Deep Network

Developments
Lecture #6

Viktor Varga
Department of Artificial Intelligence, ELTE IK

Requirements

The content of the slides marked by this symbol will not be included in
the exams / tests.

Last week - Supervised learning

Given: The training sample, a set of (input, label) pairs

{(zW,yM),..., (=™, ym)}
rc XCR" yeY C RF

Task: The estimation of the label (the expected output) from the input

|.e., we search for a (hypothesis-)function h@ , for which:

ho(z) =9~y

Last week - Two main tasks in supervised learning

Regression: Continuous labels (The label set is infinite)

|Y| = Q0 Example: Number of cars or the age of a person

Classification: Discrete labels (The label set is finite)
‘Yl < 0 Example: Categorization of examples

- What is the profession of the person
in the image?

Last week - Least squares solution in one step

The normal equation - an exact solution to the least squares problem

= (X"X)1 Xy

The regularized (L2) least squares solution:

0= (XX + M) Xy

Last week - Polynomial regression

Hypothesis function ool ho(z) =6 + 01 + 49.2.7:2 o
Univariate: 150
ho(z) = 0y + 01z + Orx% + ...
Multivariate, e.qg.,: I L I

h@(CE) = 0) + 0121 + 029 + 93&3% -1 9456% + 05129 + ..

Yy
Loss function (MSE): L N (o (29
oss function (): :%Z ho(z\9)) — yV)

13

Last week - Underfitting / “just right” / overfitting

300

250

200

150

100

2000

1750

1500

1250

J(theta)
g 8 % g

=]

h@(iE) =0y + 01z

Dataset and learnt hypothesis function

@ fraining []
e ftest

Cost function over time

=== training
— test

J_train=700

0 25 50 75 100 125 150 175 200
Iteration count

hg(w) = 90 + le + 925132

Dataset and learnt hypothesis function

300

@ ftraining []
e ftest

800

700

600

500

400

Jitheta)

300

200

100

Cost function over time

=== fraining
- test

e

J_train =400

J test =400

0 200 400 600 800 1000
Iteration count

hg(af) = 0 +91$+"'+99x9

Dataset and learnt hypothesis function

500 A

e fraining
o test

1400

120

=]

1000

800

J(theta)

600

400

200

Cost function over time

=== ftraining

J train=250
J _test= 800 —x¢

0 1000 2000 3000 4000 5000
Iteration count

Image source: Andrew Ng Machine learning video series

Last week - Under- and overfitting in classification

Under-fitting Appropriate-fitting Over-fitting
(too simple to (forcefitting — too
explain the good to be true)

variance)

Last week - How to deal with overfitting?

Obtain more training data! hg (a:) =60y +601x+---+ 69 z”

Dataset and learnt hypothesis function Dataset and learnt hypothesis function
5001 @ training e training @
o test 3001 @ test

400 -

300 +

200 +

100 A

X =1 J_train = 250] — J_train = 400
| Xtrain| 0 J test = 800 | Xtrain| = 50 J_test =400

Last week - How to deal with overfitting?
L2 regularization he (:13) =60y +0,x+---+ 6 z”

| Xtrain| = 10 J(8) = 1 Z(h(x)(j) _ @) 4 AZH?
1=1

- 2m

J=1
Dataset and learnt hypothesis function Dataset and learnt hypothesis function
5001 @ training @ fraining
e test 300 A
4001 250
300 1 200 -
- -
150
200 1
100
100 -
50 g
0 0
0 2 4 6 8 10 0 2 4 6 8 10

Last week - How to deal with overfitting?

Early stopping (The incorrect way)
-— New loop condition: Loop, while Jtest keeps reducing.

fori<—1...n {
gradizﬁg](ﬁ)

}

fori<—1...n {

0; =0, — agrad;
}
}

Last week - Splitting the sample

Splitting the sample into three sets:

<
Training set, validation set, test set

New set

We will use the validation set to optimize the following parameters:

Learning rate (alpha)

Polynomial degree, or neural network architecture

(layers, number of neurons, etc.)

Number of iterations for the gradient method (early stopping)
- . — Hyperparameters...

Last week - How to deal with overfitting?

Early stopping (The correct way)
-— New loop condition: Loop, while Jval keeps reducing.

fori<—1...n { \J

=9
g'r'a:dz 09, J(H) A E

fori<—1...n {

0; =0, — agrad;

}

1 n_iter>

Last week - Model training procedure
The task: ¥*, 0" = argminy argming Jy(6)

1) Select a new hyperparameter configuration W.
2) Optimize the model parameters (8) on the training set with gradient descent.

3) Evaluate the trained model on the validation set, then GOTO 1

Finally:

- W* .= The hyperparameter configuration with the best performance on the

validation set.
- 0% := The trained model parameters with hyperparameters W*.

- Evaluate model with parameters 0* and hyperparameters W* on the test set.

Last week - The artificial neuron model

0, hiz) =9(X0) =9 =y
0, 9
Inputs — 0. Z g(,) .
Output
. | | \
Sum Activation
Function

g can be a sigmoid or
other activation functions

An artificial neuron is a (multivariate) logistic regression if g is sigmoid!

Last week - Multilayer Perceptron (MLP)

Most tasks cannot be solved by a single artificial neuron.

sepal width (cm)

virginica

versicolor

setosa

sepal length (cm)

A linear decision boundary represented by a single neuron
is not capable of solving linearly inseparable problems.

