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Recap

i
[5es]
Variable; ) @
Linear Regression -5
y= i
* Supervised learning oo Dt
» Have: (x, y) |
« x —input :
 y —target

o Goal: Learn a function to map x — y.

ch(x) =¥ / )

'y =01x+ 6, e TN R
* Regression — Predict real-valued /
continuous output:
P « Given the height and weight of a person,
s VER predict the age of the person.

- Age can be: 10,25,33,11,...
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1. Image Classification

Linear Regression vs Glassification

o]
re
@

Linear Regression Binary Classification
« Supervised learning « Supervised learning
« Have: (x, y) « Have: (x, y)
« x:input e x:input
- y:target e R - | y: target € {0, 1}
o Goal: Learn a function to map x — y. o Goal: Learn a function to map x — y.
* h(x) =y *h(x) =9
*y = Z}TL:O WjXx; + b |y = g(zylzo W;X; + b) Add non-linear activation function

* Regression — Predict real-valued / « Classification — Predict discrete set of values:

continuous output:
* YER

y €{0,1]
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1. Image Classification

i EOTVOS LORAND ‘
UNIVERSITY & JTL W

Binary Classification

Binary classification — which of the two classes does the input belong to?

« (atvs Dog
 Dog vs Mop

10/1/2025 Deep Network Development 5



Recap

Artificial Neural Network (ANN)

®\

BN
. (Acti
@ eights

(B)

« Using ANN for linear regression

« x; —the inputs

» w; — parameters we will train

* [ bias parameter

- - nonlinear activation function
« 0 —the output

« One neuron with /minputs does the
following:

»0=g(Xowx;+ b) o(x) = —'=

nnnnnnnnnnnnnnn

Activation function
« Adds non-linearity
Output limited to a range (i.e. 0-1)

« (Given the height and weight information,
predict if it is a human or an animal.

0: human; 1: animal
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1. Image Classification @ \FEITE

% EOTVOS LORAND /el
Y \

Binary Classification

- Binary classification — Two classes
 |sxin the target class C?

 Qutput P(xeC), the probability of x is in C
« The network will have 1 output

e h(x) must be between 0 and 1
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1. Image Classification @ \FEITE

% FOTVOS LORAND /S I
UNIVERSITY & JL &

Binary Classification

{ Albums chihuahua or muffin Select | € Albums  kitten or ice cream Select | € Albums barn owl or apple Select
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1. Image Classification

Binary Classification

1
+e~?

Sigmoid Function o(2) = ;

*  h(x) must be between 0 and 1
Use the sigmoid activation on last layer

1 -

O'(Z) — 11 o-7 s

0.0+

T T . lI ' T T
-10 -5 0 5 10

- Linear regression becomes Logistic Regression (Binary Classification), if we add a Sigmoid activation function to the
output

« Linear Regression: h(x) = Wx + b (continuous output)
« Binary Classification: h(x) = g(Wx + b)(discrete output between 0 and 1)
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1. Image Classification Linear Regression

o]
re
@

Binary Classification Loss

Binary cross-entropy

- Binary cross-entropy loss
Lgc(h(x),y) = —ylogh(x) — (1 —y)log(1 — h(x)) !
«  Assumptions: Loss 2:
yisQOorT
fifx) =y is between 0 and 1 Lgc(h(x),1),
LBC(h(x)’ O) 80 0.2 0.4 0.6 0.8 1.0

Prediction

Lgc(h(x),y) = —ylogh(x) — (1 —y)log(1l — h(x))
Lgc(1,1) =—1logl —(1—1)log(1 —1)
Lpc(1,1) =0 — (0)log(0)

LBC(lil) — O
log(0) is undefined -> clipping

10/1/2025 Deep Network Development 1



1. Image Classification

Binary Classification example

Classes G = {0: Dog, 1: Cat}
INPUT

reshaped image vector

(255 )
231
42
2
123
94

pixel image

92
142

Inputs

ELTE
2 iy #
X3 =2 Qutput
NEURAL NETWORK OUTPUT TARGET
“it's a cat”
'
h ; 0.73>0.5
@ N pmbabiliiht::lt
E BV ) prob?:i::ty non-cat
Sigmoid
Activation . (.73
2 Function
0SS
/ Lgc(h(x),y) = —ylogh(x) — (1 — y) log(1 — h(x))
Lgc(0.73,1) = —110g0.73 — (1 — 1) log(1 — 0.73)
Lgc(0.73,1) = =1 % —0.13667714 — (0) log(0.23)

Lpc(0.73,1) = 0.13667714

Lgc(0.73,1) = 0.14

10/1/2025
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1. Image Classification

More neurons and categories

« Single artificial neuron

« Binary Classification (0 or 1) —) o Multi-Class Classification (0,1,2,3...)

10/1/2025 Deep Network Development 13



1. Image Classification = \FITE &

Deep Neural Networks

« Neural networks are built up from neurons, that have inputs and outputs
- Neurons are organised into layers
- layers refine the output of the previous layers

Input Layer Hidde}r\1 Layers Output Layer

Inputs X, 2 > Output

10/1/2025 Deep Network Development 14



1. Image Classification @ \FEITE

iy

@ EOTVOS LORAND
UNIVERSITY &

Deep Neural Networks

Each layer refines the previous layer
« Visualization demo: https://adamharley.com/nn_vis/

Deep neural
networks learn
hierarchical feature
representations

L)

output layer

TN

Feature visualization of convolutional net trained on Imageﬂctfmn [Zgl}en  Fe!

45

10/1/2025 Deep Network Development 15
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1. Image Classification

Deep Neural Networks

« Artificial Neural Networks < Feed Forward Neural Networks < Fully
Connected Networks Bl

Output

« A neural network is built up from neurons
- Neurons are organised into layers

« Layers refine the output of the previous layers
o hl(x) — g(W(l)x + b(]_)) .......

¢ hZ (x) — g(W(Z)hl + b(Z)) ....... RXXB /E:" ; ’::.‘\ ........... >

« hy(x) = g(WPg(WVx + pWV) + p@) 23 \ 0 .

N\

A

)
&
IR
IR
v

N

S/

A

A ™Y

< t e
<Z 7/ |

V. ‘-
<4

I

Ay
N

Output
[N,3]
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1. Image Classification

Deep Neural Networks [1, 2]

How to find Wand 4?

