
Deep Network
Developments

Lecture #6

Viktor Varga
Department of Artificial Intelligence, ELTE IK

Requirements

The content of the slides marked by this symbol will not be included in
the exams / tests.

Last week - Supervised learning

Given: The training sample, a set of (input, label) pairs

Task: The estimation of the label (the expected output) from the input

 I.e., we search for a (hypothesis-)function , for which:

Last week - Two main tasks in supervised learning

Regression: Continuous labels (The label set is infinite)

Example: Number of cars or the age of a person

Classification: Discrete labels (The label set is finite)

Example: Categorization of examples

- What is the profession of the person
in the image?

The normal equation - an exact solution to the least squares problem

The regularized (L2) least squares solution:

Last week - Least squares solution in one step

Last week - Polynomial regression

Hypothesis function

Univariate:

Multivariate, e.g.,:

Loss function (MSE):

Last week - Underfitting / “just right” / overfitting

J_train ≈ 700
J_test ≈ 700

J_train ≈ 400
J_test ≈ 400

J_train ≈ 250
J_test ≈ 800

Last week - Under- and overfitting in classification

Image source: Andrew Ng Machine learning video series

Obtain more training data!

J_train ≈ 250
J_test ≈ 800

J_train ≈ 400
J_test ≈ 400

Last week - How to deal with overfitting?

L2 regularization

λ = 0 λ = 0.1

Last week - How to deal with overfitting?

Early stopping (The incorrect way)
New loop condition: Loop, while Jtest keeps reducing.

Last week - How to deal with overfitting?

Last week - Splitting the sample

Splitting the sample into three sets:

Training set, validation set, test set

We will use the validation set to optimize the following parameters:

- Learning rate (alpha)
- Polynomial degree, or neural network architecture

(layers, number of neurons, etc.)
- Number of iterations for the gradient method (early stopping)
- ...

New set

→ Hyperparameters…

Early stopping (The correct way)
New loop condition: Loop, while Jval keeps reducing.

Last week - How to deal with overfitting?

Jval

Last week - Model training procedure
The task:

1) Select a new hyperparameter configuration Ψ.
2) Optimize the model parameters (θ) on the training set with gradient descent.
3) Evaluate the trained model on the validation set, then GOTO 1

Finally:

- Ψ* := The hyperparameter configuration with the best performance on the
validation set.

- θ* := The trained model parameters with hyperparameters Ψ*.
- Evaluate model with parameters θ* and hyperparameters Ψ* on the test set.

An artificial neuron is a (multivariate) logistic regression if g is sigmoid!

g can be a sigmoid or
other activation functions

Last week - The artificial neuron model

Most tasks cannot be solved by a single artificial neuron.

A linear decision boundary represented by a single neuron
is not capable of solving linearly inseparable problems.

Last week - Multilayer Perceptron (MLP)

(torch.nn.Linear)

Last week - Multilayer Perceptron (MLP)

Fully connected / dense (neuron) layers

h1

h2

x1

x2

Last week - The expressive power of neural networks

The weights were
set manually here…

Last week - Multilayer Perceptron (MLP)

New notation: Theta is the
set of all weight matrices and
bias vectors.
(i.e., the parameters)

Last week - Multilayer Perceptron (MLP)

The hypothesis function of a two-layer MLP neural network:

Loss functions:

- Regression: MSE
- Classification (binary): Logistic loss / Binary Cross-entropy (BCE)

The output of the first layer

- We always need intermediate activation
functions (nonlinearities) in MLPs

- The last activation function depends on the task

Last week - Activation functions

Popular activation functions
sigmoid

1

0

1

-1

0

tanh ReLU
(Rectified Linear Unit)

Easy to compute and
almost always works well

“Batch” gradient descent

We average the loss over data points
in the entire training set.

For example:

Last week - Training an MLP

Usually more efficient: Stochastic Gradient Descent (SGD) algorithm
Compute gradients on a randomly selected sub-sample of the dataset (a mini-batch)
→ Approximate, but much faster computation of the gradients.

