
DEEP NETWORK
DEVELOPMENT

Tamás Takács
PhD student, ELTE, AI Department

tamastheactual@inf.elte.hu
tamastheactual.github.io

Imre Molnár
PhD student, ELTE, AI Department

imremolnar@inf.elte.hu
curiouspercibal.github.io

mailto:tamastheactual@inf.elte.hu
http://tamastheactual.github.io/
mailto:imremolnar@inf.elte.hu
mailto:imremolnar@inf.elte.hu
http://curiouspercibal.github.io/

Deep Network Development

Lecture 7.
Image C lass i f i ca t ion
Convo lu t iona l Neura l Networks
Trans fer Learn ing

Image Classification1 Convolutional Neural Networks2

Budapest , 7th October 2025

CNN Architectures3

Transfer Learning4 Autoencoders5

Linear Regression
Recap

• Supervised learning
• Have: (𝑥, 𝑦)

• 𝑥 – input
• 𝑦 – target

• Goal: Learn a function to map 𝑥 →𝑦.
• 𝒉 𝒙 = ŷ

• ŷ = 𝜽𝟏𝒙 + 𝜽𝟎

• Regression – Predict real-valued /
continuous output:
• ŷ ∈ ℝ

• Given the height and weight of a person,
predict the age of the person.

• Age can be: 10,25,33,71,…

10/7/2025 3Deep Network Development

Linear Regression
• Supervised learning
• Have: (𝑥, 𝑦)

• 𝑥: input
• 𝑦: target ∈ ℝ

• Goal: Learn a function to map 𝑥 →𝑦.
• ℎ 𝑥 = ŷ

• ŷ = σ𝑗=0
𝑚 𝑤𝑗𝑥𝑗 + 𝑏

• Regression – Predict real-valued /
continuous output:
• ŷ ∈ ℝ

Linear Regression vs Classification
1. Image Classif ication

Binary Classification
• Supervised learning
• Have: (𝑥, 𝑦)

• 𝑥: input
• 𝑦: target ∈ {0, 1}

• Goal: Learn a function to map 𝑥 →𝑦.
• ℎ 𝑥 = ŷ

• ŷ = 𝑔 σ𝑗=0
𝑚 𝑤𝑗𝑥𝑗 + 𝑏 Add non-linear activation function

• Classification – Predict discrete set of values:
• ŷ ∈ {0, 1}

10/7/2025 4Deep Network Development

Binary classification – which of the two classes does the input belong to?
• Cat vs Dog
• Dog vs Mop

Binary Classification
1. Image Classif ication

10/7/2025 5Deep Network Development

Artificial Neural Network (ANN)
Recap

• Using ANN for linear regression
• 𝑥𝑗 – the inputs
• 𝑤𝑗 – parameters we will train
• b – bias parameter
• g – nonlinear activation function
• o – the output
• One neuron with m inputs does the

following:
• 𝒐 = 𝒈 σ𝒋=𝟎

𝒎 𝒘𝒋𝒙𝒋 + 𝒃

Activation function
• Adds non-linearity
• Output limited to a range (i.e. 0-1)
• Given the height and weight information,

predict if it is a human or an animal.
• 0: human; 1: animal

10/7/2025 6Deep Network Development

Deep Network Development

Lecture 7.
Image C lass i f i ca t ion
Convo lu t iona l Neura l Networks
Trans fer Learn ing

Image Classification1 Convolutional Neural Networks2

Budapest , 7th October 2025

CNN Architectures3

Transfer Learning4 Autoencoders5

• Binary classification – Two classes
• Is x in the target class C?
• Output 𝑃(𝑥∈𝐶), the probability of x is in C
• The network will have 1 output
• h(x) must be between 0 and 1

Dog vs Mop

Binary Classification
1. Image Classif ication

10/7/2025 8Deep Network Development

Binary Classification
1. Image Classif ication

10/7/2025 9Deep Network Development

• h(x) must be between 0 and 1
• Use the sigmoid activation on last layer

• Linear regression becomes Logistic Regression (Binary Classification), if we add a Sigmoid activation function to the
output

• Linear Regression: 𝒉 𝒙 = 𝑊𝑥 + 𝑏 (continuous output)
• Binary Classification: 𝒉 𝒙 = 𝑔 𝑊𝑥 + 𝑏 (discrete output between 0 and 1)