. _ (2) (1) (1) (2) Terminology
Given £ g(W g(W x+b ) b ) « L(h(x),y) - loss or error function for a single data point

of the dataset
 ((0), J(W) - cost or objective function for the entire

- Select a loss function L that measures how good /is:

« The update rule can also be in the form:

o Update w( :

Wt(l) =W, 1(1) _ aV](W(l)) w; — w; + Aw;
. 2) . -
ot s 2) 2) beb+Ab
Wee =W, ' —aVJ(W)
- Update bV : 91
b,V = b, ) W —avj(bM) Aw; = _aawi

Update b :
bt(z) =b, _ 1(2) — aVJ(b®)

[1] Backpropagation derivation: https://www.cs.put.poznan.pl/pliskowski/pub/teaching/eio/lab1/eio-supplementary.pdf
[2] Another backpropagation derivation (be aware of notation differences): https://www.cs.swarthmore.edu/~meeden/cs81/s10/BackPropDeriv.pdf

10/1/2025 Deep Network Development 17
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1. Image Classification

Deep Neural Networks

1. Select W, randomly
2.  Calculate A (X) for all training examples
3.  Calculate the cost:

N
1
JW) = L(h(x), 31)
i=1

4. Update W:
Wi = W1y —aVJj(W)
5. Repeat steps 2-4 until convergence

10/1/2025 Deep Network Development 18



1. Image Classification

1

. Select W, randomly e
2. [Calculate h(x) for all training examples |
Deep Neural Networks 3. Calculate the cost function:

JW) == L), )

4. Update W:
W, = W(t—l) —aVj(W)
5. Repeat steps 2-4 until convergence

Batch size - the number of training samples used to optimize the model’s parameters

Types (with Gradient Descent)
- Batch Gradient Descent
o Batch size = Size of dataset
 Mini-Batch Gradient Descent
o Batch size = a subset of the dataset examples; typically, 2", e.g., 8,16,32,128....
o Ineach iteration, a mini-batch is randomly sampled from the dataset
« Stochastic Gradient Descent
o Batch size =1
o Ineach iteration, a single example is randomly sampled from the dataset

10/1/2025 Deep Network Development 19



1. Image Classification @ \FEITE

% EOTVOS LORAND /Sl
UNIVERSITY & J L W&

Training Deep Neural Networks

ssmmm Batch
memms  Mini-batch

mmmm= Stochastic

10/1/2025 Deep Network Development 20



1. Image Classification

Hyperparameter vs Parameter

Hyperparameters

To create and train Neural Networks we must make certain decisions (we choose the values):
 Number of layers; Number of neurons in each layer

« Activation functions

- learning rate

- Batch size

 Many more (optimization related)

Parameters

What the Neural Network learns. The weights and biases of the network are optimized with an algorithm (Gradient Descent,
etc.). We do not choose the values for them.?

3. We can choose the initial values (weight initialization), it can be initialized with zeros, ones, random values, etc. However, the network learns the optimal values through training.

10/1/2025 Deep Network Development 21



1. Image Classification @ \FEITE

% FOTVOS LORAND /S I
UNIVERSITY 4 TL W

Deep Neural Networks

Loss function

Optimization

Predictions

Model parameters

10/1/2025 Deep Network Development 22



1. Image Classification

More neurons and categories
- Single artificial neuron —)

Deep Neural Network

« | Multi-Class Classification (0,1,2,3...

- Binary Classification (0 or 1)

v/.

/
A
i

|

)
e e
WAL 1 i
ﬂmep (
JNY VA V)

‘ff"‘\?

Hidden Layers

N/
Pixels of image fed as input /

\» YIAY

Input Layer

Output Layer
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1. Image Classification ELTE

& EOTVOS LorAnD cl ‘
UNIVERSITY & JL W&

Multi-Class Classification

 With Aclasses
« The network will have K outputs

- Softmax activation for squashing outputs between 0 and 1 = A A
'«i}ré—/ ,"‘ RS, CHMAN 1 ‘\):/5.* Z output layer

This is basically a probability distribution on the classes. =9 =9 =

They sum up to 1.

10/1/2025 Deep Network Development 24



1. Image Classification

Multi-Class Classification

Output of the neural network is a K long vector

How should we encode the ground-truth values?

One-hot encoding (K=3): one-hot d1 2 | d3

(cat) 1->11, 0, 0] encoding 0 0

(dog) 2 -> 10,1, 0] | >

(horse) 3->[0,0,1] 0 0
0 0

Just as h(x): values between 0 and 1, sum up to 1

10/1/2025 Deep Network Development 25



1. Image Classification

Multi-Class Classification

« K=3
- d
- Softmax activation o (2) ;= ﬁ

« Probability distribution on the classes. They sum
up to 1.

W | A
W . =
. P & 3 |

ELTE
% EOTVOS LORAND 4

UNIVERSITY &

(Cat, Dog,"Horse)

Softmax output, S(y;)

Input pixels, x Feedforward output, y;
cat dog horse
Forward Softmax
propagation function
ﬁ y| 4 2 3 ?

Shape: (3, 32, 32) Shape: (3,)
5 4 2

Forward Softmax

cat

dog horse

0.02

0.00 | 0.98

Shape: (3,)

0.71

0.26 | 0.04

10/1/2025 Deep Network Development
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1. Image Classification

Multi-Class Classification Loss

With A'classes
Categorical Cross-entropy loss

K
L(A(O,Y) = = ) yiloghi(x)
i=1

Assumptions:
yis avector of A elements with values 0 or 1, exactly one element is 1
hix]is a vector of K elements between 0 and 1, the sum of all elements is equal to 1

10/1/2025 Deep Network Development 21



1. Image Classification «\FITE A&

@

More neurons and categories
- Single artificial neuron —) « Deep Neural Network
- Binary Classification (0 or 1) —) « Multi-Class Classification (0,1,2,3...)

Jorl L e NS
a2 il 2 Y
@@
W N
f‘ﬁh ll"!i.
Pixels of image fed as input AN I.r'
A
Input Layer Output Layer

Hidden Layers
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1. Image Classification

Disadvantages of Feed Forward Neural Networks

pixel image

Green

Red

Blue

reshaped image vector

239
231
42
22
123
94

92
142

Problems

Computational inefficiency
Loss of spatial information
Independent weights/features

ELTE g
E;;ai EOTVOS LORAND
g UNIVERSITY &
I “it's a cat”
Imnge?wctor‘
standardize

Linear Sigmoid

S
N
,
b .
Linear Relu / X
»\ " p. = o
T P T
O ~ 0.73
."'
/./" N ,,'/
-~ y \\\ L
’_,-" Vi hY
// \.\
s \
/
/
" i

0.73>0.5

probability cat

mere than

probability non-cat

10/1/2025
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1. Image Classification

E! FOTVOS LORAND /S I
L/ Unwversity MPIT R

Disadvantages of Feed Forward Neural Networks (Intro to CNNs)

local connectivity

weight sharing

| /
neural O e Y
activations m-) —h E]ﬁﬁ I = \\
.\ = =t
neural \ \
connections A\
[ :
input /l } T ANANNE
mpu /1/ 7,
: — LAV \\U NANANE i | d
signal - FZERTYR N R = - '
A SRR /] (] T
fully connected (MLP) locally connected convolutional (CNN)
10/1/2025 Deep Network Development 30
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2. Convolutional Neural Networks

How do Convolutional Neural Networks (CNNs) work?

~

17

%

f o

“:E‘Eﬂ%}‘eir'ﬁ -

CONVOLUTION + RELU

" » 1 — CAR
- I — — TRUCK
- " ] — van
[ " L]
L3 — BICYCLE
POOLING CONVOLUTION + RELU POOLING FLATTEN FULLY SOFTMAX
CONNECTED

CNNs extract relevant features from an image.
Like a magnifying glass “enhancing” details of the
image.

