Deep Network

Developments
Lecture #5

Viktor Varga
Department of Artificial Intelligence, ELTE IK

Software for neural networks

CPU only

O
PyTorch

CPU & GPU
computational graphs
automatic differentiation

Software for neural networks

Both supports array programming!

" O
- NumPy PyTorch

CPU & GPU
CPU only computational graphs

automatic differentiation

Logistic regression - NumPy vs. PyTorch

def sigmoid(self, z):

return 1 / (1 + np.exp(-z) + self.eps) label prediction
in NumPy

h = self. sigmoid(np.dot(X, self.theta))

<

return 1 / (1 + torch.exp(-z) + self.eps)

def sigmoid(self, z):
label prediction

in PyTorch

h = self. sigmoid(torch.mm(X, self.theta[:, None]))

Logistic regression - NumPy vs. PyTorch

def sigmoid(self, z):

return 1 / (1 + np.exp(-z) + self.eps) label prediction
in NumPy

h = self. sigmoid(np.dot(X, self.theta))

<

z = torch.nn.Linear (X.shape[l], 1) (X)

Much simpler with torch.nn:

label prediction
in PyTorch

h = torch.nn.functional.sigmoid(z)

Logistic regression - NumPy vs. PyTorch

loss = np.mean(-y * np.log(h + self.eps) - \ loss value
(L - y) *np.log(l - h + self.eps)) in NumPy
loss = torch.mean(-y * torch.log(h + self.eps) - \

loss value

1 - * torch.1l 1 - h + 1f.
(y) ore °g =€ eps)) in PyTorch

Logistic regression - NumPy vs. PyTorch

loss = np.mean(-y * np.log(h + self.eps) - \ loss value
(1 - y) * np.log(l - h + self.eps)) in NumPy

<

loss = torch.nn.BCELoss () (h, y)

Much simpler with torch.nn:

loss value
in PyTorch

The artificial neuron model

What can a single neuron (with sigmoid) represent?

The artificial neuron model

What can a single neuron
(with sigmoid) represent?

A single linear decision surface
(since we are talking about
logistic regression).

Decision boundary

In case of two input variables (x1, x2)
this is a line in the x1, x2 plane.

The artificial neuron model

What can a single neuron
(with sigmoid) represent?

A single linear decision surface
(since we are talking about
logistic regression).

The same graph viewed from t

10
08 1
06 1
X2

0.4 1

0.2 1

Decision boundary

0.2

0.4

X1

0.6

0.8

10

The artificial neuron model

IRIS dataset: Let's try to separate the data points in the “versicolor”

category!
4.5 | virginica
[J
4.0
E 3.5 -
£
5= versicolor
=
= 3.0 1
Q.
b3
2.5 1
2.0 A
setosa

sepal length (cm)

Image source: kaggle.com

The artificial neuron model

IRIS dataset: Let's try to separate the data points in the “versicolor”
category!

4.5 | virginica

Iris Versicolor

versicolor

sepal width (cm)

IRIS dataset: Classification of three
varieties of Iris flowers based on petal (or 233
sepal) length and width. (This is not an
image dataset.)

A straight line is not sufficient to sepal length (cm)
distinguish the "versicolor"” variety...

setosa

The artificial neuron model

IRIS dataset: Let's try to separate the data points in the “versicolor”
category!

4.5 virginica

An artificial neuron is not enough!

The decision boundary

(a straight line, generally a hyperplane)
represented by a neuron is

not able to separate the points
belonging to individual categories!

versicolor

sepal width (cm)

setosa

sepal length (cm)

The artificial neuron model

IRIS dataset: Let's try to separate the data points in the “versicolor”
category!

4.5 | virginica

How to solve this task?

versicolor

sepal width (cm)

w
o
1

2.5 4

2.0+

setosa

sepal length (cm)

The artificial neuron model

IRIS dataset: Let's try to separate the data points in the “versicolor”
category!