Logistic
regression

MLP, 2 layers,
20+1 neurons

MLP, 4 layers,
20+20+20+1 neurons

Last week - The expressive power of neural networks
These weights were found using gradient descent.

Last week - Example tasks with multiple labels

A regression task with multiple label variables:

x1: Weight of a patient
x2: Age of a patient y1: Cholesterol levels of the patient
x3: Sex of a patient y2: Blood sugar levels of the patient

A classification task with more than two categories (multi-class):

x1, …, x784 : Brightness of pixels y1, …, y10: Probabilities of the digits
 from 0 to 9 being in the

 image

Last week - Multiple label variables

Let y be a vector, similarly to x!

Last activation function: None (identity)

Loss: MSE, also averaged over the elements of the label vector

Last week - Multiple label variables, regression

y hat and y are vectors

Last week - Multi-class classification

Last activation function: Softmax

Loss: Cross-entropy

one-hot

y hat and y are vectors

Last week - Multi-class classification

Last activation function: Softmax

Loss: Cross-entropy

In PyTorch, already part of CE loss, no
need to explicitly add it to our network.

Training an MLP

We will use gradient descent…

Training an MLP

We will use gradient descent…

We need to calculate the derivative of the loss
function w.r.t. each parameter. This gives us the
gradient vector, which we use to update the
parameters.
Let's expand the matrix form of the
hypothesis function to make things easier!

Multilayer Perceptron (MLP) expanded

The hypothesis function of a two-layer MLP neural network:

Expanded:

Multilayer Perceptron (MLP) expanded

The hypothesis function of a two-layer MLP neural network:

Expanded:

We need to calculate the derivative of the loss function w.r.t. each
parameter!

Multilayer Perceptron (MLP) expanded

How do we calculate the derivative of composite functions?

Multilayer Perceptron (MLP) expanded

Chain rule

Reminder: Derivatives of composite functions

The same with Leibniz-notation:

 ahol

Chain rule

Reminder: Derivatives of composite functions

The same with Leibniz-notation:

 ahol

The rule for differentiating composite
functions is also known as the chain rule.

The derivative of the expression u with
respect to x

Example: Calculate the derivative of the sigmoid function!

Chain rule - An example

Example: Calculate the derivative of the sigmoid function!

Let's define intermediate variables for easier derivation!

Chain rule - An example

Chain rule: We calculate the derivatives of the intermediate variables with
respect to the chained variable, then multiply the results together.

Chain rule - An example

Chain rule: We calculate the derivatives of the intermediate variables with
respect to the chained variable, then multiply the results together.

Chain rule - An example

Reminder: A list of rules to calculate derivatives
https://homepage.cs.uiowa.edu/~stroyan/CTLC3r

dEd/3rdCTLCText/Chapters/ch6.pdf

https://homepage.cs.uiowa.edu/~stroyan/CTLC3rdEd/3rdCTLCText/Chapters/ch6.pdf
https://homepage.cs.uiowa.edu/~stroyan/CTLC3rdEd/3rdCTLCText/Chapters/ch6.pdf

Chain rule: We calculate the derivatives of the intermediate variables with
respect to the chained variable, then multiply the results together.

Chain rule - An example

Chain rule: We calculate the derivatives of the intermediate variables with
respect to the chained variable, then multiply the results together.

Chain rule - An example

Example: Calculate the derivative of the sigmoid function!

Chain rule - An example

Example: Calculate the derivative of the sigmoid function!

Chain rule - An example

Training a Multilayer Perceptron (MLP)

Back to MLP…

How do we calculate the derivative of composite functions?

Back to MLP…

How do we calculate the derivative of composite functions?

Let’s define intermediate variables!

Training a Multilayer Perceptron (MLP)

Let’s define intermediate variables!

Training a Multilayer Perceptron (MLP)

Let’s define intermediate variables!