0.8

0.6

0.4

0.2

Last week - Multilayer Perceptron (MLP)

7 2 | g() \w2,1,1

Inputs —

2 80— A

*b,,

el T

(torch.nn.Linear)

Fully connected / dense (neuron) layers

Last week - The expressive power of neural networks

45

35

w1 = —7, wizr = —5, biy =60

30

25

20
e —

hl
40 08
06

o}
04
02
5 3 7 8
x1

X, Wi111 a()
A\
W21 +b,, 2t { wo1 =7, Wy =7, by = —9
A
w112 +b12 2 +b2 \
X 22 45
- W22 a(.) e
* X235
The weights were ! .
set manually here... y &
wie = 4, wize = —95, big = -5 .

sepal width (cm)

»
«n

»
o

w
«

w
o

N
n

N
o

6
sepal length (cm)
h(x)

setosa

08

06

Last week - Multilayer Perceptron (MLP)

Inputs —

g(.)

g(.)

g(.) |

New notation: Theta is the
set of all weight matrices and
bias vectors.

(i.e., the parameters)

/

O = {W17b17W27b2}

Last week - Multilayer Perceptron (MLP)
The hypothesis function of a two-layer MLP neural network:

h(z) =g (Wo g1 (Wiz +b1) +b2) =9~y
\ |

|
The output of the first layer

- We always need intermediate activation
functions (nonlinearities) in MLPs

Loss functions: - The last activation function depends on the task

- Regression: MSE
- Classification (binary): Logistic loss / Binary Cross-entropy (BCE)

Last week - Activation functions

Popular activation functions
sigmoid

RelLU
(Rectified Linear Unit)

_Easy to compute and
almost always works well

9(z) = ReLU(z) = max(0, 2)

Last week - Training an MLP

“Batch” gradient descent :
repeat until convergence {

We average the loss over data points forVoe© {
in the entire training set. grady = %J(@)
%
For example: j 1
1 «— . : forVe ® {
J(0) = —— Rz — 4(9))2
() 2'mj:21(o(@) = y7) 0 =0 — agrady
}

Usually more efficient: Stochastic Gradient Descent (SGD) algorithm
Compute gradients on a randomly selected sub-sample of the dataset (a mini-batch)
— Approximate, but much faster computation of the gradients.

These weights were found using gradient descent.

Last week - The expressive power of neural networks

100

075

050

0.00

-0.25

-0.50

Logistic
regression

y

08

0.6

04

0.2

0.600

0575

0.550

0525

0.500

0475

0.450

0425

MLP, 2 layers,
20+1 neurons

10

MLP, 4 layers,
20+20+20+1 neurons

10

Last week - Example tasks with multiple labels

A regression task with multiple label variables:

x1: Weight of a patient
x2: Age of a patient - y1: Cholesterol levels of the patient
x3: Sex of a patient y2: Blood sugar levels of the patient

A classification task with more than two categories (multi-class):

X1, .., X784 : Brightness of pixels W) y1,.., y10: Probabilities of the digits
N from O to 9 being in the
SEOR- J

05 5 .
o o 0

5 5 5

0 10 1]

15 15 15

20 2 |

» z >

0 3I0BWS 05 0bWs 0505
5 5 5

0 10 1]

15 15 15

20 B 2|

5 5 x
0510152025 051015202 0510152025

Last week - Multiple label variables
h(:l)) — 92(W2 g1(W1£B + bl) + bz) =YY

n
" (&
AN
y

Let y be a vector, similarly to x!

O = {W17b17W27b2}

Last week - Multiple label variables, regression

h(z) = go(Wa gt(Wiz +b1) + by) = R y

(\ y hat and y are vectors

Last activation function: None (identity)

Loss: MSE, also averaged over the elements of the label vector

1 & . . 1 K . .
:_E: 50— 012 = E:E:A(J)_ (47)y2

j=1 i=1

Last week - Multi-class classification

h(z) = go(Wa gt(Wiz +b1) + by) = R y

(\ y hat and y are vectors

Last activation function: Softmax

Loss: Cross-entropy N
0 0.64

1 ™ k)
JO)=——2_ > uilog(y;) 1 0.21

=1 =l 0 0.06
one-hot '
o 0.09

Last week - Multi-class classification

h(z) =g2(Wa g1 (Wiz +b1) +b2) =9 =~y

/E:yTorch, already part of CE loss, no

Last activation function: Softmax need to explicitly add it to our network.

Loss: Cross-entropy N
0 0.64

1 ™ k)
JO)=——2_ > uilog(y;) 1 0.21

=1 1=1
= 0 0.06
o 0.09

Training an MLP

We will use gradient descent... repeat until convergence {
forvoe® {

grady = %J(@)
}
forVoec©® {
0 =60— agrady
}
}

Training an MLP

We will use gradient descent... repeat until convergence {
forvoe® {

gradg = %J(@)

We need to calculate the derivative of the loss /

function w.r.t. each parameter. This gives us the forVO c O {
gradient vector, which we use to update the

parameters. 0 =0 — agrady
Let's expand the matrix form of the }

hypothesis function to make things easier!

