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Requirements

The content of the slides marked by this symbol will not be included in 
the exams / tests.



Last week - Supervised learning

Given: The training sample, a set of (input, label) pairs

Task: The estimation of the label (the expected output) from the input

           I.e., we search for a (hypothesis-)function        , for which:



Last week - Two main tasks in supervised learning

Regression: Continuous labels         (The label set is infinite)

Example: Number of cars or the age of a person

Classification: Discrete labels           (The label set is finite)

Example: Categorization of examples

- What is the profession of the person 
in the image?



The normal equation - an exact solution to the least squares problem

The regularized (L2) least squares solution:

Last week - Least squares solution in one step



Last week - Polynomial regression

Hypothesis function

Univariate: 

Multivariate, e.g.,: 

Loss function (MSE):



Last week - Underfitting / “just right” / overfitting

 

J_train ≈ 700
J_test ≈ 700

J_train ≈ 400
J_test ≈ 400

J_train ≈ 250
J_test ≈ 800



Last week - Under- and overfitting in classification
 

Image source: Andrew Ng Machine learning video series



Obtain more training data!

J_train ≈ 250
J_test ≈ 800

J_train ≈ 400
J_test ≈ 400

Last week - How to deal with overfitting?



L2 regularization 

λ = 0 λ = 0.1

Last week - How to deal with overfitting?



Early stopping (The incorrect way)
New loop condition: Loop, while Jtest keeps reducing.

Last week - How to deal with overfitting?



Last week - Splitting the sample

Splitting the sample into three sets:

Training set, validation set, test set

We will use the validation set to optimize the following parameters:

- Learning rate (alpha)
- Polynomial degree, or neural network architecture 

(layers, number of neurons, etc.)
- Number of iterations for the gradient method (early stopping)
- ...

New set

→ Hyperparameters…



Early stopping (The correct way)
New loop condition: Loop, while Jval keeps reducing.

Last week - How to deal with overfitting?

Jval



Last week - Model training procedure
The task:

1) Select a new hyperparameter configuration Ψ.
2) Optimize the model parameters (θ) on the training set with gradient descent.
3) Evaluate the trained model on the validation set, then GOTO 1

Finally:

- Ψ* := The hyperparameter configuration with the best performance on the 
validation set.

- θ* := The trained model parameters with hyperparameters Ψ*.
- Evaluate model with parameters θ* and hyperparameters Ψ* on the test set.



An artificial neuron is a (multivariate) logistic regression if g is sigmoid!

g can be a sigmoid or
other activation functions

Last week - The artificial neuron model



Most tasks cannot be solved by a single artificial neuron.

A linear decision boundary represented by a single neuron 
is not capable of solving linearly inseparable problems.

Last week - Multilayer Perceptron (MLP)



(torch.nn.Linear)

Last week - Multilayer Perceptron (MLP)

Fully connected / dense (neuron) layers



h1

h2

x1

x2

Last week - The expressive power of neural networks

The weights were 
set manually here…



Last week - Multilayer Perceptron (MLP)

New notation: Theta is the 
set of all weight matrices and 
bias vectors.
(i.e., the parameters)



Last week - Multilayer Perceptron (MLP)

The hypothesis function of a two-layer MLP neural network:

Loss functions:

- Regression: MSE
- Classification (binary): Logistic loss / Binary Cross-entropy (BCE)

The output of the first layer

- We always need intermediate activation 
functions (nonlinearities) in MLPs

- The last activation function depends on the task



Last week - Activation functions

Popular activation functions
sigmoid

1

0

1

-1

0

tanh ReLU
(Rectified Linear Unit)

Easy to compute and 
almost always works well



“Batch” gradient descent

We average the loss over data points 
in the entire training set.

For example: 

Last week - Training an MLP

Usually more efficient: Stochastic Gradient Descent (SGD) algorithm
Compute gradients on a randomly selected sub-sample of the dataset (a mini-batch) 
→ Approximate, but much faster computation of the gradients.