4.5 virginica

How to solve this task?

4.0 A

3.5 4

Perhaps, with two linear decision surfaces
and their "combination" (AND)

versicolor
3.0 1

sepal width (cm)

2.5 4

— we could connect neurons sequentially... 27 : |] |
(with neural networks!) 5 6 7 8

sepal length (cm)

setosa

The expressive power of neural networks - An example

wir = —7, wiz1 = —9, by = 60 ‘i

X1 a(.) W
21
Wiz1 / 4p,,
A
a(.) y
+b +b
W12 12 w, 2
X -
2 W22 g()

wi1e = 4, w2 = —H, bjg = —5

sepal width (cm)
w w

sepal length (cm)

The expressive power of neural networks - An example

hl -.. ...l .c =o
w11 = —7, Wiz1 = —3, b1y = 60 ‘i QIR W
/ b ' e

sepal width (cm)
w w

i 9w We want our single neuron in the second
Wizt / 4p 2! .
11 layer to output 1 where both neurons in
g y the first layer output 1.
A2 +b,, +b, In other words, we need something like
112 .
% W a(.) W2z an AND operation...

h

wi1e = 4, w2 = —H, bjg = —5

The expressive power of neural networks - An example

Approximation of binary logical functions: x1 AND x2

X ‘
Lo ® Where should the
decision boundary be?
0O O—»
0 1 X2

X, and X,

The expressive power of neural networks - An example

Approximation of binary logical functions: x1 AND x2

h(x)

X ‘

1 <) ‘ 08

0 C C - 02
0 1 X2

00 02 0.4 06 0.8 10
x 1

w1:7,w2:7,b:—9

X, and X,

Instead of x1 and x2, the
output of the two neurons in

The expressive power of neural networks - An ¢« first layer will be the input

(e.g., h1, h2).

Approximation of binary logical functions: x1 AND x2

h2
|

A

@) @®

O O—

0 1 hy
h1 and h2

h(x)

10

0.8

h2

.
0.2

0.0

0.0 0.2 e 0.8 10

h4
'w1:7, w2:7,b:—9

The expressive power of neural networks - An example

hl
a5
40 08
35 06

)
30 04
25 02
20 ,
5 6 7 8
x1

wip = — 7, Wiz = —9H, by =60

X1 9N w —
21
Wiz1 / 4p,, {
A
g(.) y
+b +b
Wiz i w, 2
X -
< W22 a(.)

wi1e = 4, wige = —H, by = —

wop =7, weg =7, bp = —9

.

sepal width (cm)
w w

6
sepal length (cm)
h(x)

N

The expressive power of neural networks - An example

wir = —7, wiz1 = —9, by = 60 ‘i

sepal width (cm)

X1 g(.)
w
W21 +b,, 2t { wo1 =7, Wy =7, by = —9
90— Y | <
+b \
Wiz 042 w, 2 .
2 T Wiz g(-) w0

X235

30
35

o

= 25

30

20

»
«n

»
o

w
«

w
o

N
n

N
o

sepal length (cm)
h(x)

25

wiip = 4, wiee = —95, byjg = -5 .

setosa

08

06

The expressive power of neural networks - An example

Approximation of binary logical functions: x1 OR x2

h(x)
h2 ‘ 10
08 038
| @ &
06
h2
o) 04
0 C . s 02 02
O l h1 0'Oo.o 0.2 0 h 0.8 10
1
h1 or h2

'w1:7, w2:7,b:—5

The expressive power of neural networks - An example

sepal width (cm)

»
«n

»
o

w
«

w
o

N
n

N
o

sepal length (cm)
h(x)

wir = —7, wizr = —9, byy =60 ‘i

X a(.)
W
W21 +h,, et { wop =T, wag =7, bp = —5
90— Y | <
$p \
W112 +b12 w22 . 45
% F—wa—Xot))
* X235
wiip = 4, wiee = —95, byjg = -5 .

setosa

08

02

Approximation of binary logical functions

Is a single neuron capable of producing arbitrary logical functions?