}

Multilayer Perceptron (MLP) expanded

The hypothesis function of a two-layer MLP neural network:
h(z) = g(Wo gt(Wiz +b1) + o) =g =y

Expanded:

h(z) = wa119(z1wi1 + T2wine + -+ Tpwin, +b11) +

wy129(T1wie1 + Tawi + -+ XpWi10, +012) F o =Y R Y

Multilayer Perceptron (MLP) expanded

The hypothesis function of a two-layer MLP neural network:
h(z) = g(Wo gt(Wiz +b1) + o) =g =y

Expanded:

h(z) =wai19(z1wig + xowige + -+ Tpwi, +b11) +
wy129(T1wi21 + Towrpe + - F Tpwion +b12) F b1 =Y RY

1 & - -
J(©) = 5 Y (h(a?) — y))?
J=1 O = {wl,l,l y W1,1,29+« « b1,17 . }

Multilayer Perceptron (MLP) expanded

We need to calculate the derivative of the loss function w.r.t. each
parameter!

h(z) = we119(x1wig +zowine + -+ Zpwign +b11) +

wy129(T1wie1 + Tawi + -+ XpWi10, +012) F o =Y R Y

7(©) = 5 Y (h(z) —)’ Jro)
j=1 7 — ?
0()2,1)
0J(0) _ o

Multilayer Perceptron (MLP) expanded

How do we calculate the derivative of composite functions?

0J(0)
0ba 1

0J(O)

Ows 1 2

?

Chain rule

Reminder: Derivatives of composite functions

(fog) =(fog)-¢

The same with Leibniz-notation:

ou _ ou 0z
oxr 0z Ox

ahol z:=g(x), u:

Chain rule

Reminder: Derivatives of composite functions

(fog) =(fog)-¢

The same with Leibniz-notation:

: ?9: . g; ahol z:= g(x), u:= f(2)

The derivative of the expression u with ~ The rule for differentiating composite
respect to x functions is also known as the chain rule.

Chain rule - An example

Example: Calculate the derivative of the sigmoid function!

1 0f(z)

— ?
1+e® ox

f(z)

Chain rule - An example

Example: Calculate the derivative of the sigmoid function!

1 Of(z) _)

fle) == o

Let's define intermediate variables for easier derivation!

Z = —I
q:=1+¢€°

1 —1
flz):=—=g¢q

Chain rule - An example

Chain rule: We calculate the derivatives of the intermediate variables with
respect to the chained variable, then multiply the results together.

0f(z) _ 0f(x) dq o

ox 0q 0z Ox
Z .= —X
q:.=1+¢€°

1 _
flg):===q"

Chain rule - An example

Chain rule: We calculate the derivatives of the intermediate variables with
respect to the chained variable, then multiply the results together.

0f(z) _ 0f(x) dq o

ox 0q "9z O
Z = —XI
q:=1+¢€°
1 q Reminder: A list of rules to calculate derivatives
f(iB) = — =4q https://homepage.cs.uiowa.edu/~stroyan/CTLC3r
q dEd/3rdCTLCText/Chapters/ch6.pdf

https://homepage.cs.uiowa.edu/~stroyan/CTLC3rdEd/3rdCTLCText/Chapters/ch6.pdf
https://homepage.cs.uiowa.edu/~stroyan/CTLC3rdEd/3rdCTLCText/Chapters/ch6.pdf

Chain rule - An example

Chain rule: We calculate the derivatives of the intermediate variables with
respect to the chained variable, then multiply the results together.

0f()~>8f / /82

Z = @ 0z
-
0
q::\H@ R S
1 I 0z
— of(x) 2 _ 1

Chain rule - An example

Chain rule: We calculate the derivatives of the intermediate variables with
respect to the chained variable, then multiply the results together.

ofx) _ 24 00 o: [1) (gry. 1
oz 0Oq 0z 8:13_ (1+e =)
2= — %H
q_1_|_e ox

1 _
flg):===q"

q 0q 1+e—m

Chain rule - An example

Example: Calculate the derivative of the sigmoid function!

0f(z)
ox

f(z)

of(z)
oz

B 1
 1l+4e®

_ Of(z) _ dq 0z
 Oq 0z Ox

(1) () - -

1

(1+e7)

2

Chain rule - An example

Example: Calculate the derivative of the sigmoid function!

1 O0f (x)
= _ 9
fle) == Fyanill
Of(z) _ 0f(z) 9dq¢ 9z _ —z 1 | e
0z ~ 0q 0z Oz (_1) . (8) S (14+e*)? o (14e*)?

Training a Multilayer Perceptron (MLP)

Back to MLP...

How do we calculate the derivative of composite functions?

m

1 .)
_ = R(z@Y) — 49))2
1(0) = 5 > (1) ~3)
h(:l:) s w2,1,1g(£131’w1,1,1 -+ oWy 1,2 + -4 CUn.wl,l,n + bl,l) +

wy129(T1wi 2 + Tawios + -+ Tpwion +hi2) Fho =y Ry

0J©) _ 5 9JO) _ ,

8[)2,1 6w2,1,1

Training a Multilayer Perceptron (MLP)

Back to MLP...

How do we calculate the derivative of composite functions?

m

1 . .
_ = R(z@Y) — 49))2
J(0) = 5~ j;(() —y)
h(z) = wa119(T1win1 + Towine + - + Tuwiin + i) +

wy129(T1wi 2 + Tawios + -+ Tpwion +hi2) Fho =y Ry

0J©) _ 5 9JO) _ ,

8[)2,1 6w2,1,1

Let’s define intermediate variables!

Training a Multilayer Perceptron (MLP)

Let’s define intermediate variables!

() = 5y D (hie) ~)
9):= h(z) 10 =5

m

Z(.@ —y)?

J

Training a Multilayer Perceptron (MLP)

Let’s define intermediate variables!

g =we119(T1wi11 +Tawr 12+ -+ Tpwii, +b11) +
wai29(x1wio) + xowios + -+ Tpwion +bia) + b2y

@2: wy119(T1wy 11 + Towiio + -+ Tpwir, +b11)
@== wy129(T1wi 21 + Tawi o + -+ Tpwia, + b12)

Y =21 + 29 +ba;

Training a Multilayer Perceptron (MLP)

Let’s define intermediate variables!