Logistic
regression

MLP, 2 layers, 
20+1 neurons

MLP, 4 layers, 
20+20+20+1 neurons

Last week - The expressive power of neural networks
These weights were found using gradient descent.



Last week - Example tasks with multiple labels

A regression task with multiple label variables:

x1: Weight of a patient
x2: Age of a patient   y1: Cholesterol levels of the patient
x3: Sex of a patient   y2: Blood sugar levels of the patient

A classification task with more than two categories (multi-class):

x1, …, x784 : Brightness of pixels   y1, …, y10: Probabilities of the digits
                                                                                 from 0 to 9 being in the

   image



Last week - Multiple label variables

Let y be a vector, similarly to x!



Last activation function:  None (identity)

Loss: MSE, also averaged over the elements of the label vector

Last week - Multiple label variables, regression

y hat and y are vectors



Last week - Multi-class classification

Last activation function:  Softmax

Loss: Cross-entropy

one-hot

y hat and y are vectors



Last week - Multi-class classification

Last activation function:  Softmax

Loss: Cross-entropy

In PyTorch, already part of CE loss, no 
need to explicitly add it to our network.



Training an MLP

We will use gradient descent…



Training an MLP

We will use gradient descent…

We need to calculate the derivative of the loss 
function w.r.t. each parameter. This gives us the 
gradient vector, which we use to update the 
parameters.
Let's expand the matrix form of the 
hypothesis function to make things easier!



Multilayer Perceptron (MLP) expanded

The hypothesis function of a two-layer MLP neural network:

Expanded:



Multilayer Perceptron (MLP) expanded

The hypothesis function of a two-layer MLP neural network:

Expanded:



We need to calculate the derivative of the loss function w.r.t. each 
parameter!

Multilayer Perceptron (MLP) expanded



How do we calculate the derivative of composite functions?

Multilayer Perceptron (MLP) expanded



Chain rule

Reminder: Derivatives of composite functions

The same with Leibniz-notation:

                                           ahol



Chain rule

Reminder: Derivatives of composite functions

The same with Leibniz-notation:

                                           ahol

The rule for differentiating composite 
functions is also known as the chain rule.

The derivative of the expression u with 
respect to x



Example: Calculate the derivative of the sigmoid function!

Chain rule - An example



Example: Calculate the derivative of the sigmoid function!

Let's define intermediate variables for easier derivation!

Chain rule - An example



Chain rule: We calculate the derivatives of the intermediate variables with 
respect to the chained variable, then multiply the results together.

Chain rule - An example



Chain rule: We calculate the derivatives of the intermediate variables with 
respect to the chained variable, then multiply the results together.

Chain rule - An example

Reminder: A list of rules to calculate derivatives 
https://homepage.cs.uiowa.edu/~stroyan/CTLC3r

dEd/3rdCTLCText/Chapters/ch6.pdf 

https://homepage.cs.uiowa.edu/~stroyan/CTLC3rdEd/3rdCTLCText/Chapters/ch6.pdf
https://homepage.cs.uiowa.edu/~stroyan/CTLC3rdEd/3rdCTLCText/Chapters/ch6.pdf


Chain rule: We calculate the derivatives of the intermediate variables with 
respect to the chained variable, then multiply the results together.

Chain rule - An example



Chain rule: We calculate the derivatives of the intermediate variables with 
respect to the chained variable, then multiply the results together.

Chain rule - An example



Example: Calculate the derivative of the sigmoid function!

Chain rule - An example



Example: Calculate the derivative of the sigmoid function!

Chain rule - An example



Training a Multilayer Perceptron (MLP)

Back to MLP…

How do we calculate the derivative of composite functions?



Back to MLP…

How do we calculate the derivative of composite functions?

Let’s define intermediate variables!

Training a Multilayer Perceptron (MLP)



Let’s define intermediate variables!

Training a Multilayer Perceptron (MLP)



Let’s define intermediate variables!

Training a Multilayer Perceptron (MLP)



Let’s define intermediate variables!