The “XOR” problem

The exclusive-OR (XOR) function

Xy
| @ O

0O T
0 1 X

227

The “XOR” problem

The exclusive-OR (XOR) function

X1 ‘
L O The logical function "exclusive OR"
is not linearly separable,
so it cannot be approximated well
by a single neuron.
0O @
0 1 X

The “XOR” problem

wiyy = — 7, wiz1 =7, by = —3 ')

hix)

X XOr X,

Wi14

X1 a(.)
Wi
121 +b,, woy =T, wag =T, by =
A
+b +b, T~

W12 12 w, .
X -
2 W22 g()

wiie = 7, wige = —7, bjg = —3 i

08

06

04

02

Approximation of binary logical functions

Is a single neuron capable of producing arbitrary logical functions?

No!

A single neuron can only solve linearly separable problems.

Approximation of binary logical functions

Is a single neuron capable of producing arbitrary logical functions?

No!

A single neuron can only solve linearly separable problems.

The "XOR" problem: The expressive power of a single artificial neuron is
severely limited, which justifies the use of multilayer neural networks...

Can be proven: Even a two-layer neural network (with sigmoids)
can approximate any function to any degree with the appropriate weights,
if we have enough neurons available.

Approximation of binary logical functions

Is a single neuron capable of producing arbitrary logical functions?

No! Not a very useful result:
Finding these weights faster than exponential time
A single neuron can ol (brute force) is not guaranteed!

Can be proven: Even a two-layer neural network (with sigmoids)
can approximate any function to any degree with the appropriate weights,
if we have enough neurons available.

Multilayer Perceptron (MLP)

Artificial neurons are the building blocks of one of the basic types of
artificial neural networks (the Multilayer Perceptron, MLP).

x
w
<>

Multilayer Perceptron (MLP)

Artificial neurons are the building blocks of one of the basic types of
artificial neural networks (the Multilayer Perceptron, MLP).

X4 / \

Inputs —
X2

unction

e~]

oy,

ol S

Multilayer Perceptron (MLP)

7 2

g(.)

g(.) |

g(.)

Two fully connected

Multilayer Perceptron (MLP (or dense) layers:
—

Each neuron in the layer

Y | () is connected to every
; in th tl :
\wz’m neuron in the next layer
+bu1
Inputs — Z g(.) | A
y
+b

2,1

> | gef /] Wars

+b (torch.nn.Linear)

There are no neurons or

I\/Iultilayer Perceptron (M LP) weights (parameters) in the

input and output “layers.”

— These are not neuron layers

> | g in the traditional sense.
+b1,1
Inputs — Z g(.) B
> y
2,1
> | g0)
+b1,2
-«

> Input“layer” Output “layer”

Multilayer Perceptron (MLP)

Inputs —

g(.)

g(.)

g(.) |

New notation: Theta is the
set of all weight matrices and
bias vectors.

(i.e., the parameters)

/

O = {W17b17W27b2}

Multilayer Perceptron (MLP)

The size of weight matrices and bias vectors, generally:

W), € R5k*5k1

b € Rsk
where S} is the number of neurons
in layer #Kk.
So:=n

r € R"

Multilayer Perceptron (MLP)

The size of weight matrices and bias vectors, generally:

Notation: In matrix form, the

Sk X Sk—l
Wk c R parameters are typically denoted by W
= Rsk (weight matrix) and b (bias vector).
k \ These correspond to the 8 parameters

where S. is the number of neurons used in linear and logistic regression (b
k replaces the constant term,

in layer #k. 8o parameter).

S() =N

N - So is the size of the input “layer”,
recR i.e the number of input variables.

Multilayer Perceptron (MLP)

A simplified visual
representation of an MLP...

>
w
<>

2Xn 1x2
Wy € R™ W, € R © = {Wy,b,Wa,bs}
b, € R by € R!