Training a Multilayer Perceptron (MLP)

Let’s define intermediate variables!

Training a Multilayer Perceptron (MLP)

We need gradients to use the gradient method!

Training a Multilayer Perceptron (MLP)

We need gradients to use the gradient method!

Training a Multilayer Perceptron (MLP)

The derivative of the loss must be calculated w.r.t. each parameter!

Training a Multilayer Perceptron (MLP)

The derivative of the loss must be calculated w.r.t. each parameter!

It seems like a lot of computation,
calculating all expressions with
respect to all parameters.

Can it be done more efficiently?

Training a Multilayer Perceptron (MLP)

The derivative of the loss must be calculated w.r.t. each parameter!

The same members appear
multiple times in the derivatives.
It is useless to calculate them
multiple times.

Gradient method + keeping track
of sub-results
→ Backpropagation algorithm

Training a Multilayer Perceptron (MLP)

Backpropagation algorithm

Backpropagation algorithm

Computational graph: Representing complicated expressions

Backpropagation algorithm

Backpropagation algorithm

Computational graph: Representing complicated expressions

Nodes: Elementary operations

Edges: Chaining elementary operations together

Backpropagation algorithm

Computational graph: Representing complicated expressions

The graph tells us what other intermediate variable need to be
evaluated in order to evaluate a given variable.

Backpropagation algorithm

Backpropagation algorithm

Computational graph: Representing complicated expressions

We only need to calculate the derivative of elementary operations.

Backpropagation algorithm

Backpropagation algorithm

Computational graph: Representing complicated expressions

Backpropagation algorithm

Then, following the chain rule, take the product of the
elementary derivatives along the corresponding edges.

Backpropagation algorithm

By linking elementary operations and defining intermediate variables, we
construct a computational graph.

The computational graph specifies which other variables need to be
evaluated in order to evaluate a given variable.

Backpropagation algorithm

Backpropagation algorithm

By linking elementary operations and defining intermediate variables, we
construct a computational graph.

The computational graph specifies which other variables need to be
evaluated in order to evaluate a given variable.

- We only calculate the derivative of elementary operations.
- We take the product of the elementary derivatives along the

corresponding edges, following the chain rule.

Backpropagation algorithm

An example for a computational graph

Example: Lin. reg. MSE loss... for simplicity's sake,
we have one variable, we omit the multiplication by ½,
and our sample consists of a single element.

Backpropagation algorithm

Step 1: Symbolic derivation

Backpropagation algorithm

Step 1: Symbolic derivation

(Question: Is it always a tree graph?)

Backpropagation algorithm

Step 1: Symbolic derivation

Backpropagation algorithm

Step 1: Symbolic derivation

Backpropagation algorithm

Step 1: Symbolic derivation

Backpropagation algorithm

Step 1: Symbolic derivation

Backpropagation algorithm

Step 1: Symbolic derivation

Backpropagation algorithm

Step 1: Symbolic derivation

Backpropagation algorithm

Step 1: Symbolic derivation

Backpropagation algorithm

Step 2: Parameter initialization

E.g.,

Backpropagation algorithm

Step 2: Parameter initialization

E.g.,

Backpropagation algorithm
Select the initial value of parameters,
for example, randomly.

Step 3: Choosing an example from the training set

E.g.,

Backpropagation algorithm

Step 3: Choosing an example from the training set

E.g.,

Backpropagation algorithm
In practice (SGD algorithm and variants)
a mini-batch of data is taken, not
necessarily a single example.

Step 4: Substitution - feed forward

E.g., and

Backpropagation algorithm

Step 4: Substitution - feed forward

E.g., and

Backpropagation algorithm
We substitute the input / output
variables with real data from the training
set and the parameter variables with
the current value of the parameters.

Step 4: Substitution - feed forward

Backpropagation algorithm

Step 4: Substitution - feed forward

Backpropagation algorithm

Step 5: Substitution - backpropagation

We have already calculated the gradients
symbolically, now let's substitute them in!