Training a Multilayer Perceptron (MLP)



We need gradients to use the gradient method!

Training a Multilayer Perceptron (MLP)



We need gradients to use the gradient method!

Training a Multilayer Perceptron (MLP)



The derivative of the loss must be calculated w.r.t. each parameter!

Training a Multilayer Perceptron (MLP)



The derivative of the loss must be calculated w.r.t. each parameter!

It seems like a lot of computation, 
calculating all expressions with 
respect to all parameters.

Can it be done more efficiently?

Training a Multilayer Perceptron (MLP)



The derivative of the loss must be calculated w.r.t. each parameter!

The same members appear 
multiple times in the derivatives. 
It is useless to calculate them 
multiple times.

Gradient method + keeping track 
of sub-results
→ Backpropagation algorithm

Training a Multilayer Perceptron (MLP)



Backpropagation algorithm

Backpropagation algorithm

Computational graph: Representing complicated expressions



Backpropagation algorithm

Backpropagation algorithm

Computational graph: Representing complicated expressions

Nodes: Elementary operations

Edges: Chaining elementary operations together



Backpropagation algorithm

Computational graph: Representing complicated expressions

The graph tells us what other intermediate variable need to be 
evaluated in order to evaluate a given variable.

Backpropagation algorithm



Backpropagation algorithm

Computational graph: Representing complicated expressions

We only need to calculate the derivative of elementary operations.

Backpropagation algorithm



Backpropagation algorithm

Computational graph: Representing complicated expressions

Backpropagation algorithm

Then, following the chain rule, take the product of the 
elementary derivatives along the corresponding edges.



Backpropagation algorithm

By linking elementary operations and defining intermediate variables, we 
construct a computational graph.

The computational graph specifies which other variables need to be 
evaluated in order to evaluate a given variable.

Backpropagation algorithm



Backpropagation algorithm

By linking elementary operations and defining intermediate variables, we 
construct a computational graph.

The computational graph specifies which other variables need to be 
evaluated in order to evaluate a given variable.

- We only calculate the derivative of elementary operations.
- We take the product of the elementary derivatives along the 

corresponding edges, following the chain rule.

Backpropagation algorithm



An example for a computational graph

Example: Lin. reg. MSE loss... for simplicity's sake, 
we have one variable, we omit the multiplication by ½,
and our sample consists of a single element.

Backpropagation algorithm



Step 1: Symbolic derivation

Backpropagation algorithm



Step 1: Symbolic derivation

(Question: Is it always a tree graph?)

Backpropagation algorithm



Step 1: Symbolic derivation

Backpropagation algorithm



Step 1: Symbolic derivation

Backpropagation algorithm



Step 1: Symbolic derivation

Backpropagation algorithm



Step 1: Symbolic derivation

Backpropagation algorithm



Step 1: Symbolic derivation

Backpropagation algorithm



Step 1: Symbolic derivation

Backpropagation algorithm



Step 1: Symbolic derivation

Backpropagation algorithm



Step 2: Parameter initialization

E.g.,    

Backpropagation algorithm



Step 2: Parameter initialization

E.g.,    

Backpropagation algorithm
Select the initial value of parameters, 
for example, randomly.



Step 3: Choosing an example from the training set

E.g., 

Backpropagation algorithm



Step 3: Choosing an example from the training set

E.g., 

Backpropagation algorithm
In practice (SGD algorithm and variants) 
a mini-batch of data is taken, not 
necessarily a single example.



Step 4: Substitution - feed forward

E.g.,                                      and    

Backpropagation algorithm



Step 4: Substitution - feed forward

E.g.,                                      and    

Backpropagation algorithm
We substitute the input / output 
variables with real data from the training 
set and the parameter variables with 
the current value of the parameters.



Step 4: Substitution - feed forward

Backpropagation algorithm



Step 4: Substitution - feed forward

Backpropagation algorithm



Step 5: Substitution - backpropagation

We have already calculated the gradients 
symbolically, now let's substitute them in!

