfitting in deep neural networks

Example: Categorizing photos

If the deep network is powerful enough and has enough learnable 
parameters, it may learn the task in an undesirable way.

For example, it "memorizes" 
every single image in the training 
set with a specific pattern.
...even a unique JPEG compression 
artifact!

Image source: sastanin @ Stack Exchange



Avoiding underfitting and overfitting

Our goal is to ensure that our model does not underfit or overfit. 
Instead, we want to find the "just right" model!

How can we avoid underfitting and overfitting?



Avoiding underfitting and overfitting

Our goal is to ensure that our model does not underfit or overfit. 
Instead, we want to find the "just right" model!

How can we avoid underfitting and overfitting?

Whether under- or overfit, the trained model will perform 
poorly when we try to estimate labels for new, unlabeled 
examples that were not seen during training 
— therefore, we want to avoid these phenomena.



Underfitting: The complexity of our model is too low to accurately 
approximate the labels from the input. The task is too difficult.

Solution: A more complex model is needed to reduce estimation error.

How to deal with underfitting?



Underfitting: The complexity of our model is too low to accurately 
approximate the labels from the input. The task is too difficult.

Solution: A more complex model is needed to reduce estimation error.

How to deal with underfitting?

Example: We can try to use linear regression for complex tasks, such as 
estimating the age of celebrities from photographs. However, the model is 
severely underfitted, as linear regression can only produce age estimates from 
a linear combination of pixel brightness, which is not a good approach for age 
estimation. A more complex model, such as a convolutional neural network, may 
be more suitable for the task.



How to deal with overfitting?

Overfitting: The model is complex enough to accurately learn the 
specifics of individual elements of the training set, losing its ability to 
generalize.
The overfitted model performs poorly on the test set.

How to deal with it?



How to deal with overfitting?

Overfitting: The model is complex enough to accurately learn the 
specifics of individual elements of the training set, losing its ability to 
generalize.
The overfitted model performs poorly on the test set.

Solutions:

- Use a simpler model (e.g., fewer parameters)!



How to deal with overfitting?

Overfitting: The model is complex enough to accurately learn the 
specifics of individual elements of the training set, losing its ability to 
generalize.
The overfitted model performs poorly on the test set.

Solutions:

- Use a simpler model (e.g., fewer parameters)!
- Obtain more training data!



Obtain more training data!

J_train ≈ 250
J_test ≈ 800

J_train ≈ 400
J_test ≈ 400

How to deal with overfitting?



Obtain more training data!

Problem: Typically, we have no access to enough labeled training data 
to prevent overfitting in a deep neural network with hundreds of millions of 
parameters.

We need alternative methods...

How to deal with overfitting?



How to deal with overfitting?

Overfitting: The model is complex enough to accurately learn the 
specifics of individual elements of the training set, losing its ability to 
generalize.
The overfitted model performs poorly on the test set.

Solutions:

- Use a simpler model (e.g., fewer parameters)!
- Obtain more training data!
- Regularization methods (e.g., L2 regularization)



Observation: When fitting higher-degree polynomials, the coefficients 
(the θ parameters) typically increase as the fit becomes more and more 
accurate.

θ = [1., 7.46, 0.82, 0.06,  0.005, 
       0.0004, 0., 0., 0., 0., 0.]

θ = [[-2229., 7234., -9545., 6756., 
-2843., 743., -121., 12.05, -0.66, 0.015]

How to deal with overfitting?



Observation: When fitting higher-degree polynomials, the coefficients 
(the θ parameters) typically increase as the fit becomes more and more 
accurate.

Penalizing large coefficients (parameters) can help!

How?

How to deal with overfitting?



Observation: When fitting higher-degree polynomials, the coefficients 
(the θ parameters) typically increase as the fit becomes more and more 
accurate.

Let's include a penalty in the loss function:

Pl.:

How to deal with overfitting?



Observation: When fitting higher-degree polynomials, the coefficients 
(the θ parameters) typically increase as the fit becomes more and more 
accurate.

Let's include a penalty in the loss function:

Pl.:

MSE loss: Penalizing the label estimation error

L2-regularization term: 
Penalizing large parameters

When λ = 0: The original 
model without regularization

When λ is too high: It is 
easier to minimize the loss 
by learning all zero 
parameters instead of 
solving the task…

How to deal with overfitting?



Observation: When fitting higher-degree polynomials, the coefficients 
(the θ parameters) typically increase as the fit becomes more and more 
accurate.

Let's include a penalty in the loss function:

Pl.:

MSE loss: Penalizing the label estimation error

How to deal with overfitting?

The bias parameter (θ0) 
is not penalized.



L2 regularization: 

λ = 0 λ = 0.1

How to deal with overfitting?



L2 regularization: 

λ = 0 λ = 0.1

Can also help when training data is scarce.

How to deal with overfitting?



L2 regularization: 

L2 regularization is not only effective for polynomial regression.

Experience shows that, in general, weights (parameters) also increase in 
the case of neural networks when overfitting occurs.

L2 regularization is just one example. There are many types of regularization 
methods that reduce overfitting by applying some kind of constraint during learning.

How to deal with overfitting?



How to deal with overfitting?

Overfitting: The model is complex enough to accurately learn the 
specifics of individual elements of the training set, losing its ability to 
generalize.
The overfitted model performs poorly on the test set.

Solutions:

- Use a simpler model (e.g., fewer parameters)!
- Obtain more training data!
- Regularization methods (e.g., L2 regularization)
- Early stopping



Early stopping: Overfitting often inevitably occurs after a certain number 
of iterations when training deep neural networks. Early stopping is 
generally an effective solution.

Stop here

How to deal with overfitting?