Multilayer Perceptron (MLP)

n An even more simplified visual
2 representation of an MLP...
1
A
X y
A typical way to represent a fully
connected layer in a neural network

architecture diagram.

AI%n 1x2
Wi € R®" W, € R © = {W1,b1,Ws, by}

Multilayer Perceptron (MLP)
The hypothesis function of a two-layer MLP neural network:

h(z) =g (Wo g1 (Wiz +b1) +b2) =9~y
\ |

|
The output of the first layer

Loss functions remain the same, for now:

- Classification: Logistic loss (BCE)
- Regression: MSE

Multilayer Perceptron (MLP)
The hypothesis function of a two-layer MLP neural network:

h(z) =g (Wo g1 (Wiz +b1) +b2) =9~y
\ |

|
The output of the first layer

Activation functions:

- Classification: Sigmoid (same as in case of logistic regression)
- Regression: ?7?

Multilayer Perceptron (MLP)
The hypothesis function of a two-layer MLP neural network:

h(z) =g (Wo g1 (Wiz +b1) +b2) =9~y
\ |

|
The output of the first layer

Activation functions:

- Classification: Sigmoid (same as in case of logistic regression)

- Regression: ? We did not use an activation function (nonlinearity) in linear
regression... Following this, in the case of regression, we
should not put an activation function in our neurons...

Multilayer Perceptron (MLP)

Is the following hypothesis function suitable for regression?

h(m)sz (Wlw—l-bl)—I-bg Z’g%y

\ J
|

The output of the first layer

Multilayer Perceptron (MLP)

Is the following hypothesis function suitable for regression?

h(m)sz (W133—|—b1)+b2 Z’Q%y

\ J
|

The output of the first layer

It doesn't make much sense, as its expressive power corresponds to a
single linear layer:

Wg(Wlib + bl) + by = (Wle)QZ -+ (W2b1 -+ bz)

Multilayer Perceptron (MLP)

Is the following hypothesis function suitable for regression?

h(CB):W2 (W1$+b1)+b2 Zg%y

\ J
|

The output of the first layer

It doesn't make much sense, as its expressive power corresponds to a
single linear layer: e R %%

WQ(W1213 + bl) -+ bz — (W2W1):c -+ (W2b1 -+ bz)

Composition of multiple linear functions is still linear — without nonlinearity, the
expressive power of the neural network is identical to that of linear regression...

Multilayer Perceptron (MLP)
The hypothesis function of a two-layer MLP neural network:

h(z) =g (Wo g1 (Wiz +b1) +b2) =9~y
\ |

|
The output of the first layer

In the case of regression, we will also use this hypothesis function.

However, it is worth omitting g2 (the last activation function).

Multilayer Perceptron (MLP)
The hypothesis function of a two-layer MLP neural network:

h(z) =g (Wo g1 (Wiz +b1) +b2) =9~y
\ |

|
The output of the first layer

In the case of regression, we will also use this hypothesis function.

However, it is worth omitting g2 (the last activation function).

After all, if g2 is sigmoid, the output of the network will be between 0 and 1, which is
unsuitable for estimating age, for example. gz is therefore typically an identity function
in the case of regression.

Activation functions

Popular activation functions

sigmoid
Sigmoid function ta n h Re L U
""""""""""""""""""""" 1 (Rectified Linear Unit)
10F _—1_ coctifior |
; 0
0
S _.Easy to compute and
g(z) i e 2% 4 almost always works well

-l g(2) = ReLU(2) = max(0, 2)

Multilayer Perceptron (MLP)

The hypothesis function of a two-layer MLP:

h(z) = go(We gt (Wiz +b1) +b2) =G~y

class MyTwolLayerMLP (nn.Module) :
def init (self, input dim, h dim):
super (). init ()
self.layers = nn.Sequential (
nn.Linear (input_dim, h dim),
nn.RelLU(),
nn.Linear (h_dim, 1)
)
def forward(self, x):

return self.layers (x)

PyTorch code when
g1 = RelLU
g2 = identity

<>

Training an MLP

We will use gradient descent... repeat until convergence {
forvoe® {

grady = %J(@)
}
forVoec©® {
0 =60— agrady
}
}

Training an MLP

We will use gradient descent...