𝜎(𝑧) =
1

1 + 𝑒−𝑧

Binary Classification
1. Image Classif ication

10/7/2025 10Deep Network Development

• Binary cross-entropy loss
𝐿𝐵𝐶 ℎ 𝑥 , 𝑦 = −𝑦 log ℎ 𝑥 − (1 − 𝑦) log 1 − ℎ(𝑥)

• Assumptions:
y is 0 or 1
h(x) = ŷ is between 0 and 1

𝐿𝐵𝐶 ℎ 𝑥 , 𝑦 = −𝑦 log ℎ 𝑥 − (1 − 𝑦) log 1 − ℎ(𝑥)
𝐿𝐵𝐶 1,1 = −1 log 1 − 1 − 1 log 1 − 1

𝐿𝐵𝐶 1,1 = 0 − (0) log 0
𝐿𝐵𝐶 1,1 = 0

𝐿𝐵𝐶 ℎ(𝑥), 1

𝐿𝐵𝐶 ℎ(𝑥), 0

Binary cross-entropy

Loss

Prediction

Binary Classification Loss
1. Image Classif ication Linear Regression

log(0) is undefined -> clipping

10/7/2025 11Deep Network Development

Classes C = {0: Dog, 1: Cat}

LOSS
𝐿𝐵𝐶 ℎ 𝑥 , 𝑦 = −𝑦 log ℎ 𝑥 − (1 − 𝑦) log 1 − ℎ(𝑥)
𝐿𝐵𝐶 0.73,1 = −1 log 0.73 − 1 − 1 log 1 − 0.73
𝐿𝐵𝐶 0.73,1 = −1 ∗ −0.13667714 − (0) log 0.23

𝐿𝐵𝐶 0.73,1 = 0.13667714

𝑳𝑩𝑪 𝟎. 𝟕𝟑, 𝟏 = 𝟎. 𝟏𝟒

INPUT NEURAL NETWORK

σ
Sigmoid
Activation
Function

OUTPUT TARGET

Y = 1

Binary Classification example
1. Image Classif ication

10/7/2025 12Deep Network Development

More neurons and categories

• Single artificial neuron

• Binary Classification (0 or 1)

• Deep Neural Network

• Multi-Class Classification (0,1,2,3…)

Next

1. Image Classif ication

10/7/2025 13Deep Network Development

• Neural networks are built up from neurons, that have inputs and outputs
• Neurons are organised into layers
• Layers refine the output of the previous layers

Deep Neural Networks
1. Image Classif ication

10/7/2025 14Deep Network Development

https://adamharley.com/nn_vis/

• Each layer refines the previous layer
• Visualization demo: https://adamharley.com/nn_vis/

Deep Neural Networks
1. Image Classif ication

10/7/2025 15Deep Network Development

https://adamharley.com/nn_vis/

• Artificial Neural Networks ⟺ Feed Forward Neural Networks ⟺ Fully
Connected Networks

• A neural network is built up from neurons
• Neurons are organised into layers
• Layers refine the output of the previous layers

• 𝒉𝟏 𝒙 = 𝑔 𝑊 1 𝑥 + 𝑏 1

• ℎ2 𝑥 = 𝑔 𝑊 2 𝒉𝟏 + 𝑏 2

• ℎ2 𝑥 = 𝑔 𝑊 2 𝒈 𝑾 𝟏 𝒙 + 𝒃 𝟏 + 𝑏 2

Deep Neural Networks
1. Image Classif ication

10/7/2025 16Deep Network Development

• How to find W and b?
• Given ℎ = 𝑔 𝑊 2 𝒈 𝑾 𝟏 𝒙 + 𝒃 𝟏 + 𝑏 2

• Select a loss function L that measures how good h is:
• the smaller L(h(x),y) , the better h is

• Update 𝑾 𝟏 :
 𝑾𝒕

𝟏 = 𝑾𝒕 − 𝟏
𝟏 − 𝛼𝛻𝐽(𝑾 𝟏)

• Update 𝑾 𝟐 :
 𝑾𝒕

𝟐 = 𝑾𝒕 − 𝟏
𝟐 − 𝛼𝛻𝐽(𝑾 𝟐)