Backpropagation algorithm



Step 5: Substitution - backpropagation

Backpropagation algorithm



Step 5: Substitution - backpropagation

Backpropagation algorithm



Step 5: Substitution - backpropagation

Backpropagation algorithm



Step 5: Substitution - backpropagation

Backpropagation algorithm



Step 5: Substitution - backpropagation

Backpropagation algorithm



Step 5: Substitution - backpropagation

Backpropagation algorithm



Step 6: Updating the weights / parameters

For example, let

Backpropagation algorithm



Step 6: Updating the weights / parameters

Backpropagation algorithm



Step 6: Updating the weights / parameters

By computing the loss value with the new parameters, 
we can easily check whether the loss has decreased...

Backpropagation algorithm



Step 1: Symbolic derivation
Step 2: Parameter initialization

Step 3: Choosing an example (or a mini-batch) from the training set
Step 4: Substitution - feed forward
Step 5: Substitution - backpropagation
Step 6: Updating the parameters

GOTO STEP 3 - Stop after a given num. of iterations OR early stopping

Backpropagation algorithm



Software for neural networks

(        )

CPU only
CPU & GPU

Computational graphs
Automatic differentiation



Reminder - Logistic regression in NumPy
intercept = np.ones((X.shape[0], 1))

X = np.concatenate((intercept, X), axis=1)

self.theta = np.zeros(X.shape[1])

        

for i in range(self.num_iter):

    h = self.__sigmoid(np.dot(X, self.theta))

    gradient = np.dot(X.T, (h - y)) / y.size

    self.theta -= self.lr * gradient



intercept = np.ones((X.shape[0], 1))

X = np.concatenate((intercept, X), axis=1)

self.theta = np.zeros(X.shape[1])

        

for i in range(self.num_iter):

    h = self.__sigmoid(np.dot(X, self.theta))

    gradient = np.dot(X.T, (h - y)) / y.size

    self.theta -= self.lr * gradient

The gradient formula 
for each parameter 
(vector/matrix) must be 
calculated manually...

Besides, the automatic 
reuse of already 
calculated gradients is 
not implemented either.

Reminder - Logistic regression in NumPy



intercept = np.ones((X.shape[0], 1))

X = np.concatenate((intercept, X), axis=1)

self.theta = np.zeros(X.shape[1])

        

for i in range(self.num_iter):

    h = self.__sigmoid(np.dot(X, self.theta))

    gradient = np.dot(X.T, (h - y)) / y.size

    self.theta -= self.lr * gradient

Type of variables:
numpy.ndarray

Reminder - Logistic regression in NumPy



intercept = np.ones((X.shape[0], 1))

X = np.concatenate((intercept, X), axis=1)

self.theta = np.zeros(X.shape[1])

        

for i in range(self.num_iter):

    h = self.__sigmoid(np.dot(X, self.theta))

    gradient = np.dot(X.T, (h - y)) / y.size

    self.theta -= self.lr * gradient

Type of variables:
numpy.ndarray

NumPy ndarrays refer to 
specific memory locations.
A NumPy operation is 
evaluated immediately when 
called, and its result is stored 
in new/other ndarrays.
→ Greedy evaluation

Reminder - Logistic regression in NumPy



TensorFlow (v1)

A classic library for neural networks: TensorFlow 1.x



TensorFlow (v1), MLP
w1 = tf.Variable(tf.random_normal([n_input, n_hidden]))
w2 = tf.Variable(tf.random_normal([n_hidden, n_output]))
b1 = tf.Variable(tf.random_normal([n_hidden]))
b2 = tf.Variable(tf.random_normal([n_output]))
 
X = tf.placeholder(tf.float32, [None, n_input])
Y = tf.placeholder(tf.float32, [None, n_output])
 
layer_1 = tf.sigmoid(tf.add(tf.matmul(X, w1), b1))
layer_2 = tf.add(tf.matmul(layer_1, w2), b2)
 
loss_op = tf.reduce_mean(tf.square(tf.subtract(layer_2, y)))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
train_op = optimizer.minimize(loss_op)
...