Fortunately, we don't have to calculate
the gradients by hand.

PyTorch's automatic derivation
algorithm does this for us...

— Next lecture

O©: the set of all parameters
(contains the elements of weight
matrices, and bias vectors)

repeat until conve

}
forVoec©® {

0 =60 — agrady
}

We compute the gradient of the loss
function with respect to each parameter.

Training an MLP

Batch” gradient descent repeat until convergence {

We average the loss over data points forVoe© {
in the entire training set. gradg = 2.J(O)
}
forvoe o {
0 =0 — agrady
}

}

Training an MLP

Batch” gradient descent repeat until convergence {

We average the loss over data points forVoe© {

in the entire training set. gradg = 2.J(O)
A
forvoe o {

For example: 0 =0 — agrady

1 & . . }
J(0) = —— Rz — 4(9))2
0) = 5= 3 (ho(e?) —) \

j=1

Training an MLP

“Batch” gradient descent

We average the loss over data points
In the entire training set.

Problem: To compute a single step,
we calculate the gradient
over the entire dataset.

— Enormous computational cost

repeat until convergence

}

forvoe ® {

}

gradg = %J(@)

forVe© |

}

0 =0 — agrady

{

Training an MLP - The SGD algorithm

The Stochastic Gradient Descent (SGD) algorithm

Let's randomly select a few data points from the training set
and use only those to compute the next step!

Training an MLP - The SGD algorithm

The Stochastic Gradient Descent (SGD) algorithm

- The smaller the size of the selected mini-batch, the more likely it is
that we will move in the wrong direction with the parameter update
(variance increases).

- The larger the size of the selected mini-batch, the greater the
computing and memory requirements.

(torch.optim.SGD)

Training an MLP - The SGD algorithm

The Stochastic Gradient Descent (SGD) algorithm

- The smaller the size of the selected mini-batch, the more likely it is
that we will move in the wrong direction with the parameter update
(variance increases).

- The larger the size of the selected mini-batch, the greater the
computing and memory requirements.

For larger neural networks, efficiency considerations often determine
the mini-batch size: choose as many examples at a time as will fit in the
GPU memory!

If we can only use a small mini-batch size, we need to reduce the learning
rate to achieve convergence.

Training an MLP - The SGD algorithm

Variants of the Stochastic Gradient Descent (SGD) algorithm:

- AdaGrad
- Adam

- Adamax
- RMSprop

(torch.optim. *)

The expressive power of neural networks - An example

Fasd ¢
s LRy
H T
LR Y4
g |° TN
a5 .
8 e
20 .
3 13 7
sepatbemgth (cmh
o
10
‘ o
02 o
oo 02 04 g o8 10

h1

) =

as

© o8
3 06
30 04
25 oz
20

H : 7 [

X1

The expressive power of neural networks - An example

The expressive power of neural networks - An example

win = —7, w21 = —9H, byp =60 :u i
1

wiiz = 4, wizg = =5, big = =5

.......

wwwwww

We can see that the neural network IS Capable of representlng the above
decision boundaries, but we set the weights required for this manually!

Can we find (learn) a good solution using gradient descent?

The expressive power of neural networks - An example

In the previous example we set the weights manually.

Now let's see what can a neural network learn by itself!