Backpropagation algorithm

Step 5: Substitution - backpropagation

Backpropagation algorithm

Step 5: Substitution - backpropagation

Backpropagation algorithm

Step 5: Substitution - backpropagation

Backpropagation algorithm

Step 5: Substitution - backpropagation

Backpropagation algorithm

Step 5: Substitution - backpropagation

Backpropagation algorithm

Step 5: Substitution - backpropagation

Backpropagation algorithm

Step 6: Updating the weights / parameters

For example, let

Backpropagation algorithm

Step 6: Updating the weights / parameters

Backpropagation algorithm

Step 6: Updating the weights / parameters

By computing the loss value with the new parameters,
we can easily check whether the loss has decreased...

Backpropagation algorithm

Step 1: Symbolic derivation
Step 2: Parameter initialization

Step 3: Choosing an example (or a mini-batch) from the training set
Step 4: Substitution - feed forward
Step 5: Substitution - backpropagation
Step 6: Updating the parameters

GOTO STEP 3 - Stop after a given num. of iterations OR early stopping

Backpropagation algorithm

Software for neural networks

()

CPU only
CPU & GPU

Computational graphs
Automatic differentiation

Reminder - Logistic regression in NumPy
intercept = np.ones((X.shape[0], 1))

X = np.concatenate((intercept, X), axis=1)

self.theta = np.zeros(X.shape[1])

for i in range(self.num_iter):

 h = self.__sigmoid(np.dot(X, self.theta))

 gradient = np.dot(X.T, (h - y)) / y.size

 self.theta -= self.lr * gradient

intercept = np.ones((X.shape[0], 1))

X = np.concatenate((intercept, X), axis=1)

self.theta = np.zeros(X.shape[1])

for i in range(self.num_iter):

 h = self.__sigmoid(np.dot(X, self.theta))

 gradient = np.dot(X.T, (h - y)) / y.size

 self.theta -= self.lr * gradient

The gradient formula
for each parameter
(vector/matrix) must be
calculated manually...

Besides, the automatic
reuse of already
calculated gradients is
not implemented either.

Reminder - Logistic regression in NumPy

intercept = np.ones((X.shape[0], 1))

X = np.concatenate((intercept, X), axis=1)

self.theta = np.zeros(X.shape[1])

for i in range(self.num_iter):

 h = self.__sigmoid(np.dot(X, self.theta))

 gradient = np.dot(X.T, (h - y)) / y.size

 self.theta -= self.lr * gradient

Type of variables:
numpy.ndarray

Reminder - Logistic regression in NumPy

intercept = np.ones((X.shape[0], 1))

X = np.concatenate((intercept, X), axis=1)

self.theta = np.zeros(X.shape[1])

for i in range(self.num_iter):

 h = self.__sigmoid(np.dot(X, self.theta))

 gradient = np.dot(X.T, (h - y)) / y.size

 self.theta -= self.lr * gradient

Type of variables:
numpy.ndarray

NumPy ndarrays refer to
specific memory locations.
A NumPy operation is
evaluated immediately when
called, and its result is stored
in new/other ndarrays.
→ Greedy evaluation

Reminder - Logistic regression in NumPy

TensorFlow (v1)

A classic library for neural networks: TensorFlow 1.x

TensorFlow (v1), MLP
w1 = tf.Variable(tf.random_normal([n_input, n_hidden]))
w2 = tf.Variable(tf.random_normal([n_hidden, n_output]))
b1 = tf.Variable(tf.random_normal([n_hidden]))
b2 = tf.Variable(tf.random_normal([n_output]))

X = tf.placeholder(tf.float32, [None, n_input])
Y = tf.placeholder(tf.float32, [None, n_output])

layer_1 = tf.sigmoid(tf.add(tf.matmul(X, w1), b1))
layer_2 = tf.add(tf.matmul(layer_1, w2), b2)

loss_op = tf.reduce_mean(tf.square(tf.subtract(layer_2, y)))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
train_op = optimizer.minimize(loss_op)
...