TensorFlow (v1), MLP
w1 = tf.Variable(tf.random_normal([n_input, n_hidden]))
w2 = tf.Variable(tf.random_normal([n_hidden, n_output]))
b1 = tf.Variable(tf.random_normal([n_hidden]))
b2 = tf.Variable(tf.random_normal([n_output]))
 
X = tf.placeholder(tf.float32, [None, n_input])
Y = tf.placeholder(tf.float32, [None, n_output])
 
layer_1 = tf.sigmoid(tf.add(tf.matmul(X, w1), b1))
layer_2 = tf.add(tf.matmul(layer_1, w2), b2)
 
loss_op = tf.reduce_mean(tf.square(tf.subtract(layer_2, y)))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
train_op = optimizer.minimize(loss_op)
...

Type: tensorflow.Tensor
(there are many more of this 
in this piece of code…)



TensorFlow (v1), MLP

Tf.Tensor

E.g.,:  h = tf.matmul(X, w1)  where   h, X, w1  are of Tensor types.



TensorFlow (v1), MLP

Tf.Tensor

E.g.,:  h = tf.matmul(X, w1)  where   h, X, w1  are of Tensor types.

The Tensor type is very similar to the NumPy ndarray type: 
in some respects, it represents an array of values (n-dimensional).

On the other hand, however, h is not evaluated as a result of the above call. 
h therefore actually represents the (potential) result of the above matrix 
multiplication operation.



TensorFlow (v1), MLP
w1 = tf.Variable(tf.random_normal([n_input, n_hidden]))
w2 = tf.Variable(tf.random_normal([n_hidden, n_output]))
b1 = tf.Variable(tf.random_normal([n_hidden]))
b2 = tf.Variable(tf.random_normal([n_output]))
 
X = tf.placeholder(tf.float32, [None, n_input])
Y = tf.placeholder(tf.float32, [None, n_output])
 
layer_1 = tf.sigmoid(tf.add(tf.matmul(X, w1), b1))
layer_2 = tf.add(tf.matmul(layer_1, w2), b2)
 
loss_op = tf.reduce_mean(tf.square(tf.subtract(layer_2, y)))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
train_op = optimizer.minimize(loss_op)
...

Op(eration) constructors



TensorFlow (v1), MLP

Operation constructors

E.g.,:     h = tf.matmul(X, w1)  



TensorFlow (v1), MLP

Operation constructors

E.g.,:     h = tf.matmul(X, w1)  

The above call creates a tf.Operation type object (here MatMul type), 
which represents an operation (here matrix multiplication). 
It attaches the Tensor objects referred by X and w1 as inputs to the operation 
and returns the Tensor object attached to the operation, given as the value 
of h, which represents the output of the operation.



TensorFlow (v1) - Computational graph

MatMul (tf.Operation)

input#1 tf.Tensor input#2 tf.Tensor

output#1 tf.Tensor

h = tf.matmul(X, w1)  



...
layer_1 = tf.sigmoid(tf.add(tf.matmul(X, w1), b1))
layer_2 = tf.add(tf.matmul(layer_1, w2), b2)
 
loss_op = tf.reduce_mean(tf.square(tf.subtract(layer_2, y)))
...

The operations, linked together, form a graph.
The vertices of the graph are the operations (tf.Operation), and 
the edges are the tensors (tf.Tensor) that store the intermediate, 
temporary results.