• Update 𝒃 𝟏 :
 𝒃𝒕

𝟏 = 𝒃𝒕 − 𝟏
𝟏 − 𝛼𝛻𝐽(𝒃 𝟏)

• Update 𝒃 𝟐 :
 𝒃𝒕

𝟐 = 𝒃𝒕 − 𝟏
𝟐 − 𝛼𝛻𝐽(𝒃 𝟐)

Terminology
• L(h(x),y) – loss or error function for a single data point

of the dataset
• C(θ), J(W) – cost or objective function for the entire

dataset (usually average)
• The update rule can also be in the form:

[1] Backpropagation derivation: https://www.cs.put.poznan.pl/pliskowski/pub/teaching/eio/lab1/eio-supplementary.pdf
[2] Another backpropagation derivation (be aware of notation differences): https://www.cs.swarthmore.edu/~meeden/cs81/s10/BackPropDeriv.pdf

Deep Neural Networks [1, 2]
1. Image Classif ication

10/7/2025 17Deep Network Development

https://www.cs.put.poznan.pl/pliskowski/pub/teaching/eio/lab1/eio-supplementary.pdf
https://www.cs.put.poznan.pl/pliskowski/pub/teaching/eio/lab1/eio-supplementary.pdf
https://www.cs.put.poznan.pl/pliskowski/pub/teaching/eio/lab1/eio-supplementary.pdf
https://www.cs.swarthmore.edu/~meeden/cs81/s10/BackPropDeriv.pdf

1. Select 𝑊0 randomly
2. Calculate ℎ 𝑋 for all training examples
3. Calculate the cost:

𝐽 𝑊 =
1

𝑁
෍

𝑖=1

𝑁

𝐿 ℎ 𝑥𝑖 , 𝑦𝑖

4. Update W:
𝑊𝑡 = 𝑊(𝑡−1) − 𝛼𝛻𝐽(𝑊)

5. Repeat steps 2-4 until convergence

Deep Neural Networks
1. Image Classif ication

10/7/2025 18Deep Network Development

Batch size – the number of training samples used to optimize the model’s parameters

Types (with Gradient Descent)
• Batch Gradient Descent

o Batch size = Size of dataset
• Mini-Batch Gradient Descent

o Batch size = a subset of the dataset examples; typically, 2n , e.g., 8,16,32,128,…
o In each iteration, a mini-batch is randomly sampled from the dataset

• Stochastic Gradient Descent
o Batch size = 1
o In each iteration, a single example is randomly sampled from the dataset

Deep Neural Networks
1. Image Classif ication

10/7/2025 19Deep Network Development

Training Deep Neural Networks
1. Image Classif ication

10/7/2025 20Deep Network Development

Hyperparameters
To create and train Neural Networks we must make certain decisions (we choose the values):
• Number of layers; Number of neurons in each layer
• Activation functions
• Learning rate
• Batch size
• Many more (optimization related)

Parameters
What the Neural Network learns. The weights and biases of the network are optimized with an algorithm (Gradient Descent,
etc.). We do not choose the values for them.3

3. We can choose the initial values (weight initialization), it can be initialized with zeros, ones, random values, etc. However, the network learns the optimal values through training.

Hyperparameter vs Parameter
1. Image Classif ication

10/7/2025 21Deep Network Development

Deep Neural Networks
1. Image Classif ication

10/7/2025 22Deep Network Development

• Single artificial neuron

• Binary Classification (0 or 1)

More neurons and categories
• Deep Neural Network

• Multi-Class Classification (0,1,2,3…)

Next

1. Image Classif ication

10/7/2025 23Deep Network Development

• With K classes
• The network will have K outputs
• Softmax activation for squashing outputs between 0 and 1

𝜎(𝒛)𝑗=
𝑒𝑧𝑗

σ𝑖=1
𝐾 𝑒𝑧𝑖

This is basically a probability distribution on the classes.
They sum up to 1.

Multi-Class Classification
1. Image Classif ication

10/7/2025 24Deep Network Development

Output of the neural network is a K long vector

How should we encode the ground-truth values?
One-hot encoding (K=3):
(cat) 1 -> [1, 0, 0]
(dog) 2 -> [0, 1, 0]
(horse) 3 -> [0, 0, 1,]

Just as h(x): values between 0 and 1, sum up to 1

Multi-Class Classification
1. Image Classif ication

10/7/2025 25Deep Network Development

• K = 3
• Softmax activation 𝜎(𝒛)𝑗=

𝑒
𝑧𝑗

σ𝑖=1
𝐾 𝑒𝑧𝑖

• Probability distribution on the classes. They sum
up to 1.