TensorFlow (v1), MLP
w1 = tf.Variable(tf.random_normal([n_input, n_hidden]))
w2 = tf.Variable(tf.random_normal([n_hidden, n_output]))
b1 = tf.Variable(tf.random_normal([n_hidden]))
b2 = tf.Variable(tf.random_normal([n_output]))

X = tf.placeholder(tf.float32, [None, n_input])
Y = tf.placeholder(tf.float32, [None, n_output])

layer_1 = tf.sigmoid(tf.add(tf.matmul(X, w1), b1))
layer_2 = tf.add(tf.matmul(layer_1, w2), b2)

loss_op = tf.reduce_mean(tf.square(tf.subtract(layer_2, y)))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
train_op = optimizer.minimize(loss_op)
...

Type: tensorflow.Tensor
(there are many more of this
in this piece of code…)

TensorFlow (v1), MLP

Tf.Tensor

E.g.,: h = tf.matmul(X, w1) where h, X, w1 are of Tensor types.

TensorFlow (v1), MLP

Tf.Tensor

E.g.,: h = tf.matmul(X, w1) where h, X, w1 are of Tensor types.

The Tensor type is very similar to the NumPy ndarray type:
in some respects, it represents an array of values (n-dimensional).

On the other hand, however, h is not evaluated as a result of the above call.
h therefore actually represents the (potential) result of the above matrix
multiplication operation.

TensorFlow (v1), MLP
w1 = tf.Variable(tf.random_normal([n_input, n_hidden]))
w2 = tf.Variable(tf.random_normal([n_hidden, n_output]))
b1 = tf.Variable(tf.random_normal([n_hidden]))
b2 = tf.Variable(tf.random_normal([n_output]))

X = tf.placeholder(tf.float32, [None, n_input])
Y = tf.placeholder(tf.float32, [None, n_output])

layer_1 = tf.sigmoid(tf.add(tf.matmul(X, w1), b1))
layer_2 = tf.add(tf.matmul(layer_1, w2), b2)

loss_op = tf.reduce_mean(tf.square(tf.subtract(layer_2, y)))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
train_op = optimizer.minimize(loss_op)
...

Op(eration) constructors

TensorFlow (v1), MLP

Operation constructors

E.g.,: h = tf.matmul(X, w1)

TensorFlow (v1), MLP

Operation constructors

E.g.,: h = tf.matmul(X, w1)

The above call creates a tf.Operation type object (here MatMul type),
which represents an operation (here matrix multiplication).
It attaches the Tensor objects referred by X and w1 as inputs to the operation
and returns the Tensor object attached to the operation, given as the value
of h, which represents the output of the operation.

TensorFlow (v1) - Computational graph

MatMul (tf.Operation)

input#1 tf.Tensor input#2 tf.Tensor

output#1 tf.Tensor

h = tf.matmul(X, w1)

...
layer_1 = tf.sigmoid(tf.add(tf.matmul(X, w1), b1))
layer_2 = tf.add(tf.matmul(layer_1, w2), b2)

loss_op = tf.reduce_mean(tf.square(tf.subtract(layer_2, y)))
...

The operations, linked together, form a graph.
The vertices of the graph are the operations (tf.Operation), and
the edges are the tensors (tf.Tensor) that store the intermediate,
temporary results.