10/1/2025
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2. Convolutional Neural Networks

Convolutional layer

Convolution
Input: 5x5
Filter: 3x3
Output: 3x3

10/1/2025 Deep Network Development 33



2. Convolutional Neural Networks

i
Convolutional layer
« Convolution operation « Filter / kernel size =3 x 3 « Qutput=?
« Input:5x9
10 2 4 1 1 2 2 2
0| 4|0 ]| 2| 2 * 1|0 | 1
1 8 16 0 0 2 2 2

10/1/2025 Deep Network Development 34



2. Convolutional Neural Networks

i
[5es]
@
Convolutional layer
« Convolution operation « Qutput=?
« Input:5x9
« Filter / kernel size =3 x 3
10,2 ,,/4 ,,|1 |1 82
10x2 + 2x2 + 4x2 +
0ui%00|00]2 |2 0x1 + 4x0 + 0x1 +
1.,/8,/16,|0 0 1x2 + 8x2 + 16x2 = 82

8 1 1 0 0

0 0 2 6 1

10/1/2025 Deep Network Development 35



2. Convolutional Neural Networks

@

Convolutional layer
« Convolution operation e QOutput="?
e Input:5x5
- Filter / kernel size = 3 x 3

10 |2 ,/4 ,[1 ,|1 82 | 68

2x2 + 4x2 + 1x2 +
0 4x10x02x12 4X1 +0X0+2X1+
1 g8 |16.]0 .0 8x2 + 16x2 + 0x2 = 68

10/1/2025 Deep Network Development 36



2. Convolutional Neural Networks

@
Convolutional layer
« Convolution operation e QOutput="?
e Input:5x5
- Filter / kernel size = 3 x 3
10 |2 (4 ,|1 ,|1, 82 | 68 | 46
4x2 + 1x2 + 1x2 +
0 14 0,4]2,|2. 0x1 + 2x0 + 2x1 +
1 " 6.0 .0 16x2 + 0x2 + 0x2 = 46

10/1/2025 Deep Network Development 31



2. Convolutional Neural Networks

@

Convolutional layer
« Convolution operation e QOutput="?
e Input:5x5
- Filter / kernel size = 3 x 3

10 (2 |4 |1 |1 82 | 68 | 46

0x2 + 4x2 + 0x2 +

0,(4,,]0,,|2 2 1x1 + 8x0 + 16x1 + 45

1 .|8.]16.]0 |o 8x2 + 1x2 + 1x2 = 46

8 |1 /1 /0 |o

x2 X2 X2

10/1/2025 Deep Network Development 38



2. Convolutional Neural Networks @\ FILTE

@ EOTVOS LORAND /r:
UNIVERSITY &

Convolutional layer

« Convolution operation « Qutput=3x3

e Input:5x5

- Filter / kernel size = 3 x 3
10 2| 4|11 2 | 2| 2 82 | 68 | 46
0| 4|0 2] 2 * 1|0 | 1 - 45 | 24 | 26
1|8 |16] 0| 0 2 | 2| 2 63 | 65 | 51
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2. Convolutional Neural Networks

Convolutional layer

Original Edge Detect
w3
w4 w5 w6
w7 w8 w9
Learnable filter!

1. The filter weights are like the weights in Feed Forward Networks (FFN). Similar to FEN, a bias term is added after applying the filter weights.
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2. Convolutional Neural Networks

Convolutional layer - Padding

« Without Padding — corners / edges are not “seen” enough
« Number of times blue pixel is in the filter’s receptive field: 0
« Number of times green pixel is in the filter’s receptive field: 0

E i

10/1/2025 Deep Network Development 4



2. Convolutional Neural Networks

Convolutional layer - Padding

« Without Padding — corners / edges are not “seen” enough
Number of times blue pixel is in the filter’s receptive field: 0
Number of times green pixel is in the filter’s receptive field: 1

10/1/2025 Deep Network Development
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2. Convolutional Neural Networks

Convolutional layer - Padding

« Without Padding — corners / edges are not “seen” enough
Number of times blue pixel is in the filter’s receptive field: 0
Number of times green pixel is in the filter’s receptive field: 2

10/1/2025 Deep Network Development
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2. Convolutional Neural Networks

Convolutional layer - Padding

« Without Padding — corners / edges are not “seen” enough
Number of times blue pixel is in the filter’s receptive field: 1
Number of times green pixel is in the filter’s receptive field: 3

10/1/2025 Deep Network Development
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2. Convolutional Neural Networks

Convolutional layer - Padding

« Without Padding — corners / edges are not “seen” enough
Number of times blue pixel is in the filter’s receptive field: 1
Number of times green pixel is in the filter’s receptive field: 4

10/1/2025 Deep Network Development
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2. Convolutional Neural Networks

Convolutional layer - Padding

« Without Padding — corners / edges are not “seen” enough
Number of times blue pixel is in the filter’s receptive field: 1
Number of times green pixel is in the filter’s receptive field: 5

10/1/2025 Deep Network Development
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2. Convolutional Neural Networks

Convolutional layer - Padding

« Without Padding — corners / edges are not “seen” enough
Number of times blue pixel is in the filter’s receptive field: 1
Number of times green pixel is in the filter’s receptive field: 6

10/1/2025 Deep Network Development
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2. Convolutional Neural Networks

Convolutional layer - Padding

« Without Padding — corners / edges are not “seen” enough
Number of times blue pixel is in the filter’s receptive field: 1
Number of times green pixel is in the filter’s receptive field: 9

.. 3kip to the end

10/1/2025 Deep Network Development
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2. Convolutional Neural Networks

Convolutional layer - Padding

 With Padding
« Number of times blue pixel is in the filter’s receptive field: 0
« Number of times green pixel is in the filter’s receptive field: 0

* i
. :.‘. |
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2. Convolutional Neural Networks

Convolutional layer - Padding

 With Padding
« Number of times blue pixel is in the filter’s receptive field: 0
« Number of times green pixel is in the filter’s receptive field: 0

MDDII-m
1iIIDIIm

10/1/2025 Deep Network Development
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2. Convolutional Neural Networks

Convolutional layer - Padding

 With Padding
« Number of times blue pixel is in the filter’s receptive field: 0
« Number of times green pixel is in the filter’s receptive field: 0

10/1/2025 Deep Network Development
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2. Convolutional Neural Networks

Convolutional layer - Padding

 With Padding
« Number of times blue pixel is in the filter’s receptive field: 0
« Number of times green pixel is in the filter’s receptive field: 0

10/1/2025 Deep Network Development
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2. Convolutional Neural Networks

Convolutional layer - Padding

 With Padding
« Number of times blue pixel is in the filter’s receptive field: 1
« Number of times green pixel is in the filter’s receptive field: 0

10/1/2025 Deep Network Development
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2. Convolutional Neural Networks

Convolutional layer - Padding

 With Padding
« Number of times blue pixel is in the filter’s receptive field: 2
« Number of times green pixel is in the filter’s receptive field: 0

10/1/2025 Deep Network Development
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2. Convolutional Neural Networks

Convolutional layer - Padding

 With Padding
« Number of times blue pixel is in the filter’s receptive field: 2
« Number of times green pixel is in the filter’s receptive field: 0

10/1/2025 Deep Network Development
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2. Convolutional Neural Networks

Convolutional layer - Padding

 With Padding
« Number of times blue pixel is in the filter’s receptive field: 2
« Number of times green pixel is in the filter’s receptive field: 1

10/1/2025 Deep Network Development
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2. Convolutional Neural Networks

Convolutional layer - Padding

 With Padding
« Number of times blue pixel is in the filter’s receptive field: 2
« Number of times green pixel is in the filter’s receptive field: 2

10/1/2025 Deep Network Development
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2. Convolutional Neural Networks

Convolutional layer - Padding

 With Padding
« Number of times blue pixel is in the filter’s receptive field: 3
« Number of times green pixel is in the filter’s receptive field: 3