Notebook on Google Colab:
https://colab.research.google.com/drive/1irGJFbZY5TFk-NN2epcAPvBoxyK
yWI1H

https://colab.research.google.com/drive/1jrGJFbZY5TFk-NN2epcAPvBoxyKyWI1H
https://colab.research.google.com/drive/1jrGJFbZY5TFk-NN2epcAPvBoxyKyWI1H

The expressive power of neural networks - An example

Two more complex classification tasks

_ ‘ o 10 . ® WS e
100 .(0y .~':‘ .,.‘.-l i \o
e oo * o o o > / oo \
050 1 .. 2 - o8, K ' / \
° 01 < , ’
025 { ® °® ., 2°) ‘ ‘
] @ [X } ® -5 - L) @ e '
0.00 <) P o~ $‘. .. : ../o ¢
-0.25 1 o % & ik _10 % e Y
'. ~0.. ° 8 o Sne e © ‘.
~0.50 1 R, g %S i ia
: T -15 r
-10 -05 00 05 10 15 20 -10 -5 0 5 10

Binary classification: Let's learn a decision boundary that
separates data points from the two categories!

The expressive power of neural networks - An example

100

075

050

0.00

-0.25

-0.50

Logistic
regression

y

08

0.6

04

0.2

0.600

0575

0.550

0525

0.500

0475

0.450

0425

100

0.75
050

’:I 0.25
0.00
-0.25

-0.50

MLP, 2 layers,
20+1 neurons

10

08

06

04

02

0.0

08

06

04

02

MLP, 4 layers,
20+20+20+1 neurons

10

The expressive power of neural networks Tultanulas (overfitting)

100

075

050

0.00

-0.25

-0.50

Logistic
regression

y

08

0.6

04

0.2

0.600

0575

0.550

0525

0.500

0475

0.450

0425

MLP, 2 layers, MLP, 4 layers,

20+1 neurons 20+20+20+1 neurons

10

10

08

0.6

04

02

0.0

The expressive power of neural networks - An example

Interactive neural network simulator: https://playvground.tensorflow.orq/

The simulator can be used to examine the effect of overfitting in neural
networks with different architectures.

Suggested settings:
Data: Gaussian, (optional: L2 reg. with > 0O rate)
Noise: >25

feature 2

Classification: We learn a decision boundary
that separates data points from two categories.

https://playground.tensorflow.org/

Regression - Examples

Example task until now - a single label variable:

x1: Weight of a patient
x2: Age of a patient - y: Cholesterol levels of the patient
x3: Sex of a patient

Example task from now - possibly multiple label variables:

x1: Weight of a patient
x2: Age of a patient ‘ y1: Cholesterol levels of the patient

x3: Sex of a patient y2: Blood sugar levels of the patient

MLP - Multiple label variables

h(z) = g2 (Wa g1 (Wiz 4+ b1) +by) =) ~ y

n
- 1
Until now, y was always a scalar.
A In regression, this limits us to estimating a
X y value, and in classification, it limits us to
estimating a single probability (2 categories)...

O = {W17b17W27b2}

MLP - Multiple label variables
hz)=g(We gt Wiz +b1) + b)) =§ =y

n
" (&
AN
y

Let y be a vector, similarly to x!

O = {W17b17W27b2}

MLP - Multiple label variables

y hat and y are vectors

a—
h(z) =go(Wa gt(Wiz +b1) + by) = ~ y

Since in regression our labels can contain arbitrary numbers,
g2 is typically an identity function (i.e., it can be omitted).

Regression

n

h

MLP - Multiple label variables

y hat and y are vectors

a—
h(z) =go(Wa gt(Wiz +b1) + by) = ~ y

Loss: We average the squared loss over the elements of the label vector.

Regression

Until now (y was a scalar): J(©) = 2L Z(:&U) —y9)?
m

k

. 1 & . . 1 & . .
Is a vector: = — 7@ 2 = A0, ()2
y J(©) = 5— ;:1: 197 =yl = 5~ j§:1ﬁ ;ﬁ(yz Y

MLP - Multiple label variables

y hat and y are vectors

a—
h(z) =go(Wa gt(Wiz +b1) + by) = ~ y

Loss: We average the squared loss over the elements of the label vector.