TensorFlow (v1) - Computational graph



Computational graph with the corresponding TensorFlow Op constructors

tf.multiply 
(*)

tf.add

tf.subtract tf.square

(Not the computational graph associated with the previous code)

TensorFlow (v1) - Computational graph



Computational graph with the corresponding TensorFlow Op constructors

tf.multiply 
(*)

(*) tf.multiply is for scalars only, for matrices we can use tf.matmul.

tf.add

tf.subtract tf.square

TensorFlow (v1) - Computational graph



TensorFlow (v1), MLP
w1 = tf.Variable(tf.random_normal([n_input, n_hidden]))
w2 = tf.Variable(tf.random_normal([n_hidden, n_output]))
b1 = tf.Variable(tf.random_normal([n_hidden]))
b2 = tf.Variable(tf.random_normal([n_output]))
 
X = tf.placeholder(tf.float32, [None, n_input])
Y = tf.placeholder(tf.float32, [None, n_output])
 
layer_1 = tf.sigmoid(tf.add(tf.matmul(X, w1), b1))
layer_2 = tf.add(tf.matmul(layer_1, w2), b2)
 
loss_op = tf.reduce_mean(tf.square(tf.subtract(layer_2, y)))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
train_op = optimizer.minimize(loss_op)
...

Type: tensorflow.Variable



TensorFlow (v1), MLP

tf.Variable

E.g.,:     b2 = tf.Variable(tf.random_normal([n_output]))  



TensorFlow (v1), MLP

tf.Variable

E.g.,:     b2 = tf.Variable(tf.random_normal([n_output]))  

tf.Variable objects are similar to Tensor objects, but their state is persistent 
and their values can be modified by various operations. 
For this reason, we declare the parameters of neural networks with the 
tf.Variable type and modify their values during gradient backpropagation.



TensorFlow (v1), MLP
w1 = tf.Variable(tf.random_normal([n_input, n_hidden]))
w2 = tf.Variable(tf.random_normal([n_hidden, n_output]))
b1 = tf.Variable(tf.random_normal([n_hidden]))
b2 = tf.Variable(tf.random_normal([n_output]))
 
X = tf.placeholder(tf.float32, [None, n_input])
Y = tf.placeholder(tf.float32, [None, n_output])
 
layer_1 = tf.sigmoid(tf.add(tf.matmul(X, w1), b1))
layer_2 = tf.add(tf.matmul(layer_1, w2), b2)
 
loss_op = tf.reduce_mean(tf.square(tf.subtract(layer_2, y)))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
train_op = optimizer.minimize(loss_op)
...

Placeholder Tensor 
objects 
(Type: 
tensorflow.Tensor)



TensorFlow (v1), MLP

Placeholder Tensor constructor (only in TF v1)

E.g.,:     tf.placeholder(tf.float32, [None, n_input])  



TensorFlow (v1), MLP

Placeholder Tensor constructor (only in TF v1)

E.g.,:     tf.placeholder(tf.float32, [None, n_input])  

Placeholders are Tensor objects whose values are not obtained from the 
output of operations, but are specified explicitly. 
The input/output variables of the neural network will therefore be as follows. 



tf.multiply 
(*)

tf.add

tf.subtract tf.square

tf.Variable

tf.Variable

placeholder 
Tensor

placeholder 
Tensor

TensorFlow (v1) - Computational graph



TensorFlow (v1), MLP
...
with tf.Session() as sess:

# ...
for i in range(total_batch):

        batch_x, batch_y = next(my_batch_iterator)
        _, loss_npy = sess.run([train_op, loss_op], feed_dict={X: batch_x,
                                                                Y: batch_y})



TensorFlow (v1), MLP
...
with tf.Session() as sess:

# ...
for i in range(total_batch):

        batch_x, batch_y = next(my_batch_iterator)
        _, loss_npy = sess.run([train_op, loss_op], feed_dict={X: batch_x,
                                                                Y: batch_y})

The previously defined loss_op and 
train_op graphs have only existed in 
symbolic form so far, and will be 
evaluated here for the first time:
We feed the next batch of training samples 
into the placeholder tensors.

The specific value of the cost will be calculated during 
evaluation. 
The result will be returned in a NumPy array.

tf.Session (only in TF v1): A runtime environment 
attached to physical hardware



Why is it necessary to construct a computational graph, 
and what are the advantages of asynchronous / lazy evaluation?

TensorFlow (v1) - Computational graph



Why is it necessary to construct a computational graph, 
and what are the advantages of asynchronous / lazy evaluation?