10/1/2025 Deep Network Development
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2. Convolutional Neural Networks

Convolutional layer - Padding

 With Padding
« Number of times blue pixel is in the filter’s receptive field: 4
« Number of times green pixel is in the filter’s receptive field: 3

10/1/2025 Deep Network Development
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2. Convolutional Neural Networks

Convolutional layer - Padding
 With Padding

« Number of times blue pixel is in the filter’s receptive field: 4
« Number of times green pixel is in the filter’s receptive field: 9

.. 3kip to the end

10/1/2025 Deep Network Development 60



2. Convolutional Neural Networks

@
3
@
Convolutional layer - Padding
Valid Padding (No Padding) Same Padding
p= 0 pP# 0
0.3)0.5/0.9|1.0 3 o.g o.g o.g 1.3 g
1.0/ 1.0({1.0{ 1.0 o{1.0{1.0{1.0{1.0[ ©
0.9/0.9(/0.5|0.3 0(0.9/0.9/0.5/0.3| ©
0.2/ 0.0l 0.0 0.0ﬂ 010.2/0.0(0.0/{0.0) ©
* * A 0) 0f Of 00 0f O
: : : A A A
Input Filter Output : E :
4x4 3x3 2x2 Input Filter Output

4x4 3x3 4x4
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2. Convolutional Neural Networks

Convolutional layer - Stride

Stride Stride
s=1 s=2
Input Filter Result
1[1]1]0]0 DD
T T 1 0 -1
Oxﬂ 1><1 1xu 1 0 4 Iﬁh 2 i 4 | 0| 3 * T _ > | 1
2 || 5114 ]|5]|2 -
Oxl Oxﬂ 1><1 1/1 e e 1| 0 | -1
5 6y 5 4 7 8
0 0 1 1 0 Parameters:
5 7 | 9 2 1 . y - * -
el Size: = 11 =2"1+ 50+ 3%(-1) +
o(1(1|0(0|  rUoTorTEE Sl:ide £=32 21 +4%0 + 3*(-1) +
il I I I Padding: p=o0 571 +470+ 2°(-1)
Convolved ——— ~ |
Image Dimension: 6 x 6 https://indoml.com
Feature
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2. Convolutional Neural Networks @ \FLTE

% EGTVOS LORAND /I
V4 b

Convolutional layer — Multiple filters

Filter 1
Input
‘_l_]J_‘H_.'_l_T_\_j_\_‘ — Output
4|92 |5]|8]|3 |
5 6|2 |4]0]|3 |
X

a 3x3x3 4x4
2|4 |5 ]a]s|2]3K
5| 6|5 |4|7]|8 |
5 | 7| 7]|9]2|1H

| 4x4
5| 8|5 |3|8]|a4]

https:/findoml.com
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2. Convolutional Neural Networks @ \FLTE

B /1 1\ Y
% EOTVOS LORAND .‘-""‘l‘l‘- e
UNIVERSITY &

Convolutional layer — Multiple filters

Filter 1
Input
!_‘_]J_‘H_T_\_T_\_'!_\_' — Ouiput
4alo|l2|5|8]3 ]
5 6|2 |4]0]|3 ]
3x3x3 4x4
2 4|5 |a|s|2]]|3k
- Filter 2
5 B 5 4 T B
5 | 7|7 le 2|11
B —_— 4x4x2
5|8|5|3|8]|4 —
6x6x3
4Xx 4 https://indoml.com
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2. Convolutional Neural Networks

i
[5es]
<
Convolutional Layer
Summary of convolutions
n Xm image f X f filter ¢ channels
padding p stride s
n+2p — m+2p —
[ pf+1]><[ f+1]><c
S S
Example:
Input Image = 224x224x3 Filter = 3x3x3 (x32) Qutput = 222x222x32

n=224;p=0;s=1;f=3;c_0=32
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2. Convolutional Neural Networks

RelU activation function

8- ReLU

6 - f(x) = max (0, x)
.

, |

o

-10.0 -7.5 -5.0 =25 0.0 2.5 5.0 7.5
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2. Convolutional Neural Networks

LeakyRelU activation function

RelLU = {2: i i 8 LealyRelLU = {f’ ;Cf 8
f(x) 1 f(x) 1
f(x)=x f(x) =x
f(x)=0 v f(x) = 0.01x 2
RelLU activation function LeakyRelLU activation function

10/1/2025 Deep Network Development 6/



2. Convolutional Neural Networks

i,
i
&
Pooling layer — Max Pooling

Max Pooling

Filter: 2x2

Stride: 2

Input (4x4) Output (2x2)
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2. Gonvolutional Neural Networks ELTE g
2/ Rereny M

Convolutional layer — Convolution properties

« Translation Equivariant F(t) = t(f (),
Input 3x3 Filter 2x2 Output 2x2 where tis a transformation
20| 0 | O
2 | 0 40 | 0
20 0 0 | % =
0| 2 80 | 0
20 (20 | ©
Both the input and the output
shifted to the right!
0 (20| O
2 | 0 40 | 40
0 |20| 0 |* =
0| 2 40 | 80
0 |20 20

1. Translation equivariance means that the model responds predictably to translations, while translation invariance means that the model produces the same output regardless of translations
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2. Gonvolutional Neural Networks —_—
) ey o

Pooling layer — Max Pooling properties

« Translation Invariant F(t0) = f(),
Input 3x3 Filter 2x2 Output 2x2 where tis a transformation
20 0 | O
2 | 0 40 | O Pooling2x2 | go
20 0 0 * = >
0 | 2 80| O
20 (20| O _ ] _
Change in the input results in
the same output
01209 2 |0 40 | 40
o | 20| o |* _ Pooling ZX? 30
0 2 40 | 80 g
0 |20 | 20

1. Translation equivariance means that the model responds predictably to translations, while translation invariance means that the model produces the same output regardless of translations
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2. Convolutional Neural Networks @\ FILTE

% EOTVOS LORAND 8
UNIVERSITY &

Flatten and Fully Connected layer

il . — '®' —
~——— > S
1 = output layer
i Flatteni 2
attenin
4|21 . 4 : :
2|1 -
1
Pooled Feature Map 0 =l < =< N\
e J L 9
2
1
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2. Convolutional Neural Networks FITE

@
D)) Ry 40N
Convolutional Neural Network
Visualization:
o https://poloclub.github.io/cnn-explainer/
o https://distill.pub/2017/feature-visualization/
s

2

G EEDREREE
e 11 TT 1111

D D — BICYCLE

FULLY

CONNECTED ——

INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN
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https://poloclub.github.io/cnn-explainer/
https://poloclub.github.io/cnn-explainer/
https://poloclub.github.io/cnn-explainer/
https://poloclub.github.io/cnn-explainer/
https://distill.pub/2017/feature-visualization/
https://distill.pub/2017/feature-visualization/
https://distill.pub/2017/feature-visualization/
https://distill.pub/2017/feature-visualization/

2. Convolutional Neural Networks

“LeNet 5” Y. Lecun et al. (1998) |3]

OO

o]
K
@

ELTE

EOTVOS LORAND , £
UNIVERSITY &

avg pool avg pool FC Fc O A
5%5 f=2 5%5 =2 . .
s=1 =2 s=1 =2 O Softmax
32 x32x1 28xX28X%X6 14 X 14 X 6 10 X 10 X 16 5X5x%x16 O 10
400 120 84
[3]Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, "Gradient-based learning applied to document recognition," in Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998, doi: 10.1109/5.726791.
10/1/2025 Deep Network Development 13