TensorFlow (v1) - Computational graph

Computational graph with the corresponding TensorFlow Op constructors

tf.multiply
(*)

tf.add

tf.subtract tf.square

(Not the computational graph associated with the previous code)

TensorFlow (v1) - Computational graph

Computational graph with the corresponding TensorFlow Op constructors

tf.multiply
(*)

(*) tf.multiply is for scalars only, for matrices we can use tf.matmul.

tf.add

tf.subtract tf.square

TensorFlow (v1) - Computational graph

TensorFlow (v1), MLP
w1 = tf.Variable(tf.random_normal([n_input, n_hidden]))
w2 = tf.Variable(tf.random_normal([n_hidden, n_output]))
b1 = tf.Variable(tf.random_normal([n_hidden]))
b2 = tf.Variable(tf.random_normal([n_output]))

X = tf.placeholder(tf.float32, [None, n_input])
Y = tf.placeholder(tf.float32, [None, n_output])

layer_1 = tf.sigmoid(tf.add(tf.matmul(X, w1), b1))
layer_2 = tf.add(tf.matmul(layer_1, w2), b2)

loss_op = tf.reduce_mean(tf.square(tf.subtract(layer_2, y)))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
train_op = optimizer.minimize(loss_op)
...

Type: tensorflow.Variable

TensorFlow (v1), MLP

tf.Variable

E.g.,: b2 = tf.Variable(tf.random_normal([n_output]))

TensorFlow (v1), MLP

tf.Variable

E.g.,: b2 = tf.Variable(tf.random_normal([n_output]))

tf.Variable objects are similar to Tensor objects, but their state is persistent
and their values can be modified by various operations.
For this reason, we declare the parameters of neural networks with the
tf.Variable type and modify their values during gradient backpropagation.

TensorFlow (v1), MLP
w1 = tf.Variable(tf.random_normal([n_input, n_hidden]))
w2 = tf.Variable(tf.random_normal([n_hidden, n_output]))
b1 = tf.Variable(tf.random_normal([n_hidden]))
b2 = tf.Variable(tf.random_normal([n_output]))

X = tf.placeholder(tf.float32, [None, n_input])
Y = tf.placeholder(tf.float32, [None, n_output])

layer_1 = tf.sigmoid(tf.add(tf.matmul(X, w1), b1))
layer_2 = tf.add(tf.matmul(layer_1, w2), b2)

loss_op = tf.reduce_mean(tf.square(tf.subtract(layer_2, y)))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
train_op = optimizer.minimize(loss_op)
...

Placeholder Tensor
objects
(Type:
tensorflow.Tensor)

TensorFlow (v1), MLP

Placeholder Tensor constructor (only in TF v1)

E.g.,: tf.placeholder(tf.float32, [None, n_input])

TensorFlow (v1), MLP

Placeholder Tensor constructor (only in TF v1)

E.g.,: tf.placeholder(tf.float32, [None, n_input])

Placeholders are Tensor objects whose values are not obtained from the
output of operations, but are specified explicitly.
The input/output variables of the neural network will therefore be as follows.

tf.multiply
(*)

tf.add

tf.subtract tf.square

tf.Variable

tf.Variable

placeholder
Tensor

placeholder
Tensor

TensorFlow (v1) - Computational graph

TensorFlow (v1), MLP
...
with tf.Session() as sess:

...
for i in range(total_batch):

 batch_x, batch_y = next(my_batch_iterator)
 _, loss_npy = sess.run([train_op, loss_op], feed_dict={X: batch_x,
 Y: batch_y})

TensorFlow (v1), MLP
...
with tf.Session() as sess:

...
for i in range(total_batch):

 batch_x, batch_y = next(my_batch_iterator)
 _, loss_npy = sess.run([train_op, loss_op], feed_dict={X: batch_x,
 Y: batch_y})

The previously defined loss_op and
train_op graphs have only existed in
symbolic form so far, and will be
evaluated here for the first time:
We feed the next batch of training samples
into the placeholder tensors.

The specific value of the cost will be calculated during
evaluation.
The result will be returned in a NumPy array.

tf.Session (only in TF v1): A runtime environment
attached to physical hardware

Why is it necessary to construct a computational graph,
and what are the advantages of asynchronous / lazy evaluation?

TensorFlow (v1) - Computational graph

Why is it necessary to construct a computational graph,
and what are the advantages of asynchronous / lazy evaluation?