- Evaluation may be accelerated by rearranging 
the order of independent operations (out-of-order execution).

TensorFlow (v1) - Computational graph



Why is it necessary to construct a computational graph, 
and what are the advantages of asynchronous / lazy evaluation?

- Evaluation may be accelerated by rearranging 
the order of independent operations (out-of-order execution).

- Automatic differentation.

TensorFlow (v1) - Computational graph



TensorFlow (v1) - Automatic differentiation

For every elementary operation that we want to use in an expression 
optimized by gradient descent (e.g., neural network), 
the derivative of this operation must be specified.

Usually, we do not need to define new elementary operations,
as many of them are already implemented in TensorFlow.

@ops.RegisterGradient("Neg")

def _NegGrad(_, grad):

  return -grad

The gradient of the negation op 
in file: tensorflow/python/ops/
math_grad.py



TensorFlow (v1) - Automatic differentiation

For every elementary operation that we want to use in an expression 
optimized by gradient descent (e.g., neural network), 
the derivative of this operation must be specified.

Usually, we do not need to define new elementary operations,
as many of them are already implemented in TensorFlow.

@ops.RegisterGradient("Neg")

def _NegGrad(_, grad):

  return -grad

The gradient of the negation op 
in file: tensorflow/python/ops/
math_grad.py

We negate the gradient coming from the 
output and pass it towards the input
(the derivative of negation is negation).



Gradient of the “Square” operation:

@ops.RegisterGradient("Square")

def _SquareGrad(op, grad):

  x = op.inputs[0]

  …
  return grad * (2.0 * x)

TensorFlow (v1) - Automatic differentiation



J = tf.square(z)

@ops.RegisterGradient("Square")

def _SquareGrad(op, grad):

  x = op.inputs[0]

  …
  return grad * (2.0 * x)

grad_z = 2.0*z*grad_J

TensorFlow (v1) - Computational graph



What are the disadvantages of asynchronous / lazy evaluation?

TensorFlow (v1) - Computational graph



What are the disadvantages of asynchronous / lazy evaluation?

- The Python interpreter cannot be used for debugging. 
Debugging with the use of Print nodes and callbacks connected to the 
graph.

- The compilation procedure takes time.
- Constructing / modifying the computation graph during runtime is 

complicated.

TensorFlow (v1) - Computational graph



PyTorch

- By default (mostly) eager evaluation (Eager mode), 
lazy evaluation on demand (Graph mode, torch.jit).

- Computational graph construction is only necessary if we want to 
propagate gradients through the operations in question.

- Dynamic graph construction.



PyTorch
loss_fn = nn.CrossEntropyLoss()

optimizer = torch.optim.Adam(my_model.parameters(), lr=learning_rate)

for x, y in my_dataloader:

  optimizer.zero_grad()

  y_pred = my_model(x)

  loss = loss_fn(y_pred, y)

  loss.backward()

  optimizer.step()



PyTorch
loss_fn = nn.CrossEntropyLoss()

optimizer = torch.optim.Adam(my_model.parameters(), lr=learning_rate)

for x, y in my_dataloader:

  optimizer.zero_grad()

  y_pred = my_model(x)

  loss = loss_fn(y_pred, y)

  loss.backward()

  optimizer.step()

The computational graph is also present here. 
We want to minimize the loss expression, so 
gradient backpropagation will start from there in 
the graph, as in TensorFlow, passing through the 
my_model hypothesis function.

The torch.Tensor.backward() call performs 
gradient backpropagation and calculates the 
partial derivatives of the loss expression 
according to the intermediate tensors of the 
computational graph.