Regression

Until now (y was a scalar): J(©) = 2L Z(?)(j) — y\0))?
m =
m m k
y is a vector: = L Z — | == SN @)
mk — 2mk ‘==

MSE as before, but now we also average over the elements of the label vector.

Application of an MLP to classify handwritten digits

MNIST dataset

- Handwritten digits

- 28 x 28 pixel image size

- 10 categories (digits: 0 .. 9)
- 60,000 training examples

- 10,000 test examples

0

5
10
15
20
25

0O 5 10152025 0O 5 101520 25 OO 5 10 1520 25

5
10
15
20
25

00 510152025 00 5 101520 25 00 5 10 1520 25

5
10
15
20
25

0 510152025 0 510152025 0 510152025

Application of an MLP to classify handwritten digits

MNIST dataset 784 input yariaples: Thg brightness of
each pixel is an input variable.
- Handwritten digits g
- 28 x 28 pixel image size S
- 10 categories (digits: 0 .. 9) [

- 60,000 training examples e /

- 10’000 teSt examples 0o 5 101520 25 00 5 101520 25 00 510152025

5
10
15
20
25

0 510152025 0 510152025 0 510152025

Application of an MLP to classify handwritten digits

MNIST dataset 784 input variables: The brightness of
each pixel is an input variable.
- Handwritten digits g
- 28 x 28 pixel image size 0 S

25

- 10 Categories (digits: O .. 9) g0 5 10152025 00 5 101520 25 OO 5 10152025
- 60,000 training examples

- 10’000 teSt examples 0o 5 101520 25 00 5 101520 25 00 510152025

5
10
15

How do we classify them s
into 10 categories?

0 510152025 0 510152025 0 510152025

MLP - Multiple label variables

y hat and y are vectors

a—
h(z) =go(Wa gt Wiz +b1) + b)) = = y

Until now (y was a scalar): Sigmoid was estimating a value between
0 and 1, which we interpreted as a probability — Suitable for 2 categories

Classification

How to classify into more than 2 categories?

MLP - Multiple label variables

y hat and y are vectors

a—
h(z) =go(Wa gt Wiz +b1) + b)) = = y

Until now (y was a scalar): Sigmoid was estimating a value between
0 and 1, which we interpreted as a probability — Suitable for 2 categories

Classification

How to classify into more than 2 categories?

Let's estimate a probability for each category!

MLP - Multiple label variables

y hat and y are vectors

a—
h(z) =go(Wa gt Wiz +b1) + b)) = = y

Until now (y was a scalar): Sigmoid was estimating a value between
0 and 1, which we interpreted as a probability — Suitable for 2 categories

Classification

How to classify into more than 2 categories?
Let's estimate a probability for each category!

The sum of the estimated probabilities should be 1,
since each example belongs to exactly one category.

MLP - Multiple label variables

The Softmax activation function

2.6
o(1)

0.6

0.64

0.21

0.06

0.09

o: RF & R”

The i-th element of the input
vector is raised to the

MLP - Multiple label variables % oxponential.
The Softmax activation function The sum of vector
k . ¢€lements raised to the
Zj:1 e’ exponential.
o(z); = =% / k k
oYk e o:R" = R
2.6 0.64 The sum of the elements of
15 0.21 the result vector is 1,
0'(') — ' <«4— SO it can be interpreted as the
0.2 0.06 mass function of
06 568 a probability distribution.

MLP - Multiple label variables

y hat and y are vectors

a—
h(z) =go(Wa gt Wiz +b1) + b)) = = y

Until now (y was a scalar): Sigmoid was estimating a value between
0 and 1, which we interpreted as a probability — Suitable for 2 categories

Classification

From now y can be a vector: In this case, g2 will be the softmax function.