21 =we119(T1wi11 + Xowrg2 + -+ Tpwign + b11)

2y = wo129(T1wi 21 + Toawi 2 + - + Tpwion + b12)

ql = Tiwi 11 + Tawri2 + 0+ TpWii e + b1

@ = T1Wi121 + TaWi22 + 0+ Trwi 2y + 012

z1 = w21,19(q1)

z2 = w21,29(q2)

Training a Multilayer Perceptron (MLP)

We need gradients to use the gradient method!

8J(©) 8J(©) 8j NN
_ . J(© —~
5bs, 5 by, (©) Y (@-v)

Training a Multilayer Perceptron (MLP)

We need gradients to use the gradient method!

8J(©) 8J(©) 8j NN
— . J @ —_ —
. 5 B (©) = o ;(y)
8J(®) 8J(©) 8y 9z .

B ' : Y=z +z +b

3w2,1,1 oy 021 3’w2,1,1

21 =wei19(x1wi 1 +xowrg2 + -+ Tpwig, + b1)

Training a Multilayer Perceptron (MLP)

The derivative of the loss must be calculated w.r.t. each parameter!

8J(©) 8J(©) 8y
81)271 - 83} 8b2,1

8J(©) 8J(©) 8§ oz

3w2,1,1 oy 021 a’w2,1,1

0J(©) 8J(©) 8 0z g
31111,1,1 oy 0z1 Oq 5101,1,1

Training a Multilayer Perceptron (MLP)

The derivative of the loss must be calculated w.r.t. each parameter!

8J(©) 8J(®) dy

Obs1 09 | Obs 1

0J(©) 8J(©) 8y 9z
3w2,1,1 oy 021 3’w2,1,1
8J(©) 9J(©) 8 dn dq
5"w1,1,1 oy 0z1 Oq 51111,1,1

It seems like a lot of computation,
calculating all expressions with
respect to all parameters.

Can it be done more efficiently?

Training a Multilayer Perceptron (MLP)

The derivative of the loss must be calculated w.r.t. each parameter!

8J(©) [as0)| a9

— — | The same members appear
b1 9y Oba,1 multiple times in the derivatives.
It is useless to calculate them
8J(©) [8J(©)]|[05] o2

— . . multiple times.
3w2,1,1 0y 0z1| Owa 1.

b

Gradient method + keeping track
0J(©) |0J(O)||d)| 021 Oq of sub-results

Owi 11 O 0z1 ' oq ' Owy 11 — Backpropagation algorithm

Backpropagation algorithm

Backpropagation algorithm

Computational graph: Representing complicated expressions

Backpropagation algorithm

Backpropagation algorithm

Computational graph: Representing complicated expressions

Nodes: Elementary operations
c:= a[d:= ||

Edges: Chaining elementary operations together

Backpropagation algorithm

Backpropagation algorithm

Computational graph: Representing complicated expressions

The graph tells us what other intermediate variable need to be
evaluated in order to evaluate a given variable.

Backpropagation algorithm

Backpropagation algorithm

Computational graph: Representing complicated expressions

Oc
8a_b

We only need to calculate the derivative of elementary operations.

Backpropagation algorithm

Backpropagation algorithm

Computational graph: Representing complicated expressions

Oc
a da ’
- b d:=|c|
0
B_(Z = abs'(c)

Then, following the chain rule, take the product of the
9d — 94, 0 4— lementary derivatives along th ding ed
% dc b elementary derivatives along the corresponding edges.

Backpropagation algorithm

Backpropagation algorithm

By linking elementary operations and defining intermediate variables, we
construct a computational graph.

The computational graph specifies which other variables need to be
evaluated in order to evaluate a given variable.

Backpropagation algorithm

Backpropagation algorithm

By linking elementary operations and defining intermediate variables, we
construct a computational graph.

The computational graph specifies which other variables need to be
evaluated in order to evaluate a given variable.

- We only calculate the derivative of elementary operations.
- We take the product of the elementary derivatives along the
corresponding edges, following the chain rule.

Backpropagation algorithm

An example for a computational graph J = ((ww + b) — y)2
q — Wx

y=q+b

Z2=Y—Yy

DO

Example: Lin. reg. MSE loss... for simplicity's sake] — Z
we have one variable, we omit the multiplication by 7%,
and our sample consists of a single element.

Backpropagation algorithm

Step 1: Symbolic derivation

(Question: Is it always a tree graph?)

Backpropagation algorithm

Step 1: Symbolic derivation q — Wx

Backpropagation algorithm

Step 1: Symbolic derivation

Backpropagation algorithm

Step 1: Symbolic derivation

Backpropagation algorithm

Step 1: Symbolic derivation 5 q — Wx

Backpropagation algorithm dy

Step 1: Symbolic derivation — \

Backpropagation algorithm dy

Step 1: Symbolic derivation \

Backpropagation algorithm

Step 1: Symbolic derivation — B0 r <— § = WL
<
0J p— . ﬂ ﬂ p— . ﬂ 7 p—
a0 7 Oq dq - 8y Y q + b
- ! 2=y —9
J = 2°
J

> \&]
b \ a7 — 1
haN 57 57 N_9J 8J
o] — 1.9/ —1-5 N5 =220 53

Backpropagation algorithm

Step 1: Symbolic derivation 9 w <— g = WL
oI _ . 9 a1 _ 1 0 .

a0 =50 9 oy y=q+b
. ; 2=y~
¢ J = 2°

X \&]
/ / 2 \ o7 =1
> a7 87

Oz g b ? dy z

Backpropagation algorithm

Step 2: Parameter initialization

Eg, w=3,b=4

W

Select the initial value of parameters,
for example, randomly.