PyTorch
loss_fn = nn.CrossEntropyLoss()

optimizer = torch.optim.Adam(my_model.parameters(), lr=learning_rate)

losses = []

for x, y in my_dataloader:

  optimizer.zero_grad()

  y_pred = my_model(x)

  loss = loss_fn(y_pred, y)

  loss.backward()

  optimizer.step()

  losses.append(loss.detach())



PyTorch
loss_fn = nn.CrossEntropyLoss()

optimizer = torch.optim.Adam(my_model.parameters(), lr=learning_rate)

losses = []

for x, y in my_dataloader:

  optimizer.zero_grad()

  y_pred = my_model(x)

  loss = loss_fn(y_pred, y)

  loss.backward()

  optimizer.step()

  losses.append(loss.detach())

PyTorch uses greedy evaluation by default, so 
(unlike TensorFlow 1.x) we only need to use 
computational graphs where we want to 
propagate gradients.

We want to record the value of the loss function 
in each iteration, for example, for later plotting of 
the loss curves. For this, it is not necessary to 
maintain the computational graphs from each 
iteration; the loss value itself is sufficient.

The torch.Tensor.detach() function returns a 
view of the loss tensor (scalar), which can be 
used in further operations without the 
continued building of the computational 
graph. As the graph is not built, gradients will
not pass through the detach() operation.



PyTorch
loss_fn = nn.CrossEntropyLoss()

optimizer = torch.optim.Adam(my_model.parameters(), lr=learning_rate)

losses = []

for x, y in my_dataloader:

  optimizer.zero_grad()

  y_pred = my_model(x)

  loss = loss_fn(y_pred, y)

  loss.backward()

  optimizer.step()

  losses.append(loss.detach().numpy())



PyTorch
loss_fn = nn.CrossEntropyLoss()

optimizer = torch.optim.Adam(my_model.parameters(), lr=learning_rate)

losses = []

for x, y in my_dataloader:

  optimizer.zero_grad()

  y_pred = my_model(x)

  loss = loss_fn(y_pred, y)

  loss.backward()

  optimizer.step()

  losses.append(loss.detach().numpy())

A tensor that is not bound to a computational 
graph (and device=’cpu’) can also be converted 
to a NumPy array (ndarray) type. In this case, 
the tensor and the NumPy array share memory.



PyTorch
@torch.no_grad()

def accuracy_binary_torch(ys_pred, ys_true):

  return torch.mean((torch.round(ys_pred) == ys_true).to(torch.float32))

for x, y in my_dataloader:

  optimizer.zero_grad()

  y_pred = my_model(x)

  loss = loss_fn(y_pred, y)

  loss.backward()

  optimizer.step()

  acc = accuracy_binary_torch(y_pred, y)



PyTorch
@torch.no_grad()

def accuracy_binary_torch(ys_pred, ys_true):

  return torch.mean((torch.round(ys_pred) == ys_true).to(torch.float32))

for x, y in my_dataloader:

  optimizer.zero_grad()

  y_pred = my_model(x)

  loss = loss_fn(y_pred, y)

  loss.backward()

  optimizer.step()

  acc = accuracy_binary_torch(y_pred, y)

Alternative to torch.Tensor.detach(): Any new 
tensors created in the body of a function 
decorated with @torch.no_grad() will be 
independent of the computational graph 
and cannot be used for backpropgation.

Since we do not optimize according to the 
accuracy metric, but only use it for logging the 
model performance, we save time and memory 
by disabling graph building and gradient 
computation in this function.



PyTorch
def accuracy_binary_torch(ys_pred, ys_true):

  return torch.mean((torch.round(ys_pred) == ys_true).to(torch.float32))

for x, y in my_dataloader:

  optimizer.zero_grad()

  y_pred = my_model(x)

  loss = loss_fn(y_pred, y)

  loss.backward()

  optimizer.step()  

  with torch.no_grad():

    acc = accuracy_binary_torch(y_pred, y)



PyTorch
def accuracy_binary_torch(ys_pred, ys_true):

  return torch.mean((torch.round(ys_pred) == ys_true).to(torch.float32))

for x, y in my_dataloader:

  optimizer.zero_grad()

  y_pred = my_model(x)

  loss = loss_fn(y_pred, y)

  loss.backward()

  optimizer.step()  

  with torch.no_grad():

    acc = accuracy_binary_torch(y_pred, y)

The torch.no_grad() block works in a 
similar way...  