- Evaluation may be accelerated by rearranging
the order of independent operations (out-of-order execution).

TensorFlow (v1) - Computational graph

Why is it necessary to construct a computational graph,
and what are the advantages of asynchronous / lazy evaluation?

- Evaluation may be accelerated by rearranging
the order of independent operations (out-of-order execution).

- Automatic differentation.

TensorFlow (v1) - Computational graph

TensorFlow (v1) - Automatic differentiation

For every elementary operation that we want to use in an expression
optimized by gradient descent (e.g., neural network),
the derivative of this operation must be specified.

Usually, we do not need to define new elementary operations,
as many of them are already implemented in TensorFlow.

@ops.RegisterGradient("Neg")

def _NegGrad(_, grad):

 return -grad

The gradient of the negation op
in file: tensorflow/python/ops/
math_grad.py

TensorFlow (v1) - Automatic differentiation

For every elementary operation that we want to use in an expression
optimized by gradient descent (e.g., neural network),
the derivative of this operation must be specified.

Usually, we do not need to define new elementary operations,
as many of them are already implemented in TensorFlow.

@ops.RegisterGradient("Neg")

def _NegGrad(_, grad):

 return -grad

The gradient of the negation op
in file: tensorflow/python/ops/
math_grad.py

We negate the gradient coming from the
output and pass it towards the input
(the derivative of negation is negation).

Gradient of the “Square” operation:

@ops.RegisterGradient("Square")

def _SquareGrad(op, grad):

 x = op.inputs[0]

 …
 return grad * (2.0 * x)

TensorFlow (v1) - Automatic differentiation

J = tf.square(z)

@ops.RegisterGradient("Square")

def _SquareGrad(op, grad):

 x = op.inputs[0]

 …
 return grad * (2.0 * x)

grad_z = 2.0*z*grad_J

TensorFlow (v1) - Computational graph

What are the disadvantages of asynchronous / lazy evaluation?

TensorFlow (v1) - Computational graph

What are the disadvantages of asynchronous / lazy evaluation?

- The Python interpreter cannot be used for debugging.
Debugging with the use of Print nodes and callbacks connected to the
graph.

- The compilation procedure takes time.
- Constructing / modifying the computation graph during runtime is

complicated.

TensorFlow (v1) - Computational graph

PyTorch

- By default (mostly) eager evaluation (Eager mode),
lazy evaluation on demand (Graph mode, torch.jit).

- Computational graph construction is only necessary if we want to
propagate gradients through the operations in question.

- Dynamic graph construction.

PyTorch
loss_fn = nn.CrossEntropyLoss()

optimizer = torch.optim.Adam(my_model.parameters(), lr=learning_rate)

for x, y in my_dataloader:

 optimizer.zero_grad()

 y_pred = my_model(x)

 loss = loss_fn(y_pred, y)

 loss.backward()

 optimizer.step()

PyTorch
loss_fn = nn.CrossEntropyLoss()

optimizer = torch.optim.Adam(my_model.parameters(), lr=learning_rate)

for x, y in my_dataloader:

 optimizer.zero_grad()

 y_pred = my_model(x)

 loss = loss_fn(y_pred, y)

 loss.backward()

 optimizer.step()

The computational graph is also present here.
We want to minimize the loss expression, so
gradient backpropagation will start from there in
the graph, as in TensorFlow, passing through the
my_model hypothesis function.

The torch.Tensor.backward() call performs
gradient backpropagation and calculates the
partial derivatives of the loss expression
according to the intermediate tensors of the
computational graph.