2. Convolutional Neural Networks

“LeNet 5” Y. Lecun et al. (1998) |3]

ELTE

EOTVOS LORAND /8
UNIVERSITY &

Thislis'a demo ofilleNets)

World;sifirst ('Oﬂ\."-‘ld[I‘-)WJ‘1”?(}‘_{"."."0”“&7 at{coul d

. P e ATV~ -. r‘ N
recognizejhandw rnuﬁn digitsjwit ! )u:)(‘ edfandfacc uracy
. Y

[3]Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, "Gradient-based learning applied to document recognition," in Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998, doi: 10.1109/5.726791.
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1. Convolutional Neural Networks @ \FLTE

& FoTvos lorinD e R
UNIVERSITY & L&

Convolutional Layer

« Purpose: To quantify the correspondence with Num. of 2 flters shown
the characteristics defined by the weights of Kormal oo | a3
the filters p— ”
e E.g.: how much of a (vertical Dilatation | 1,1 W4, 4 2]
edge)/nose/wheel/face is in the image part Padding 0,012
under consideration Source
. Play Filters: 6 g:;nel size it;ide [2)'iI2atation 1P,a;c'i:l,i;1g(;up' ot

&

“~Source
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https://ezyang.github.io/convolution-visualizer/
https://ezyang.github.io/convolution-visualizer/
https://colab.research.google.com/drive/1GhO1DN8J1lmgIgV1zuKKMWd6m0SCUC5m
https://github.com/vdumoulin/conv_arithmetic

1. Convolutional Neural Networks

i
[5es]
<
Convolutional Layer
Summary of convolutions
n X m image f X f filter ¢ channels padding p stride s
n+2p — m+2p —
[ pf+1]><[ f+1]><c
S S
Example:
Input Image = 224x224x3 Filter = 3x3x3 (x32) Qutput = 222x222x32

n=224;p=0;s=1;f=3;m=32
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1. Convolutional Neural Networks

“LeNet 5” Y. Lecun et al. (1998) |2]

5%5
s=1

32X32X1

28 X28X6

avg pool

=2

14 X 14 X 6

avg pool
E—

FC

o]
K
@

FC

[2]Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, "Gradient-based learning applied to document recognition,” in Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998, doi: 10.1109/5.726791.

10/1/2025

ELTE

EOTVOS LORAND , £
UNIVERSITY &

Y

5X5 =2 )
s=1 =2 Softmax
10 X 10 X 16 5X5x%X16 O 10
400 120 84
Deep Network Development 18



1. Convolutional Neural Networks

Going deeper

What prevents us from creating CNN with arbitrary depth?
Underfitting/Overfitting
Vanishing/Exploding gradient
And many more...

10/1/2025 Deep Network Development 19



1. Convolutional Neural Networks

ELTE 4
Underfitting/Overfitts ) i A
« Underfitting
« we train the model for more epochs
« |f we have more parameter, we can MSE = 4.0&?5%?{1}- 4.25e-01) MSE = 4.3;[1):-%r2ﬁi 7.08e-02) MSE = 1.822?62?+1;f?5.46e+08}
counter this issue - “Ihi:z(:eeflunction - "Ih':z(::eflunction - “Ihi:z(::eflunction
e Samples e Samples e Samples
. Overfitting . BN |
* Regularization (early-stopping, dropout, \
etc.) < . \e
« If we have less parameters, it is less ° e ‘ b %
likely that our model will overfit e I e~ > Z
J
10/1/2025 Deep Network Development 80




1. Convolutional Neural Networks EILITE &

Vanishing/Exploding Gradient

Weight initialization
Activation function
Regularization Vanishing Gradient Exploding Gradient
«  Batch Normalization ! _ T A
Dropout ; |
- Weight decay
“Skip connection”
And many more...

% EGTVOS LORAND /e
UNIVERSITY &

Gradient
Gradient

Input Layer1  Layer2 Layer3  Output Input Layerl  Layer2 Layer3  Output

Layer Layer
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1. Convolutional Neural Networks

Weight initialization

- As the name suggest specifies the method how we initialize
the weight of our neural network
- Sample from a uniform distribution in [a, b]
- Sample from a normal distribution N (u, o) — usually
with 0 mean and 1 standard deviation
- Set it to some constant value
Or manually add the initial weights

- In pytorch the weights of the Convolution is sampled from
U(—Vk,Vk), where k = groups

Cin*[1i=, kernel_size[i]

o And in Linear layers is sampled from U (—k, Vk), where
1

in_features
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1. Convolutional Neural Networks

Regularization

Weight related regularizations:

« L1 regularization (also called LASSO) leads to sparse
models by adding a penalty based on the absolute
value of coefficients.

« L2 regularization (also called ridge regression)
encourages smaller, more evenly distributed weights
by adding a penalty based on the square of the
coefficients.

Early stopping

Data augmentation
Batch normalization
Dropout

And many more...

ELTE

STVOS LORAN
UNIVERSITY

10/1/2025 Deep Network Development

83



1. Convolutional Neural Networks

Batch Normalization

- Batch normalization is achieved through a normalization Xp — E [X B]
step that fixes the means and variances of each layer's VB =

inputs \/ Var|xg]

- |t basically normalizes the output of the previous layer in
this batch w, |

- [t also keeps track of moving averages, and can do
some transformations too

A = B R oy gornee e R T :
w - T A

2 -~

>~ - =

o T
ol i .I ?: S~ ; i ]
5 4 -3 2 41 o 1 2 3 4 5

2b 2a

-3
-3
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1. Convolutional Neural Networks = \FITE &

ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) [10]

« 1000 classes
« 1M Images

« Serves as the common henchmark for
neural nets

[10] ). Deng, W. Dong, R. Socher, L. -J. Li, Kai Li and Li Fei-Fei, "ImageNet: A large-scale hierarchical image database,” 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 2009, pp. 248-255, doi:
10.1109/CVPR.2009.5206848.
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1. Convolutional Neural Networks

“AlexNet” A. Krizhevsky et al. (2012) [3]

ELTE

EOTVOS LORAND /Sl I
UNIVERSITY & -

—p —p
11><11 5x5 3x3
same s=2
55 x 55 x 96 27 X 27 X 96 27 X 27 X 256 13 x 13 x 256

227 x 227 X 3

OO
00O
OO0

FC FC
= — | —>| |— O
: . . Softmax
1000

O O O

9216 4096 4096

13 x 13 x 384 13 x 13 x 384 13 x 13 X 256 6 X6 X256

60M parameters

[3] Alex Krizhevsky, llya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet classification with deep convolutional neural networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 1 (NIPS'12).
Curran Associates Inc., Red Hook, NY, USA, 1097-1105.
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1. Convolutional Neural Networks FITE

“AlexNet” A. Krizhevsky et al. (2012) [3]

@ UNIVERSITY &
Dropout:
« We are dropping some neurons between layers

with some probability p.

« The dropped out neurons do not contribute to the
forward pass and do not participate in the
backpropagation.

« “Every time we sample from a different
architecture”

« Reduces neuron co-adaptation
« The model forced to learn more robust features (a) Standard Neural Net

(b) After applying dropout.