MLP - Multiple label variables

y hat and y are vectors

a—
h(z) =go(Wa gt(Wiz +b1) + by) = ~ y

Classification

Loss: Cross-entropy (CE), the generalization of Binary CE / Log. loss
1 m

Until now (y was a scalar): J(9) = — D =y log(59) — (1 = yP) log(1 — §)]

m k
From now y can be a vector: J(0) = —% Z Zyzlog(ﬁi)

MLP - Multiple label variables

y hat and y are vectors

a—
h(z) =go(Wa gt(Wiz +b1) + by) = ~ y

Classification

Loss: Cross-entropy (CE), the generalization of Binary CE / Log. loss
1 m

Until now (y was a scalar): J(9) = — D =y log(59) — (1 = yP) log(1 — §)]
= Equals to the formula above
A/ in the binary case (k = 2)
From now y can be a vector: y;l
y S 9 TN

How does the true label (y) look I|ke’? ==l

MLP - Multiple label variables

Cross-entropy (CE) loss:

0 0.64
True (target/ground truth) label, Estimated label:
one-hot encoded: 1 0.21 Estimated probabilities of
The vector element representing belonging to each
0 0.06
the true category of the category
example is 1, the others are 0. 0 0.09

MLP neural network model for regression - PyTorch

class MyTwolayerMLP (nn.Module) :
def init (self, input dim, h dim):
super (). init ()
self.layers = nn.Sequential (
nn.Linear (input _dim, h dim),
nn.RelLU(),
nn.Linear (h _dim, 1)
)
def forward(self, x):

return self.layers (x)

loss_fn = nn.MSELoss ()

y is a scalar
(regression, 1 label variable)

class MyTwolayerMLP (nn.Module) :
def init (self, input dim, h dim):
super() . init ()
self.layers = nn.Sequential (
nn.Linear (input _dim, h dim),

nn.RelU(),

nn.Linear(h_dim,(k))
)

def forward(self, x):

return self.layers (x)

loss_fn = nn.MSELoss()

y is a vector
(regression, k label variables)

MLP neural network model for classification - PyTorch

class MyTwolayerMLP (nn.Module) :
def init (self, input dim, h dim):
super() . init ()
self.layers = nn.Sequential (
nn.Linear (input _dim, h dim),
nn.RelU() ,

nn.Linear(h dim, 1),

< nn.Sigmoid() ——i::>
)

def forward(self, x):

return self.layers (x)

loss _fn =@ BCELOSSD

y is a scalar
(binary classification)

class MyTwolayerMLP (nn.Module) :
def init (self, input dim, h dim):
super() . init ()
self.layers = nn.Sequential (
nn.Linear (input dim, h dim),

nn.RelU(),

nn.Linear(h_dim,(k))
)

def forward(self, x):

return self.layers (x)

loss_fn :Q.CrossEntropyLossD

y is a vector
(multi-class classification)

MLP neural network model for classification - PyTorch

CE loss in PyTorch includes the softmax class MyTwolLayerMLP(nn.Module) :
activation function, so we don't need to def _ init (self, input dim, h dim):
include it here.

Because of this, we need to pay attention
when making predictions: an ReLU ()
if we need probabilities, we need to add a nn.Linear'(h dim,@
torch.nn.Softmax() to the network's) -

estimation... def forward(self, x):

super() . init ()
self.layers = nn.Sequential (

nn.Linear (input dim, h dim),

return self.layers (x)

loss_fn =(££;FrossEntropyLo;;zz:>

y is a vector
(multi-class classification)

MLP neural network model for classification - PyTorch

CE loss in PyTorch automatically class MyTwolayerMLP (nn.Module) :

generates one-hot encoding,
expecting the true (y) labels
to be given in categorical form...

def init (self, input dim, h dim):

super() . init ()

self.layers = nn.Sequential (
nn.Linear (input dim, h dim),

nn.RelU(),

nn.Linear(h_dim,(k))

)
def forward(self, x):

return self.layers (x)

loss_fn =(££;FrossEntropyLo;;zz:>

y is a vector
(multi-class classification)