Early stopping: Overfitting often inevitably occurs after a certain number 
of iterations when training deep neural networks. Early stopping is 
generally an effective solution. Stop training if Jtest does not 

improve anymore and use the 
parameters from this state

How to deal with overfitting?



Early stopping:
New loop condition: Loop, while Jtest keeps reducing.

How to deal with overfitting?



Early stopping:
New loop condition: Loop, while Jtest keeps reducing.

How to deal with overfitting?

(We should be patient for a 
while and not stop on the first 
sign of a plateauing test loss!)



Early stopping:
New loop condition: Loop, while Jtest keeps reducing.

How to deal with overfitting?

Can we see the problem with this technique?



Early stopping

We stated that we should not train the model using the test set.

What is actually happening?



Early stopping

We stated that we should not train the model using the test set.

What is actually happening?
We adjust the model to the test set, 
as we stop training when we have 
presumably achieved the smallest 
possible error on the test set.

This is cheating…



Splitting the sample

New approach:

Training set, validation set, test set

For example, 50%, 25%, 25% of the sample



Splitting the sample

New approach:

Training set, validation set, test set

For example, 50%, 25%, 25% of the sample

In critical applications, proportions can change, e.g., 20%, 10%, 70%.
We expect the test set to enable us to estimate the future performance of the trained 

model as accurately as possible, based on data that was unseen during training.



Validation set, hyperparameters

We will use the validation set to optimize the following parameters:

- Learning rate (alpha)
- Polynomial degree, or neural network architecture 

(layers, number of neurons, etc.)
- Number of iterations for the gradient method (early stopping)
- ...

Such parameters are called hyperparameters.

We will use the validation set to find optimal hyperparameters.



Hyperparameters

Finding the model with the lowest errors thus consists of two 
optimization tasks.

Until now: 

From now: 

ψ: hyperparametersψ*: Optimal hyperparameters



Model training procedure
The task:

1) Select a new hyperparameter configuration Ψ.
2) Optimize the model parameters (θ) on the training set with gradient descent.
3) Evaluate the trained model on the validation set, then GOTO 1

Finally:

- Ψ* := The hyperparameter configuration with the best performance on the 
validation set.

- θ* := The trained model parameters with hyperparameters Ψ*.
- Evaluate model with parameters θ* and hyperparameters Ψ* on the test set.



Optimizing hyperparameters

Gradient descent cannot generally be used for this purpose
(It is not always possible to specify a differentiable loss function w.r.t. 
hyperparameters).

Common techniques:
- Manual trial and error
- Grid search
- Random search
- Bayesian optimization
- Evolutionary/genetic algorithms
- ...



Selecting the validation set

Cross validation

Image source: https://medium.com/analytics-vidhya/



Selecting the validation set

Cross validation

A popular technique for 
evaluating hyperparameters. 
It is most useful when we 
have little data available for 
training/validation.

Image source: https://medium.com/analytics-vidhya/



The biological neuron model

Image source: Egm4313.s12 at English Wikipedia



The functioning of biological neurons simplified

The functioning of brain cells

Image source: en:User:Chris 73, updated by en:User:Diberri at English Wikipedia



The functioning of brain cells

- Membrane potential: The voltage difference between the inner and 
outer walls of the cell

- In the absence of input, the membrane potential continuously 
decreases to a resting level.

- The membrane potential increases in response to input.
- Inputs arriving at different branches (dendrites) are amplified or 

attenuated (can also be negative) with different weights.
- When the membrane potential reaches a threshold (specific to each 

neuron), the neuron “fires” and charge passes through the output.

The functioning of biological neurons simplified



What does its functioning resemble?

The biological neuron model

Image source: Egm4313.s12 at English Wikipedia



The artificial neuron model (Rosenblatt, 1958)

The simplified, discretized model of a biological neuron. What does it resemble?



An artificial neuron is a (multivariate) logistic regression if g is sigmoid!

g can be a sigmoid or
other activation functions

The artificial neuron model (Rosenblatt, 1958)



Artificial neurons are the building blocks of one of the basic types of 
artificial neural networks (the Multilayer Perceptron, MLP).

Building blocks of neural networks



Artificial neurons are the building blocks of one of the basic types of 
artificial neural networks (the Multilayer Perceptron, MLP).

Building blocks of neural networks



Differences from the artificial neuron model:

- Continuous signal in the nerve cell instead of discrete steps.
→ Sum in artificial neurons, integral in nerve cells.

The functioning of biological neurons simplified



Differences from the artificial neuron model:

- Continuous signal in the nerve cell instead of discrete steps.
→ Sum in artificial neurons, integral in nerve cells.

- In a nerve cell, nonlinearity does not have to be
continuous (Heaviside step function).
→ In an artificial neuron, continuous, a differentiable nonlinearity 
is required.

The functioning of biological neurons simplified

(and the derivative should not be zero everywhere…)



Differences from the artificial neuron model:

- Continuous signal in the nerve cell instead of discrete steps.
→ Sum in artificial neurons, integral in nerve cells.

- In a nerve cell, nonlinearity does not have to be
continuous (Heaviside step function).
→ In an artificial neuron, continuous, a differentiable nonlinearity 
is required.

- The weight of a nerve cell is either always negative or always positive; 
the sign does not change (excitor vs. inhibitor)
→ In an artificial neuron, the sign of the weight can change.

The functioning of biological neurons simplified



Summary

May be included in tests / exam: 

- Identifying and handling of under- and overfitting, hyperparameters, 
validation set

- Artificial neural network model

Will not be included in tests / exam: 

- Polynomial regression
- Polynomial interpolation
- The biological neuron model and differences from the artificial model