Backpropagation algorithm

Step 2: Parameter initialization q — Wx
A — _|_ b

co. w=3,b=4 y=q
c=Y—UY

i J = 2°

Backpropagation algorithm

Step 3: Choosing an example from the training set

E.g., a’j:z’y:5

In practice (SGD algorithm and variants)
a mini-batch of data is taken, not

Backpropagation algorithm necessarily a single example.

Step 3: Choosing an example from the training set q — WX
y=q+b
E.g., :E:Z’ y:5
Z = — Y

Backpropagation algorithm

Step 4: Substitution - feed forward

E.g.,ajzz,y:5 and w:S’b:4 Aq:wm
y=q+b

= : 2=y—9
J = 2?

We substitute the input / output
- - variables with real data from the training
Backpropagatlon algorlthm set and the parameter variables with

o the current value of the parameters.
Step 4: Substitution - feed forward

E.g.,mzz’y:5 and w:g’b:4 Aq:wm
y=q+b

= 2=y—¢
J = 2°

Backpropagation algorithm

Step 4: Substitution - feed forward

Backpropagation algorithm

Step 4: Substitution - feed forward q — wWx

Backpropagation algorithm

Step 5: Substitution - backpropagation

We have already calculated the gradients
symbolically, now let's substitute them in!

W

Backpropagation algorithm

Step 5: Substitution - backpropagation
oJ _ .. . 8J 0J _ 1.9J

0w T g dq .83}
_ / .
=

q = wx
y=q+b
2=Y—Y
J = 22
oJ
5 =22 5;

Backpropagation algorithm

Step 5: Substitution - backpropagation

oJ oJ 9J _1.9J

0w T aq 3(1_1 Ay
_ / .
(8 (=

q = W
y=q+b
Z=yY—Y

J
N‘a_']_l
_10 oJ
oJ oJ
o NG =22 57

Backpropagation algorithm

Step 5: Substitution - backpropagation q — W&
0 _ ... 0J a _ 1.9) =
—a0 =T 5 8q_1 P y=q+b
. ST g z=y—9
O 225 5 _
/o Ak 10 N1
0J dJ V\aJ o7 9 _ _1.0] N2 _9, 9

Backpropagation algorithm

Step 5: Substitution - backpropagation qd — W
ﬂ p— . ﬂ]. ﬂ — . ﬂ 7 p—
& dw L 0q 0q - Oy Y q + b
W 2

Backpropagation algorithm

Step 5: Substitution - backpropagation qd — W

20)

—
W

Backpropagation algorithm

Step 5: Substitution - backpropagation q — W
2-2 2=2w=30b=4y=5 §=q+b
= 2 z=y—7
J = 22

Backpropagation algorithm

Step 6: Updating the weights / parameters

L — 2, w — 37 b — 47 y — 5 repeat until convergence {
5.7 8J forvoeo© {
8_w p— 20 % —].O — gmda:%J(@)
}
forvoe® {
0 =0 — agrady
}

For example, let x = O].)

Backpropagation algorithm

Step 6: Updating the weights / parameters

L — 2, w — 37 b — 47 y — 5 repeat until convergence {
5.7 8J forvoeo© {
= = 20 = = 10 —» grads = 2.J(6)

}

forvoe® {
’wI:3—O.1'20:]- _p 0=0—agrady

}
b:=4—-0.1-10=3 }

a=0.1

Backpropagation algorithm

Step 6: Updating the weights / parameters

L — 2, w — 37 b — 47 y — 5 repeat until convergence {
5.7 8J forvoeo© {
8_w p— 20 E —].O — gmda:%J(@)

}

forvoeo© {

W = 3 — O.]. . 20 —]. _» 0=0—agrady
h:=4—01-10=3 .

By computing the loss value with the new parameters,
we can easily check whether the loss has decreased... o = O]_

Backpropagation algorithm

Step 1: Symbolic derivation
Step 2: Parameter initialization

Step 3: Choosing an example (or a mini-batch) from the training set
Step 4: Substitution - feed forward

Step 5: Substitution - backpropagation

Step 6: Updating the parameters

GOTO STEP 3 - Stop after a given num. of iterations OR early stopping

Software for neural networks

- Keras PyTorch

Lightning

/\\

¥ TensorFlow ﬁ PyTO I’Ch

CPU & GPU
CPU only Computational graphs
Automatic differentiation

Reminder - Logistic regression in NumPy

intercept = np.ones((X.shape[0], 1))
X = np.concatenate((intercept, X), axis=1l)

self.theta = np.zeros (X.shape[l])

for i in range(self.num iter):
h = self. sigmoid(np.dot(X, self.theta))
gradient = np.dot(X.T, (h - y)) / y.size
self.theta -= self.lr * gradient

Reminder - Logistic regression in NumPy

intercept = np.ones((X.shape[0], 1))
X = np.concatenate((intercept, X), axis=1l)
self.theta = np.zeros (X.shape[l])
The gradient formula

for each parameter

(vector/matrix) must be
h = self. sigmoid(np.dot(X, self.theta)) calculated manua"y"_

for i in range(self.num iter):

gradient = np.dot(X.T, (h - y)) / y.size

self.theta -= self.lr * gradient “$——— Besides, the automatic
reuse of already
calculated gradients is
not implemented either.

Reminder - Logistic regression in NumPy
= np.ones((X.shape[0], 1))

@: np.concatenate ((intercept, X), axis=l) Type of variables:

= np.zeros (X.shape[1l]) numpy.ndarray

for i in range(self.num iter):

@ self. sigmoid(np.dot(X, self.theta))

gradient) = np.dot(X.T, (h - y)) / y.size
@ -= self.lr * gradient

Reminder - Logistic regression in NumPy
= np.ones((X.shape[0], 1))

®= np.concatenate ((intercept, X), axis=l) Type of variables:

= np.zeros (X.shape[1l]) numpy.ndarray

for i in range(self.num iter): NumPy ndarrays refer to

@ ¥ self._ sigmoid(np.dot(X, self.theta)) specific memory.locgtlons.
_ A NumPy operation is

@fadient) = np.dot(X.T, (h - y)) / y.size g 5 ated immediately when
@elf.thetd -= self.lr * gradient called, and its result is stored

in new/other ndarrays.
— Greedy evaluation

TensorFlow (v1)

A classic library for neural networks: TensorFlow 1.x

¥ TensorFlow

TensorFlow (v1), MLP

wl
w2 tf.Variable (tf.random normal ([n_hidden, n_output]))
bl = tf.Variable (tf.random normal ([n_hidden]))
b2 = tf.Variable(tf.random normal ([n_output]))

tf.Variable (tf.random normal ([n_input, n hidden]))

X = tf.placeholder(tf.float32, [None, n_input])
Y = tf.placeholder(tf.float32, [None, n_output])

layer 1 = tf.sigmoid(tf.add(tf.matmul (X, wl), bl))
layer 2 = tf. add(tf.matmul (layer 1, w2), b2)

loss_op = tf.reduce mean(tf.square(tf.subtract(layer 2, y)))
optimizer = tf.train.AdamOptimizer (=learning rate)

train op = optimizer minimize (loss_op)

TensorFlow (v1), MLP

wl = tf.Variable (tf.random normal ([n_input, n hidden]))
w2 = tf.Variable(tf.random normal ([n hidden, n outhEj))
bl = tf.Variable(tf.random normal ([n_hidden]))
b2 = tf.Variable(tf.random normal ([n_output]))

Type: tensorflow.Tensor
(there are many more of this
in this piece of code...)

tf.sigmoid(tf.add(tf.matmul (X, wl), bl))
tf.add(tf.matmul (layer 1, w2), b2)

X = tf.placeholder(tf.float32, [None, n_input])
Y = tf.placeholder(tf.float32, [None, n_output])

layer 1

layer 2

(loss_op T tf.reduce mean(tf.square(tf.subtract(layer 2, y)))
optimizer = tf.train.AdamOptimizer (=learning rate)

train op = optimizer minimize (loss_op)

TensorFlow (v1), MLP ®

Tf.Tensor

E.g.,; h = tf.matmul (X, wl) Where h, x, wi are of Tensor types.

TensorFlow (v1), MLP ®

Tf.Tensor

E.g.,; h = tf.matmul (X, wl) Where h, x, wi are of Tensor types.

The Tensor type is very similar to the NumPy ndarray type:
in some respects, it represents an array of values (n-dimensional).

On the other hand, however, n is not evaluated as a result of the above call.
h therefore actually represents the (potential) result of the above matrix
multiplication operation.

TensorFlow (v1), MLP

wl
w2 tf.Variable (tf.random normal ([n_hidden, n_output]))
bl = tf.Variable (tf.random normal ([n_hidden]))
b2 = tf.Variable(tf.random normal ([n_output]))

tf.Variable (tf.random normal ([n_input, n hidden]))

: Op(eration) constructors
X = tf.placeholder(tf.float32, [None, n_input])

Y = tf.placeholder(tf.float32, [None, n_output])

layer 1 = tf.sigmoid(qgiadd(tf.matqg}(X, wl), bl))
layer 2 = tf.add(tf.matmul (layer 1, w2), b2)

a4

loss_op = tf.reduce mean(tf.square(tf.subtract(layer 2, y)))

optimizer = tf.train.AdamOptimizer (=learning rate)

train op = optimizer minimize (loss_op)

TensorFlow (v1), MLP

Operation constructors

E.g.,; h = tf matmul(X, wl)

TensorFlow (v1), MLP ®

Operation constructors

E.g.,; h = tf matmul(X, wl)

The above call creates a tf.Operation type object (here MatMul type),
which represents an operation (here matrix multiplication).

It attaches the Tensor objects referred by x and w1 as inputs to the operation
and returns the Tensor object attached to the operation, given as the value
of n, which represents the output of the operation.

TensorFlow (v1) - Computational graph

input#l tf.Tensor input#2 tf.Tensor

Y /

MatMul (tf.Operation)

-

output#l tf.Tensor

h = tf matmul (X, wl)

TensorFlow (v1) - Computational graph

tf.sigmoid(tf.add(tf.matmul (X, wl), bl))
tf.add(tf . matmul (layer 1, w2), b2)

tf.reduce mean(tf.square(tf.subtract(layer 2, y)))

The operations, linked together, form a graph.

The vertices of the graph are the operations (tf.Operation), and
the edges are the tensors (if.Tensor) that store the intermediate,
temporary results.

TensorFlow (v1) - Computational graph ®

Computational graph with the corresponding TensorFlow Op constructors

tf.multiply

y tf.subtract

tf.square

(Not the computational graph associated with the previous code)

TensorFlow (v1) - Computational graph ®

Computational graph with the corresponding TensorFlow Op constructors

tf.multiply

y tf.subtract

tf.square

(*) tf.multiply is for scalars only, for matrices we can use tf.matmul.

TensorFlow (v1), MLP

wl)= tf.Variable (tf.random normal ([n_input, n hidden]))
w2)= tf.Variable (tf.random normal ([n_hidden, n_output]))
E%%;= tf.Variable (tf.random normal ([n_hidden]))

tf.Variable (tf.random normal ([n_output]))

: Type: tensorflow.Variable
X = tf.placeholder(tf.float32, [None, n_input])

Y = tf.placeholder(tf.float32, [None, n_output])

layer 1 = tf.sigmoid(tf.add(tf.matmul (X, wl), bl))
layer 2 = tf. add(tf.matmul (layer 1, w2), b2)

loss_op = tf.reduce mean(tf.square(tf.subtract(layer 2, y)))
optimizer = tf.train.AdamOptimizer (=learning rate)

train op = optimizer minimize (loss_op)

TensorFlow (v1), MLP

tf.Variable

E.g.,: b2 = tf.Variable(tf.random normal ([n_output]))

TensorFlow (v1), MLP ®

tf.Variable

E.g.,: b2 = tf.Variable(tf.random normal ([n_output]))

tf.Variable objects are similar to Tensor objects, but their state is persistent
and their values can be modified by various operations.

For this reason, we declare the parameters of neural networks with the
tf.Variable type and modify their values during gradient backpropagation.

TensorFlow (v1), MLP

wl = tf.Variable (tf.random normal ([n_input, n hidden]))
w2 = tf.Variable (tf.random normal ([n_hidden, n_output]))
bl = tf.Variable (tf.random normal ([n_hidden]))

b2 = tf.Variable(tf.random normal ([n_output]))

C): . Placeholder Tensor
X tf.placeholder (tf.float32, [None, n_input])

@ tf.placeholder (tf.float32, [None, n_output]) objects
(Type:
layer 1 = tf.sigmoid(tf.add(tf.matmul (X, wl), bl)) tensorflow.Tensor)

layer 2 = tf. add(tf.matmul (layer 1, w2), b2)

loss_op = tf.reduce mean(tf.square(tf.subtract(layer 2, y)))
optimizer = tf.train.AdamOptimizer (=learning rate)

train op = optimizer minimize (loss_op)

TensorFlow (v1), MLP

Placeholder Tensor constructor (only in TF v1)

E.g.,: tf.placeholder (tf.float32, [None, n_input])

TensorFlow (v1), MLP ®

Placeholder Tensor constructor (only in TF v1)

E.g.,: tf.placeholder (tf.float32, [None, n_input])

Placeholders are Tensor objects whose values are not obtained from the
output of operations, but are specified explicitly.
The input/output variables of the neural network will therefore be as follows.

TensorFlow (v1) - Computational graph @

placeholder

tf.Variable Tensor
tf.multiply

y

tf.subtract

tf.square

placeholder X

Tensor

tf.Variable

TensorFlow (v1), MLP

tf.Session () sess:

.

i range (total _batch):

batch _x, batch y next(my_batch iterator)

_, loss_npy sess.run([train op, loss op], {X: batch_x,
Y: batch y})

The previously defined loss_op and
TensorFIow (V1) MLP train_op graphs have only existed in
’ symbolic form so far, and will be
evaluated here for the first time:
We feed the next batch of training samples
into the placeholder tensors.

tf.Session|() sess:

...

i range (total _batch) :

batch x, batch y = n my batch iterator)

_, loss npy = sess.run([train_op, loss_op], ={X: batch_x,
Y: batch y})

tf.Session (only in TF v1): A runtime environment
attached to physical hardware

evaluation.

The specific value of the cost will be calculated during
® The result will be returned in a NumPy array.

TensorFlow (v1) - Computational graph ®

Why is it necessary to construct a computational graph,
and what are the advantages of asynchronous / lazy evaluation?

TensorFlow (v1) - Computational graph ®

Why is it necessary to construct a computational graph,
and what are the advantages of asynchronous / lazy evaluation?

- Evaluation may be accelerated by rearranging
the order of independent operations (out-of-order execution).

TensorFlow (v1) - Computational graph ®

Why is it necessary to construct a computational graph,
and what are the advantages of asynchronous / lazy evaluation?

- Evaluation may be accelerated by rearranging
the order of independent operations (out-of-order execution).
- Automatic differentation.

TensorFlow (v1) - Automatic differentiation ®

For every elementary operation that we want to use in an expression
optimized by gradient descent (e.g., neural network),
the derivative of this operation must be specified.

Usually, we do not need to define new elementary operations,
as many of them are already implemented in TensorFlow.

@ops .RegisterGradient("Neg")

NegGrad(,):
-grad \

The gradient of the negation op
in file: tensorflow/python/ops/
math_grad.py

TensorFlow (v1) - Automatic differentiation ®

For every elementary operation that we want to use in an expression
optimized by gradient descent (e.g., neural network),
the derivative of this operation must be specified.

Usually, we do not need to define new elementary operations,
as many of them are already implemented in TensorFlow.

@ops .RegisterGradient (" ")
NegGrad(,):
-grad \
We negate the gradient coming from the The gradient of the negation op
output and pass it towards the input in file: tensorflow/python/ops/

(the derivative of negation is negation). math_grad.py

TensorFlow (v1) - Automatic differentiation ®

Gradient of the “Square” operation:

@ops .RegisterGradient (" ")
_SquareGrad(op,):
X = op.inputs[9]

grad * (2.0 * Xx)

TensorFlow (v1) - Computational graph @

J = tf.square(z)

ops .RegisterGradient()

(op,):
X = op.inputs[@]

grad (2. X)

TensorFlow (v1) - Computational graph ®

What are the disadvantages of asynchronous / lazy evaluation?

TensorFlow (v1) - Computational graph ®

What are the disadvantages of asynchronous / lazy evaluation?

- The Python interpreter cannot be used for debugging.
Debugging with the use of Print nodes and callbacks connected to the
graph.

- The compilation procedure takes time.

- Constructing / modifying the computation graph during runtime is
complicated.

PyTorch

- By default (mostly) eager evaluation (Eager mode),
lazy evaluation on demand (Graph mode, torch.jit).

- Computational graph construction is only necessary if we want to
propagate gradients through the operations in question.

- Dynamic graph construction.

O
PyTorch

PyTorch

loss_fn = nn.CrossEntropyLoss ()

optimizer = torch.optim.Adam(my model.parameters(), lr=learning rate)

for x, y in my dataloader:
optimizer.zero grad()
y_pred = my model (x)
loss = loss_fn(y pred, y)
loss.backward ()

optimizer.step ()

PyTorch

loss_fn = nn.CrossEntropyLoss ()

optimizer = torch.optim.Adam(my model.parameters(), lr=learning rate)

for x, y in my dataloader: /- The computational graph is also present here.

optimizer.zero grad() We want to minimize the 10ss expression, so

y_pred = my model (x) gradient backpropagation will start from there in
loss = loss_f£n(y pred, y) the graph, as in TensorFlow, passing through the
[———— <— my model hypothesis function.

optimizer.step()
The torch.Tensor.backward () call performs

gradient backpropagation and calculates the
partial derivatives of the loss expression
according to the intermediate tensors of the
computational graph.

PyTorch

loss_fn = nn.CrossEntropyLoss ()

optimizer = torch.optim.Adam(my model.parameters(), lr=learning rate)

losses = []

for x, y in my dataloader:
optimizer.zero_grad()
y_pred = my model (x)
loss = loss_fn(y_pred, y)
loss.backward ()
optimizer.step ()

losses.append(loss.detach())

PyTorch uses greedy evaluation by default, so
(unlike TensorFlow 1.x) we only need to use
PyTOFCh computational graphs where we want to

propagate gradients.
loss_fn = nn.CrossEntropyLoss ()

optimizer = torch.optim.Adam(my_mc \N/e want to record the value of the loss function
in each iteration, for example, for later plotting of

losses = [] the loss curves. For this, it is not necessary to

for x, y in my_dataloader: maintain the computational graphs from each
optimizer.zero_grad() iteration; the loss value itself is sufficient.
y_pred = my model (x)
loss = loss_fn(y_pred, y) The torch.Tensor.detach() function returns a
loss.backward() view of the 10ss tensor (scalar), which can be
optimizer.step () used in further operations without the
losses.append (loss.detach()) continued building of the computational

graph. As the graph is not built, gradients will
not pass through the detach () operation.

PyTorch

loss_fn = nn.CrossEntropyLoss ()

optimizer = torch.optim.Adam(my model.parameters(), lr=learning rate)

losses = []

for x, y in my dataloader:
optimizer.zero_grad()
y_pred = my model (x)
loss = loss_fn(y_pred, y)
loss.backward ()
optimizer.step ()

losses.append(loss.detach () .numpy ())

PyTorch

loss_fn = nn.CrossEntropyLoss ()

optimizer = torch.optim.Adam(my model.parameters(), lr=learning rate)

losses = [] A tensor that is not bound to a computational

for x, y in my dataloader: graph (and device='cpu’) can also be converted
optimizer.zero grad() to a NumPy array (ndarray) type. In this case,
y pred = my model (x) the tensor and the NumPy array share memory.

loss = loss_fn(y pred, y)
loss.backward ()
optimizer.step ()

losses.append(loss.detach () .numpy ())

PyTorch

@torch.no _grad()
def accuracy binary torch(ys_pred, ys_true):

return torch.mean((torch.round(ys pred) == ys true).to(torch.float32))

for x, y in my dataloader:
optimizer.zero_grad()
y_pred = my model (x)
loss = loss_fn(y_pred, y)
loss.backward ()
optimizer.step ()

acc = accuracy binary torch(y pred, y)

Alternative to torch.Tensor.detach (). Any new
tensors created in the body of a function

PyTOFCh decorated with @torch.no _grad() will be
independent of the computational graph

@torch.no_grad() and cannot be used for backpropgation.

def accuracy binary torch(ys_pred, ys_true):
return torch.mean((torch.round(ys pred) == ys true).to(torch.float32))

for x, y in my dataloader: Since we do not optimize according to the
optimizer. ze:o_grad() accuracy metric, but only use it for logging the
y_pred = my model (x) model performance, we save time and memory
loss = loss_fn(y pred, y) by disabling graph building and gradient
loss.backward () computation in this function.

optimizer.step()

acc = accuracy binary torch(y pred, y)

PyTorch

def accuracy binary torch(ys pred, ys true):

return torch.mean((torch.round(ys_pred) == ys_true).to(torch.float32))

for x, y in my dataloader:
optimizer.zero grad()
y_pred = my model (x)
loss = loss_fn(y pred, y)
loss.backward ()
optimizer.step ()
with torch.no grad():

acc = accuracy binary torch(y pred, y)

PyTorch

def accuracy binary torch(ys pred, ys true):

return torch.mean((torch.round(ys_pred) == ys_true).to(torch.float32))

for x, y in my dataloader:
optimizer.zero grad()
y_pred = my model (x)
loss = loss_fn(y pred, y)
loss.backward () The torch.no_grad() block works in a
optimizer.step () similar way...
with torch.no grad():

acc = accuracy binary torch(y pred, y)