[3] Alex Krizhevsky, llya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet classification with deep convolutional neural networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 1 (NIPS'12).
Curran Associates Inc., Red Hook, NY, USA, 1097-1105.
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1. Convolutional Neural Networks

EOTVOS LORAND /i

“AlexNet” A. Krizhevsky et al. (2012) [3] 2/ i 4

RelU over Sigmoid or tanh:

tanh(x)

, o - . . Lraining Legerd
«  During training with Gradient Descent using ReLU (non-saturating error ratey '
nonlinearity) results in less training time compared to Sigmoid or tanh 0.75 =
(saturating nonlinearity). |
«  Does not require input normalization l‘
. . . . . agn . 0’50-.
« Learning will happen if at least some training examples produce positive input ‘o
Activation Functions oas| -' S S e
. Hyperbolic Tangent ; Sigmoid é RelLU
U9 ) ~4 0 & 10 15 20 as 3:.[0 35 40 >
5 Ra epochs
0 305 =
£ [}
D x o
05 @
-1 0 0
-5 0 5 -5 0 5 -5 0 5

X X X

[3] Alex Krizhevsky, llya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet classification with deep convolutional neural networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 1 (NIPS'12).
Curran Associates Inc., Red Hook, NY, USA, 1097-1105.
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1. Convolutional Neural Networks @\ FILTE

“Inception / GoogleNet” C. Szegedy et al. (2014) [5] ;

) vy #
« Aligns with the intuition that visual information should be
processed at various scales:
- Be able to detect bigger and smaller objects on the
image
« 1x1 Convolution blocks for dimensionality reduction

N
28 X 28 X 64

11 3x3

Channel
28 X 28 x 128

/ Concat

28 X 28 X 256
28 X 28 x 32 28

MAXPOOL /
28 % 28 X 256
28 x 28 x 192 3DE s =]

same 28 X 28 X 32
28 X 28 X 192

';"WENEF‘Ii 1060

DEEPER

[5] Szegedy, C., et al. “Going Deeper with Convolutions”, <i>arXiv e-prints</i>, 2014. doi:10.48550/arXiv.1409.4842.
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1. Convolutional Neural Networks @\ FILTE

“Inception / GoogleNet” C. Szegedy et al. (2014) [5] R

- Attached multiple classifier network during training
that were discarded during inference
e Multi-objective training
« Minimize the loss function of all the classifier
networks at the same time

Classifier head

il

Classifier head

g

Classifier head

[5] Szegedy, C., et al. “Going Deeper with Convolutions”, <i>arXiv e-prints</i>, 2014. doi:10.48550/arXiv.1409.4842.

10/1/2025 Deep Network Development 90



1. Convolutional Neural Networks

“VGG16” K. Simonyan and A. Zisserman (2014) [4]

@ EOTVOS LORAND ,‘ AN
UNIVERSITY &

- Increased the depth of the CNN by using smaller e el e L e
convolutions Lo 3x3
« This enables the network the extract more complex
hierarchical features e
« Used multiple 3x3 convolutions instead of larger
(5x5 or 7x7) convolutions: ,
- More non-linearity ~
- Same receptive field 8g
« Less parameters IR
: : AR ? ; /; ; ; ; ? ; ? ()] L layer L + 1 layer

[4] Simonyan, K. and Zisserman, A., “Very Deep Convolutional Networks for Large-Scale Image Recognition”, <i>arXiv e-prints</i>, 2014. doi:10.48550/arXiv.1409.1556.
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1. Convolutional Neural Networks

“Residual Network / ResNet” K. He et al. (2015) [6]

- Learn residual functions reference to layer inputs instead of
unreferenced functions

« |f we pretrain a smaller network and then we extend it with extra
blocks it should have similar or better performance compared to
the original network — ldentity mapping

X3 X4 X 23 X3
Conv2_x identity ' Conv3_x identity ', Conv4_x identity , Conv5_x identity
| A | A 'y A

4 [ 4 4 4
——— I
| I < I |
! ) & — © '] e (o) o~ © © i o~ o~ @ =
e ! =1 S = w | ]| e~ o~ > TS 0 & - p o | =
1o | ,{ Q| (o} © N l| ~ — o) o~ N — n wn & oo- o
R s E O ECIE M s E Pl P E L e -
o | X | x x x X | % x
| ! g =, |'= L L il |~ ™ - - ™ e = o™ Yol <
| 1 (o] | | |
I | O |
)
N 2 © @ < ~ -
w 2% Ts} o~ - x x
5 y - - x ~ =
a b s ~ -
3

[6] He, K, Zhang, X, Ren, S., and Sun, J., “Deep Residual Learning for Image Recognition”, <i>arXiv e-prints</i>, 2015. doi:10.48550/arXiv.1512.03385.
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1. Convolutional Neural Networks @ \EITE

“Residual Network / ResNet” K. He et al. (2015) [6]

FE
% EOTVOS LORAND /4 *J
UNIVERSITY &

+ )= =+ }=
:'""" T I
, Batch Norm : : Batch Norm :
: 1 ' : 7 |
I I
| 3x3 Conv I ! 3x3 Conv I
I I
Fx)p — 1 0 * Fx) T 0
. . I
! ReLu | identity ! ReLu | 1x1 Conv
: 1‘ I I + : Y
I Batch Norm : : Batch Norm :
l f ' : i '
I
: 3x3 Conv : : 3x3 Conv :
L e -li ------- I I F 1 :
X X

[6] He, K, Zhang, X, Ren, S., and Sun, J., “Deep Residual Learning for Image Recognition”, <i>arXiv e-prints</i>, 2015. doi:10.48550/arXiv.1512.03385.
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1. Convolutional Neural Networks = \ELTE &

“DenseNet” G. Huang et al. (2016) [7] g

EOTVOS LORAND /4 Y
UNIVERSITY & L .

[] Global Pooling
[] 4x4 Pooling
[] 2x2 Pooling

[] Identity

e st L S e e e B T S e et e T

[7] Huang, G., Liu, Z., van der Maaten, L., and Weinberger, K. Q,, “Densely Connected Convolutional Networks”, <i>arXiv e-prints</i>, 2016. doi:10.48550/arXiv.1608.06993.

10/1/2025 Deep Network Development 94



1. Convolutional Neural Networks @\ FILTE

“MobileNet” A. G. Horward et al. (2017) [8]

@ EOTVOS LORAND ,
Normal Convolution

UNIVERSITY &

3x3x3
Exlxne 4x4

6x6x3
NxnxNe

Depthwise Separable Convolution

% [ *
- s

Depthwise Pointwise

[8] Howard, A. G., et al. “MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications”, <i>arXiv e-prints</i>, 2017. doi:10.48550/arXiv.1704.04861.
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1. Convolutional Neural Networks

@ EOTVOS LORAND 4
UNIVERSITY &

ELTE
“MobileNet” A. G. Horward et al. (2017) [8]

Depthwise
X AN

ﬁ

Pointwise Convolution

X nxn conv \

1x1 conv
T
—

=

@@

Pointwise
N N /

Q0] PPer

[8] Howard, A. G., et al. “MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications”, <i>arXiv e-prints</i>, 2017. doi:10.48550/arXiv.1704.04861.