PyTorch
loss_fn = nn.CrossEntropyLoss()

optimizer = torch.optim.Adam(my_model.parameters(), lr=learning_rate)

losses = []

for x, y in my_dataloader:

 optimizer.zero_grad()

 y_pred = my_model(x)

 loss = loss_fn(y_pred, y)

 loss.backward()

 optimizer.step()

 losses.append(loss.detach())

PyTorch
loss_fn = nn.CrossEntropyLoss()

optimizer = torch.optim.Adam(my_model.parameters(), lr=learning_rate)

losses = []

for x, y in my_dataloader:

 optimizer.zero_grad()

 y_pred = my_model(x)

 loss = loss_fn(y_pred, y)

 loss.backward()

 optimizer.step()

 losses.append(loss.detach())

PyTorch uses greedy evaluation by default, so
(unlike TensorFlow 1.x) we only need to use
computational graphs where we want to
propagate gradients.

We want to record the value of the loss function
in each iteration, for example, for later plotting of
the loss curves. For this, it is not necessary to
maintain the computational graphs from each
iteration; the loss value itself is sufficient.

The torch.Tensor.detach() function returns a
view of the loss tensor (scalar), which can be
used in further operations without the
continued building of the computational
graph. As the graph is not built, gradients will
not pass through the detach() operation.

PyTorch
loss_fn = nn.CrossEntropyLoss()

optimizer = torch.optim.Adam(my_model.parameters(), lr=learning_rate)

losses = []

for x, y in my_dataloader:

 optimizer.zero_grad()

 y_pred = my_model(x)

 loss = loss_fn(y_pred, y)

 loss.backward()

 optimizer.step()

 losses.append(loss.detach().numpy())

PyTorch
loss_fn = nn.CrossEntropyLoss()

optimizer = torch.optim.Adam(my_model.parameters(), lr=learning_rate)

losses = []

for x, y in my_dataloader:

 optimizer.zero_grad()

 y_pred = my_model(x)

 loss = loss_fn(y_pred, y)

 loss.backward()

 optimizer.step()

 losses.append(loss.detach().numpy())

A tensor that is not bound to a computational
graph (and device=’cpu’) can also be converted
to a NumPy array (ndarray) type. In this case,
the tensor and the NumPy array share memory.

PyTorch
@torch.no_grad()

def accuracy_binary_torch(ys_pred, ys_true):

 return torch.mean((torch.round(ys_pred) == ys_true).to(torch.float32))

for x, y in my_dataloader:

 optimizer.zero_grad()

 y_pred = my_model(x)

 loss = loss_fn(y_pred, y)

 loss.backward()

 optimizer.step()

 acc = accuracy_binary_torch(y_pred, y)

PyTorch
@torch.no_grad()

def accuracy_binary_torch(ys_pred, ys_true):

 return torch.mean((torch.round(ys_pred) == ys_true).to(torch.float32))

for x, y in my_dataloader:

 optimizer.zero_grad()

 y_pred = my_model(x)

 loss = loss_fn(y_pred, y)

 loss.backward()

 optimizer.step()

 acc = accuracy_binary_torch(y_pred, y)

Alternative to torch.Tensor.detach(): Any new
tensors created in the body of a function
decorated with @torch.no_grad() will be
independent of the computational graph
and cannot be used for backpropgation.

Since we do not optimize according to the
accuracy metric, but only use it for logging the
model performance, we save time and memory
by disabling graph building and gradient
computation in this function.

PyTorch
def accuracy_binary_torch(ys_pred, ys_true):

 return torch.mean((torch.round(ys_pred) == ys_true).to(torch.float32))

for x, y in my_dataloader:

 optimizer.zero_grad()

 y_pred = my_model(x)

 loss = loss_fn(y_pred, y)

 loss.backward()

 optimizer.step()

 with torch.no_grad():

 acc = accuracy_binary_torch(y_pred, y)

PyTorch
def accuracy_binary_torch(ys_pred, ys_true):

 return torch.mean((torch.round(ys_pred) == ys_true).to(torch.float32))

for x, y in my_dataloader:

 optimizer.zero_grad()

 y_pred = my_model(x)

 loss = loss_fn(y_pred, y)

 loss.backward()

 optimizer.step()

 with torch.no_grad():

 acc = accuracy_binary_torch(y_pred, y)

The torch.no_grad() block works in a
similar way...