(Cat, Dog, Horse)
Multi-Class Classification

1. Image Classif ication

10/7/2025 26Deep Network Development

With K classes
Categorical Cross-entropy loss

𝐿 ℎ 𝑥 , 𝑦 = − ෍

𝑖=1

𝐾

𝑦𝑖 log ℎ𝑖(𝑥)

Assumptions:
y is a vector of K elements with values 0 or 1, exactly one element is 1
hi(x) is a vector of K elements between 0 and 1, the sum of all elements is equal to 1

Multi-Class Classification Loss
1. Image Classif ication

10/7/2025 27Deep Network Development

More neurons and categories
• Single artificial neuron

• Binary Classification (0 or 1)

• Deep Neural Network

• Multi-Class Classification (0,1,2,3…)

1. Image Classif ication

10/7/2025 28Deep Network Development

Problems
Computational inefficiency
Loss of spatial information
Independent weights/features

Disadvantages of Feed Forward Neural Networks
1. Image Classif ication

10/7/2025 29Deep Network Development

Disadvantages of Feed Forward Neural Networks (Intro to CNNs)
1. Image Classif ication

10/7/2025 30Deep Network Development

Deep Network Development

Lecture 7.
Image C lass i f i ca t ion
Convo lu t iona l Neura l Networks
Trans fer Learn ing

Image Classification1 Convolutional Neural Networks2

Budapest , 7th October 2025

CNN Architectures3

Transfer Learning4 Autoencoders5

CNNs extract relevant features from an image.
Like a magnifying glass “enhancing” details of the
image.

How do Convolutional Neural Networks (CNNs) work?
2. Convolutional Neural Networks

10/7/2025 32Deep Network Development

Filter / Kernel size = f x f

Convolution
Input: 5x5
Filter: 3x3
Output: 3x3

2. Convolutional Neural Networks

Convolutional layer

10/7/2025 33Deep Network Development

• Convolution operation
• Input: 5 x 5

10 2 4 1 1

0 4 0 2 2

1 8 16 0 0

8 1 1 0 0

0 0 2 6 1

2 2 2

1 0 1

2 2 2
*

• Filter / kernel size = 3 x 3 • Output = ?

Convolutional layer
2. Convolutional Neural Networks

10/7/2025 34Deep Network Development

• Convolution operation
• Input: 5 x 5
• Filter / kernel size = 3 x 3

• Output = ?

10 2 4 1 1

0 4 0 2 2

1 8 16 0 0

8 1 1 0 0

0 0 2 6 1

x 2 x 2 x 2

x 1 x 0 x 1

x 2 x 2 x 2

10 x 2 + 2 x 2 + 4 x 2 +
0 x 1 + 4 x 0 + 0 x 1 +
1 x 2 + 8 x 2 + 16 x 2 = 82

82

Convolutional layer
2. Convolutional Neural Networks

10/7/2025 35Deep Network Development

• Convolution operation
• Input: 5 x 5
• Filter / kernel size = 3 x 3

• Output = ?

10 2 4 1 1

0 4 0 2 2

1 8 16 0 0

8 1 1 0 0

0 0 2 6 1

x 2 x 2 x 2

x 1 x 0 x 1

x 2 x 2 x 2

2 x 2 + 4 x 2 + 1 x 2 +
4 x 1 + 0 x 0 + 2 x 1 +
8 x 2 + 16 x 2 + 0 x 2 = 68

82 68

Convolutional layer
2. Convolutional Neural Networks

10/7/2025 36Deep Network Development

• Convolution operation
• Input: 5 x 5
• Filter / kernel size = 3 x 3

• Output = ?

10 2 4 1 1

0 4 0 2 2

1 8 16 0 0

8 1 1 0 0

0 0 2 6 1

x 2 x 2 x 2

x 1 x 0 x 1

x 2 x 2 x 2

4 x 2 + 1 x 2 + 1 x 2 +
0 x 1 + 2 x 0 + 2 x 1 +
16 x 2 + 0 x 2 + 0 x 2 = 46

82 68 46

Convolutional layer
2. