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Software for neural networks

CPU only
CPU & GPU

computational graphs
automatic differentiation



Software for neural networks

CPU only
CPU & GPU

computational graphs
automatic differentiation

Both supports array programming!



def __sigmoid(self, z):

        return 1 / (1 + np.exp(-z) + self.eps)

h = self.__sigmoid(np.dot(X, self.theta))

def __sigmoid(self, z):

        return 1 / (1 + torch.exp(-z) + self.eps)

h = self.__sigmoid(torch.mm(X, self.theta[:, None]))

Logistic regression - NumPy vs. PyTorch

label prediction 
in NumPy

label prediction 
in PyTorch



def __sigmoid(self, z):

        return 1 / (1 + np.exp(-z) + self.eps)

h = self.__sigmoid(np.dot(X, self.theta))

z = torch.nn.Linear(X.shape[1], 1)(X)

h = torch.nn.functional.sigmoid(z)

Much simpler with torch.nn:

Logistic regression - NumPy vs. PyTorch

label prediction 
in NumPy

label prediction 
in PyTorch



loss = np.mean(-y * np.log(h + self.eps) - \

   (1 - y) * np.log(1 - h + self.eps))

loss = torch.mean(-y * torch.log(h + self.eps) - \

   (1 - y) * torch.log(1 - h + self.eps))

Logistic regression - NumPy vs. PyTorch

loss value 
in NumPy

loss value
in PyTorch



loss = np.mean(-y * np.log(h + self.eps) - \

   (1 - y) * np.log(1 - h + self.eps))

loss = torch.nn.BCELoss()(h, y)

Logistic regression - NumPy vs. PyTorch

Much simpler with torch.nn:

loss value 
in NumPy

loss value
in PyTorch



What can a single neuron (with sigmoid) represent?

The artificial neuron model



What can a single neuron 
(with sigmoid) represent?

A single linear decision surface
(since we are talking about 
logistic regression).

Decision boundary

In case of two input variables (x1, x2) 
this is a line in the x1, x2 plane.

The artificial neuron model



What can a single neuron 
(with sigmoid) represent?

A single linear decision surface
(since we are talking about 
logistic regression).

The same graph viewed from the top

Decision boundary

The artificial neuron model

x1

x2



IRIS dataset: Let’s try to separate the data points in the “versicolor” 
category!

The artificial neuron model



IRIS dataset: Let’s try to separate the data points in the “versicolor” 
category!

IRIS dataset: Classification of three 
varieties of Iris flowers based on petal (or 
sepal) length and width. (This is not an 
image dataset.)
A straight line is not sufficient to 
distinguish the "versicolor" variety...

The artificial neuron model

Image source: kaggle.com



IRIS dataset: Let’s try to separate the data points in the “versicolor” 
category!

An artificial neuron is not enough! 

The decision boundary 
(a straight line, generally a hyperplane) 
represented by a neuron is 
not able to separate the points 
belonging to individual categories!

The artificial neuron model



IRIS dataset: Let’s try to separate the data points in the “versicolor” 
category!

How to solve this task?

The artificial neuron model



IRIS dataset: Let’s try to separate the data points in the “versicolor” 
category!

How to solve this task?

Perhaps, with two linear decision surfaces 
and their "combination" (AND)

→ we could connect neurons sequentially…
(with neural networks!)

The artificial neuron model



The expressive power of neural networks - An example



We want our single neuron in the second 
layer to output 1 where both neurons in 
the first layer output 1. 
In other words, we need something like 
an AND operation...

The expressive power of neural networks - An example



Approximation of binary logical functions: x1 AND x2

Where should the 
decision boundary be?

The expressive power of neural networks - An example



Approximation of binary logical functions: x1 AND x2

The expressive power of neural networks - An example



Approximation of binary logical functions: x1 AND x2

h2

h1
h1

h2

h2

h1

The expressive power of neural networks - An example

Instead of x1 and x2, the 
output of the two neurons in 
the first layer will be the input 
(e.g., h1, h2).



h1

h2

The expressive power of neural networks - An example



h1

h2

x1

x2

The expressive power of neural networks - An example



Approximation of binary logical functions: x1 OR x2

h1
h1

h2

h2

h2

h1

The expressive power of neural networks - An example



h1

h2

x1

x2

The expressive power of neural networks - An example



Approximation of binary logical functions

Is a single neuron capable of producing arbitrary logical functions?