@@

a) depthwise convolution b) pointwise convolution
10/1/2025

Deep Network Development
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1. Convolutional Neural Networks

More recent CNN architectures

IfNet

Xception
InceptionV2, V3, V4
Inception-ResNet
MobileNet V3
FractalNet
WideResNet
PyramidalNet
Residual Attention Net
EfficientNet

Etc

e Currently, there are many models using the Transformer architecture (we will explore this later)
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1. Convolutional Neural Networks @\ FILTE

EOTVOS LORAND S
UNIVERSITY & JL W&

ImageNet — Architectures Top 5 error (2016)

ImageNet Classification Error (Top 5)

10,0
EIU I L.
U,U T T T T T . 1

2011 (XRCE) 2012 (AlexNet) 2013 (ZF) 2014 (VGG) 2014 Human 2015 (ResNet) 2016
(GoogleNet) (GooglLeNet-v4)
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1. Convolutional Neural Networks FITE

R V Y
@ FOTVOS LORAND /S I
UNIVERSITY 4 TL W

ImageNet — Architectures Top 5 error (2019)

Top-5 error rate

18.00% -
16.00% -
14.00% -
12.00% -
10.00% -

Zﬁcy | « ImageNet website:
2'00; I I I I https://www.image-net.org/
0.00% l

‘\

/ éQ
o«“f* ’

« More recently:
https://paperswithcode.com/sota/image-
classification-on-imagenet

9‘ & \;‘ \}é Q-"

& &
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2. Transfer Learning

ELTE
@ EOTVOS LORAND
UNIVERSITY &

Traditional ML vs Transfer Learning
Traditional ML

Leaming
o > | System
| Task 2

Dataset 1 > System

lsolated single task learning:
Knowledge is not retained or

VS Transfer Learning

1 e Learning of a new tasks relies on
the previous learned tasks:

accumulated. Learning is performed i 5> Learning process can be faster, more

w.0. considering past learned
knowledge in other tasks

Leaming

Task 1

accurate and/or need less training data

®‘ ) Dataset 1 =
=

=

10/1/2025
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2. Transfer Learning

Learned / Transferrable features

The characteristics are built up in a
pyramidal way

Initial edge filtering with different
orientation, "color” and cut-off values

Simpler shapes, forms
Part components (nose, eye, wheel....)
Faces, cars

SN\ Y
ALl LN
2 84 NM
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2. Transfer Learning FELTE

EOTVOS LORAND /8
UNIVERSITY &

Learned / Transferrable features

Data representations (feature hierarchy)

Lots of data

Diagonal
Line,

Node

Deep & Large Nelworks
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2. Transfer Learning

Backhone vs head

st

Head

=

INPUT

XD
FULLY

— CAR
— TRUCK
— VAN

D — BICYCLE

CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN SOFTMAX

CONNECTED

Transfer Learning

Task 1

Knowledge transfer

Task 2

o]
g
@

ELTE

EGTVOS LORAND /8

UNIVERSITY &

10/1/2025

Deep Network Development

104




2. Transfer Learning @ \E|LTE

EOTVOS LORAND
UNIVERSITY & .

Feature extraction

 We initialize the network with pre-trained weights from a pre-trained model. We freeze all the weights from the backbone, and
we replace the head with a new one, initialized with random weights. We only train the new head, and not the backbone.
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2. Transfer Learning ELTE

& FoTvos lorinD e
UNIVERSITY & TLW,

Fine-tuning

- Instead of randomly initializing the weights for training , we initialize the network with pretrained weights from a
pretrained model trained on a bigger dataset such as ImageNet (1M images and 1K class) and then we can fine-tune
(train) the whole network.
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2. Transfer Learning

Performance comparison

(Cats vs Dogs)

Model A
(trained on dataset A)

(Cat breeds)

Model B Good performance;
(Using ModelA for Feature™ BB alrllIs
Extraction) Less data needed.

Good performance;
Slower Training;
More data needed.

Model C
(Fine-Tuned from Model A)

ELTE

% EOTVOS LORAND /S

UNIVERSITY &

Datas‘et C |
(Kangaroos)

Model D
_ Worse
(Using Model A_for Feature performance
Extraction)
Good performance;
Model £ Slow Training;

(Fine-Tuned from Model A)

More data needed.

10/1/2025
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2. Transfer Learning
@ F'! Prley ND V' L] [A Y

When to use Transfer Learning?

Task A and B have the same input x

When you have a lot of data for the problem you are transferring from (A) and few data for the problem you are
transferring to (B)

Low level features from A could be helpful for learning B

Faster training. Use pre-trained weights as initialization point whether than randomly initializing weights

NECELEE —-EEI]I SN
Do NARENNEIRE UG E

A

oSN ISICRICIRINSIAle ] k=&
e El = S E T El = ] & A B

s
2
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2. Transfer Learning

Deep Learning common steps - Parameter learning

« General

arge dataset

Training

Fine-tuning

Foundational model

General

.. Final model
training

General fine- Selective
tuning fine-tuning

Foundational Selective
model training
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Deep Network Development ELTE m

Lecture /.

Image Classification
Convolutional Neural Networks
Iransfer Learning

Budapest, 7th October 2025

1{Image Classification 2 | Convolutional Neural Networks | 3| CNN Architectures

4 | Transfer Learning [5] Autoencoders




3. Autoencoders

Feature learning: Autoencoders

[‘\‘( Po

EOTVOS loRAND <k
UNIVERSITY 4 TT W,

Code

o

20

Reconstructed
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3. Autoencoders

Reconstruction Task

Input Image

ELTE
2 iy
Reconstructed
Image

Latent Space

_\ Representation
L )L 0oL J
h T T
Encoder Bottleneck Decoder
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3. Autoencoders @ \E|LTE

% EoTvos LoranD R
UNIVERSITY & JL W

Reconstruction Task

k Latent Space x
7 Representation 7
N z
Encoder Bottleneck Decoder
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3. Autoencoders ELTE

L AR
Image Classification: Supervised Learning (labelled data is needed)

Conv. Module #1 Conv. Module #2 Classification

Data: e ey, gy g ey Loss hetween prediction and target

Lpc(h(x),y) = —ylog h(x) — (1 — y)log(1 — h(x))

x = |mage _ Lpc(0.73,1) = —11og 0.73 — (1 — 1) log(1 — 0.73)
Y= h |/ output: 073 Lgc(0.73,1) = —1 % —0.13667714 — (0) log(0.23)
= 1ane Lpc(0.73,1) = 0.13667714
d maxpool maxpool full I
target (1) Input ?Q;EU P S-DQZE?J conrl;lezted conf:ljeﬁted LBC(O' 73,1) = 0.14

Reconstruction: Self-Supervised Learning (no need for labhelled data) o ]
Loss between prediction and input

Reconstructed
Input Image

Latent Space

Data: R - Representatlon LE c {
X = image E -
Y = x **2
L . gL )L . J
Encoder Bottleneck Decoder
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3. Autoencoders ELTE Ja

Autoencoder structure

Autoencoder is a machine learning algorithm that learns a compressed
representation of an input. Because it requires no label it is an
unsupervised method'. However, the output is a reconstruction of the
input, thus it is also considered as a self-supervised method.

An autoencoder consists of three parts:

- Encoder: the part of the network that compresses the input into a latent-
space representation of reduced dimension. It can be represented by an
encoding function h=f(x).

- Latent space (bottleneck/code): the part of the network which contains
the reduced representation of the input.

: the part that aims to reconstruct the input from the latent space
representation. It has a similar structure to the encoder and can be
represented by a decoding function r=g(h).

t

Input Data Encoded Data Reconstructed Data
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3. Autoencoders

Autoencoder structure

- Autoencoders are learned automatically from data examples, using the input as output target, making them easy to train. However,
they do not generalize to new data.

- |f the only purpose of autoencoders was to copy the input to the output, they would be useless. The main idea is that by training the
autoencoder to copy the input to the output, the latent representation will learn the most important features of the input.

- The bottleneck is designed in such a way that the maximum information possessed by an input is captured in it, therefore, the
bottleneck forms a knowledge-representation of the input.

Latent
Representation

Input Output

Encoder Decoder
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3. Autoencoders

Autoencoder structure

The input and output layers of the autoencoder can be formed with:

Convolutional neural networks

Recurrent neural networks

Others (Restricted Boltzmann Machine, ...)

Feed Forward neural networks (Dense / Fully connected layers)

je suis  étudiant  <eos>

* * * *

213 {(Encoder)

mﬂ{ ’ ] ’

* t* * * * * * *

| am a student <50s> je suis étudiant
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3. Autoencoders

Autoencoder Types

» Convolutional Autoencoder
» Denoising Autoencoder

« Sparse Autoencoder

» Variational Autoencoder

* and more
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3. Autoencoders

Convolutional Autoencoders

Specifically designed for image data.

They employ convolutional layers in both the
encoder and decoder parts of the network.

This architecture allows them to capture spatial
dependencies and hierarchical features
effectively.

The reconstruction of the input image is often
blurry and of lower quality due to compression
during which information is lost.

14x14x32

TxTxb4

33128

ol E]
Conv3
stride=2

Conv2
stride=2

Hanéh EC

i
e
@
14x14x32
1152 1152
N M
0 \ TxTxb4
: 1
-.‘; 3 3x3x128 i
—r ,ﬂ -t
4I
h * Reshape

DeConv3
stride=2

DeConv2
stride=2
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3. Autoencoders

Denoising Autoencoders

« Designed to remove noise from input data.

« Noise can be added to the input, by modifying different
parts of the input:

« (Gaussian noise; Salt-and-Pepper noise; Random Noisly input
Masking; Perturbation noise; etc

« During training, a noisy version of the input is provided,
and the network learns to reconstruct the clean, noise-
free data.

« This encourages the model to capture robust and
meaningful features while filtering out irrelevant or
noisy information.

Encoder

kN

Compressed

Decoder

representation

|

The feature we want to
extract from the image

-2

Denoised image
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3. Autoencoders
Sparse Autoencoders

« Designed to impose sparsity constraints on the representations
learned by the autoencoder. o ey " ey

- Sparsity means that only a small subset of neurons in the hidden layer
IS active at a time

« They take the highest activation values in the hidden layer and zero
out the rest of the hidden nodes. This prevents autoencoders to use all
the hidden nodes at a time and forcing only a reduced number of
hidden nodes to be used.

- Sparse autoencoders have a sparsity penalty, a value close to zero but
not exactly zero. Sparsity penalty is applied on the hidden layer and to
the reconstruction error. This prevents overfitting.




3. Autoencoders
Applications

(Not for) Data Compression

- Although autoencoders can compress the input into a latent representation, it is usually not used for
data compression. The reasons are:

- Lossy compression: The output of the autoencoder is not the same as the input, it is a close but
degraded representation because information is lost in the latent representation.

- Data-specific: Autoencoders are only able to meaningfully compress data like what they have been
trained on. Since they learn features specific for the given training data. Hence, we can’t expect an
autoencoder trained on handwritten digits to compress landscape photos.




3. Autoencoders ELTE

Applications

Dimensionality Reduction

« The autoencoders convert the input into a reduced representation which is stored in the latent
representation space. This is where the information from the input has been compressed. Thus by removing the
decoder part, an autoencoder can be used for dimensionality reduction with the output being the latent
representation vector.

al

Reconstructed
input

—> Encoder —>E—>

Original
input

Compressed
representation
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3. Autoencoders @ \ELTE
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Applications

Image Denoising
« Example:
« https://huggingface.co/spaces/Xintao/GFPGAN
« https://huggingface.co/spaces/aryadytm/photo-colorization

Code
0 of

Autoencoders

Encoder
Reconstructed I 1

o
£ A
. .
\ ]
o BN A
“ \ 1
(]
vy
- {

0 20 » . 2o
Latent Space

Image + noise Denoised Representation
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3. Autoencoders ELTE 2\

Applications

Image Segmentation

- |mage segmentation is the process of partitioning an image into multiple segments each belonging to a class. The
goal is to simplify and/or change the representation of an image by grouping pixel values according to the
class they belong.

Convolutional encoder-decoder

Input

Pooling Indices

RGB Image Segmentation
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3. Autoencoders

Applications

Image Generation
Encoder-Decoder swap
Latent Space Manipulation

Original Face B

7
—*—}

Latent representation
of face A

-

Latent representation
of face B

@
i
@
-
8
e
o

w“—}w

TRAINING

S o

e T

Reconstructed
Face A

iy

Reconstructed
Face B

l

Crae AT e
AP St

Original Face A

Latent representation
of face A

-
]
o
o
U
=
L

GENERATION

Reconstructed
Face B from A

ELTE

EQOTVOS LORAND

UNIVERSITY &

10/1/2025

Deep Network Development

126




3. Autoencoders

Applications

Feature Extraction

« The Encoding part of Autoencoders helps to learn important hidden features present in the input data, in the
process to reduce the reconstruction error. During encoding, a new set of combinations of original features is

generated. By removing the decoder, we can use the encoded features as input features for a network to
use, for example, in the classification task.

Plane
classifier

[H : — Plane

Input Image Learned features
from autoencoder

Autoencoder

Input Image Reconstructed
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Summary ( ELTE
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Summary

Fully Connected Networks (Feed Forward Networks) calculate a weighted sum of the inputs
We can add non-linear activation functions like Sigmeid to transform linear regression to logistic regression
(classification)

Classification is a supervised learning task
«  Binary: the targetis 0 or 1
«  Multiclass: the target is one element out of a discrete set of elements (usually use one-hot encoding)

Convolutional Neural Networks (CNNs) are efficient algorithms for images
«  Weight sharing
«  Capture spatial patterns

By changing the CNN configurations, we create different architectures




3. Autoencoders ( E__LTE@
i

Summary

Different CNN hyperparameter choices result in different CNN architectures

«  Transfer Learning is used when we want to utilize the learned features from a model A, that can be useful
for a task that model B is trying to solve.
«  We can retrain the whole model or freeze part of the model and only retrain a small part

«  Autoencoders are unsupervised / self-supervised methods
« By reconstructing the input, they learn to encode the input into a lower dimensional latent space
« By removing the decoder from a trained autoencoder, the encoder can be used for feature learning




Summary

@

Resources

Books:

« Gourville, Goodfellow, Bengio: Deep Learning
Freely available: https://www.deeplearningbook.org/

« [hang, Aston and Lipton, Zachary C. and Li, Mu and Smola, Alexander J.: Dive into Deep Learning
Freely available: https://d2.ai/

Courses:
« Deep Learning specialization by Andrew NG
- https://www.coursera.org/specializations/deep-learning
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That’s all for today!
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