The exclusive-OR (XOR) function

???

The “XOR” problem



The exclusive-OR (XOR) function

The logical function "exclusive OR" 
is not linearly separable, 

so it cannot be approximated well
 by a single neuron.

The “XOR” problem



h1

h2

x1

x2

The “XOR” problem



Is a single neuron capable of producing arbitrary logical functions?

No!

A single neuron can only solve linearly separable problems.

Approximation of binary logical functions



Is a single neuron capable of producing arbitrary logical functions?

No!

A single neuron can only solve linearly separable problems.

The "XOR" problem: The expressive power of a single artificial neuron is 
severely limited, which justifies the use of multilayer neural networks...

Can be proven: Even a two-layer neural network (with sigmoids) 
can approximate any function to any degree with the appropriate weights, 

if we have enough neurons available.

Approximation of binary logical functions



The "XOR" problem: The expressive power of a single artificial neuron is 
severely limited, which justifies the use of multilayer neural networks...

Can be proven: Even a two-layer neural network (with sigmoids) 
can approximate any function to any degree with the appropriate weights, 

if we have enough neurons available.

Is a single neuron capable of producing arbitrary logical functions?

No!

A single neuron can only solve linearly separable problems.

Not a very useful result:
Finding these weights faster than exponential time 

(brute force) is not guaranteed!

Approximation of binary logical functions



Artificial neurons are the building blocks of one of the basic types of 
artificial neural networks (the Multilayer Perceptron, MLP).

Multilayer Perceptron (MLP)



Artificial neurons are the building blocks of one of the basic types of 
artificial neural networks (the Multilayer Perceptron, MLP).

Multilayer Perceptron (MLP)



Multilayer Perceptron (MLP)



Multilayer Perceptron (MLP)
Two fully connected 
(or dense) layers: 

Each neuron in the layer 
is connected to every 
neuron in the next layer.

(torch.nn.Linear)



Multilayer Perceptron (MLP)

Input “layer” Output “layer”

There are no neurons or 
weights (parameters) in the 
input and output “layers.”

→ These are not neuron layers 
in the traditional sense.



Multilayer Perceptron (MLP)

New notation: Theta is the 
set of all weight matrices and 
bias vectors.
(i.e., the parameters)



Multilayer Perceptron (MLP)

The size of weight matrices and bias vectors, generally:

where         is the number of neurons
in layer #k.

                



Multilayer Perceptron (MLP)

The size of weight matrices and bias vectors, generally:

where         is the number of neurons
in layer #k.

                

Notation: In matrix form, the 
parameters are typically denoted by W 
(weight matrix) and b (bias vector). 
These correspond to the θ parameters 
used in linear and logistic regression (b 
replaces the constant term, 
θ0 parameter).

S0 is the size of the input “layer”, 
     i.e the number of input variables.



Multilayer Perceptron (MLP)

A simplified visual
representation of an MLP…



Multilayer Perceptron (MLP)

A typical way to represent a fully 
connected layer in a neural network 
architecture diagram.

An even more simplified visual
representation of an MLP…



Multilayer Perceptron (MLP)

The hypothesis function of a two-layer MLP neural network:

Loss functions remain the same, for now:

- Classification: Logistic loss (BCE)
- Regression: MSE

The output of the first layer



Multilayer Perceptron (MLP)

The hypothesis function of a two-layer MLP neural network:

Activation functions:

- Classification: Sigmoid (same as in case of logistic regression)
- Regression: ??? 

The output of the first layer



Multilayer Perceptron (MLP)

The hypothesis function of a two-layer MLP neural network:

Activation functions:

- Classification: Sigmoid (same as in case of logistic regression)
- Regression: ???  We did not use an activation function (nonlinearity) in linear 

regression...    Following this, in the case of regression, we 
should not put an activation function in our neurons...

The output of the first layer



Multilayer Perceptron (MLP)

Is the following hypothesis function suitable for regression?

The output of the first layer



Multilayer Perceptron (MLP)

Is the following hypothesis function suitable for regression?

It doesn't make much sense, as its expressive power corresponds to a 
single linear layer:

The output of the first layer



Multilayer Perceptron (MLP)

Is the following hypothesis function suitable for regression?

It doesn't make much sense, as its expressive power corresponds to a 
single linear layer:

Composition of multiple linear functions is still linear → without nonlinearity, the 
expressive power of the neural network is identical to that of linear regression...

The output of the first layer



Multilayer Perceptron (MLP)

The hypothesis function of a two-layer MLP neural network:

In the case of regression, we will also use this hypothesis function.

However, it is worth omitting g2 (the last activation function).

The output of the first layer



Multilayer Perceptron (MLP)

The hypothesis function of a two-layer MLP neural network:

In the case of regression, we will also use this hypothesis function.

However, it is worth omitting g2 (the last activation function).

After all, if g2 is sigmoid, the output of the network will be between 0 and 1, which is 
unsuitable for estimating age, for example. g2 is therefore typically an identity function 
in the case of regression.

The output of the first layer



Activation functions

Popular activation functions
sigmoid

1

0

1

-1

0

tanh ReLU
(Rectified Linear Unit)

Easy to compute and 
almost always works well



Multilayer Perceptron (MLP)

The hypothesis function of a two-layer MLP:

PyTorch code when
g1 = ReLU
g2 = identity

class MyTwoLayerMLP(nn.Module):

  def __init__(self, input_dim, h_dim):

        super().__init__()

        self.layers = nn.Sequential(

            nn.Linear(input_dim, h_dim),

            nn.ReLU(),

            nn.Linear(h_dim, 1)

        )

  def forward(self, x):

      return self.layers(x)



Training an MLP

We will use gradient descent…



Training an MLP

We will use gradient descent…

Θ: the set of all parameters
(contains the elements of weight 
matrices, and bias vectors)

We compute the gradient of the loss 
function with respect to each parameter.

Fortunately, we don't have to calculate
the gradients by hand. 
PyTorch's automatic derivation
algorithm does this for us...

→ Next lecture



“Batch” gradient descent

We average the loss over data points 
in the entire training set.

Training an MLP



“Batch” gradient descent

We average the loss over data points 
in the entire training set.

For example: 

Training an MLP



“Batch” gradient descent

We average the loss over data points 
in the entire training set.

Problem: To compute a single step, 
we calculate the gradient
over the entire dataset.

→ Enormous computational cost

Training an MLP



The Stochastic Gradient Descent (SGD) algorithm

Let's randomly select a few data points from the training set 
and use only those to compute the next step!

Training an MLP - The SGD algorithm



The Stochastic Gradient Descent (SGD) algorithm

- The smaller the size of the selected mini-batch, the more likely it is 
that we will move in the wrong direction with the parameter update 
(variance increases).

- The larger the size of the selected mini-batch, the greater the 
computing and memory requirements.

(torch.optim.SGD)

Training an MLP - The SGD algorithm



The Stochastic Gradient Descent (SGD) algorithm

- The smaller the size of the selected mini-batch, the more likely it is 
that we will move in the wrong direction with the parameter update 
(variance increases).

- The larger the size of the selected mini-batch, the greater the 
computing and memory requirements.
For larger neural networks, efficiency considerations often determine 
the mini-batch size: choose as many examples at a time as will fit in the 

GPU memory!
If we can only use a small mini-batch size, we need to reduce the learning 

rate to achieve convergence.

Training an MLP - The SGD algorithm



Variants of the Stochastic Gradient Descent (SGD) algorithm:

- AdaGrad
- Adam
- Adamax
- RMSprop
- …

(torch.optim.*)

Training an MLP - The SGD algorithm



The expressive power of neural networks - An example



We can see that the neural network is capable of representing the above 
decision boundaries, but we set the weights required for this manually! 

Can we find (learn) a good solution using gradient descent?

The expressive power of neural networks - An example



In the previous example we set the weights manually.

Now let’s see what can a neural network learn by itself!

Notebook on Google Colab: 
https://colab.research.google.com/drive/1jrGJFbZY5TFk-NN2epcAPvBoxyK
yWI1H 

The expressive power of neural networks - An example

https://colab.research.google.com/drive/1jrGJFbZY5TFk-NN2epcAPvBoxyKyWI1H
https://colab.research.google.com/drive/1jrGJFbZY5TFk-NN2epcAPvBoxyKyWI1H


Two more complex classification tasks

Binary classification: Let's learn a decision boundary that 
separates data points from the two categories!

The expressive power of neural networks - An example



Logistic
regression

MLP, 2 layers, 
20+1 neurons

MLP, 4 layers, 
20+20+20+1 neurons

The expressive power of neural networks - An example



The expressive power of neural networks - An exampleTúltanulás (overfitting)

Logistic
regression

MLP, 2 layers, 
20+1 neurons

MLP, 4 layers, 
20+20+20+1 neurons



Interactive neural network simulator: https://playground.tensorflow.org/ 

The simulator can be used to examine the effect of overfitting in neural 
networks with different architectures.

Suggested settings:
Data: Gaussian, (optional: L2 reg. with > 0 rate)
Noise: >25

Classification: We learn a decision boundary 
that separates data points from two categories.

The expressive power of neural networks - An example

https://playground.tensorflow.org/


Regression - Examples

Example task until now - a single label variable:

x1: Weight of a patient
x2: Age of a patient   y: Cholesterol levels of the patient
x3: Sex of a patient

Example task from now - possibly multiple label variables:

x1: Weight of a patient
x2: Age of a patient   y1: Cholesterol levels of the patient
x3: Sex of a patient   y2: Blood sugar levels of the patient



MLP - Multiple label variables

Until now, y was always a scalar.
In regression, this limits us to estimating a 
value, and in classification, it limits us to 

estimating a single probability (2 categories)...



Let y be a vector, similarly to x!

MLP - Multiple label variables



Regression

Since in regression our labels can contain arbitrary numbers,
g2 is typically an identity function (i.e., it can be omitted).

y hat and y are vectors

MLP - Multiple label variables



Regression

Loss: We average the squared loss over the elements of the label vector.

Until now (y was a scalar): 

y is a vector: 

MLP - Multiple label variables
y hat and y are vectors



Regression

Loss: We average the squared loss over the elements of the label vector.

Until now (y was a scalar): 

y is a vector: 

MLP - Multiple label variables
y hat and y are vectors

MSE as before, but now we also average over the elements of the label vector.



Application of an MLP to classify handwritten digits

MNIST dataset

- Handwritten digits
- 28 × 28 pixel image size
- 10 categories (digits: 0 .. 9)
- 60,000 training examples
- 10,000 test examples



Application of an MLP to classify handwritten digits

MNIST dataset

- Handwritten digits
- 28 × 28 pixel image size
- 10 categories (digits: 0 .. 9)
- 60,000 training examples
- 10,000 test examples

784 input variables: The brightness of 
each pixel is an input variable.



Application of an MLP to classify handwritten digits

MNIST dataset

- Handwritten digits
- 28 × 28 pixel image size
- 10 categories (digits: 0 .. 9)
- 60,000 training examples
- 10,000 test examples

How do we classify them 
into 10 categories?

784 input variables: The brightness of 
each pixel is an input variable.



MLP - Multiple label variables

Classification

Until now (y was a scalar): Sigmoid was estimating a value between 
0 and 1, which we interpreted as a probability → Suitable for 2 categories

How to classify into more than 2 categories?

y hat and y are vectors



MLP - Multiple label variables

Classification

Until now (y was a scalar): Sigmoid was estimating a value between 
0 and 1, which we interpreted as a probability → Suitable for 2 categories

How to classify into more than 2 categories?

Let’s estimate a probability for each category!

y hat and y are vectors



MLP - Multiple label variables

Classification

Until now (y was a scalar): Sigmoid was estimating a value between 
0 and 1, which we interpreted as a probability → Suitable for 2 categories

How to classify into more than 2 categories?

Let’s estimate a probability for each category!

y hat and y are vectors

The sum of the estimated probabilities should be 1, 
since each example belongs to exactly one category.



MLP - Multiple label variables

The Softmax activation function 



The sum of vector 
elements raised to the 

exponential.

MLP - Multiple label variables

The Softmax activation function 

The i-th element of the input 
vector is raised to the 

exponential.

The sum of the elements of 
the result vector is 1, 

so it can be interpreted as the 
mass function of 

a probability distribution.



MLP - Multiple label variables

Classification

Until now (y was a scalar): Sigmoid was estimating a value between 
0 and 1, which we interpreted as a probability → Suitable for 2 categories

From now y can be a vector: In this case, g2 will be the softmax function.

y hat and y are vectors



MLP - Multiple label variables

Classification

Loss: Cross-entropy (CE), the generalization of Binary CE / Log. loss

Until now (y was a scalar):  

From now y can be a vector: 

y hat and y are vectors



MLP - Multiple label variables

Classification

Loss: Cross-entropy (CE), the generalization of Binary CE / Log. loss

Until now (y was a scalar):  

From now y can be a vector: 

y hat and y are vectors

Equals to the formula above 
in the binary case (k = 2) 

How does the true label (y) look like?



MLP - Multiple label variables

Cross-entropy (CE) loss:

True (target/ground truth) label, 
one-hot encoded:

The vector element representing 
the true category of the 

example is 1, the others are 0.

Estimated label: 
Estimated probabilities of 

belonging to each 
category



class MyTwoLayerMLP(nn.Module):

  def __init__(self, input_dim, h_dim):

        super().__init__()

        self.layers = nn.Sequential(

            nn.Linear(input_dim, h_dim),

            nn.ReLU(),

            nn.Linear(h_dim, 1)

        )

  def forward(self, x):

      return self.layers(x)

loss_fn = nn.MSELoss()

MLP neural network model for regression - PyTorch
class MyTwoLayerMLP(nn.Module):

  def __init__(self, input_dim, h_dim):

        super().__init__()

        self.layers = nn.Sequential(

            nn.Linear(input_dim, h_dim),

            nn.ReLU(),

            nn.Linear(h_dim, k)

        )

  def forward(self, x):

      return self.layers(x)

loss_fn = nn.MSELoss()

y is a scalar 
(regression, 1 label variable)

y is a vector 
(regression, k label variables)



class MyTwoLayerMLP(nn.Module):

  def __init__(self, input_dim, h_dim):

        super().__init__()

        self.layers = nn.Sequential(

            nn.Linear(input_dim, h_dim),

            nn.ReLU(),

            nn.Linear(h_dim, 1),

            nn.Sigmoid()

        )

  def forward(self, x):

      return self.layers(x)

loss_fn = nn.BCELoss()

class MyTwoLayerMLP(nn.Module):

  def __init__(self, input_dim, h_dim):

        super().__init__()

        self.layers = nn.Sequential(

            nn.Linear(input_dim, h_dim),

            nn.ReLU(),

            nn.Linear(h_dim, k)

        )

  def forward(self, x):

      return self.layers(x)

loss_fn = nn.CrossEntropyLoss()

MLP neural network model for classification - PyTorch

y is a scalar 
(binary classification)

y is a vector 
(multi-class classification)



CE loss in PyTorch includes the softmax 
activation function, so we don't need to 
include it here.
Because of this, we need to pay attention 
when making predictions: 
if we need probabilities, we need to add a 
torch.nn.Softmax() to the network's 
estimation...

class MyTwoLayerMLP(nn.Module):

  def __init__(self, input_dim, h_dim):

        super().__init__()

        self.layers = nn.Sequential(

            nn.Linear(input_dim, h_dim),

            nn.ReLU(),

            nn.Linear(h_dim, k)

        )

  def forward(self, x):

      return self.layers(x)

loss_fn = nn.CrossEntropyLoss()

MLP neural network model for classification - PyTorch

y is a vector 
(multi-class classification)



CE loss in PyTorch automatically 
generates one-hot encoding, 
expecting the true (y) labels 
to be given in categorical form...

class MyTwoLayerMLP(nn.Module):

  def __init__(self, input_dim, h_dim):

        super().__init__()

        self.layers = nn.Sequential(

            nn.Linear(input_dim, h_dim),

            nn.ReLU(),

            nn.Linear(h_dim, k)

        )

  def forward(self, x):

      return self.layers(x)

loss_fn = nn.CrossEntropyLoss()

MLP neural network model for classification - PyTorch

y is a vector 
(multi-class classification)


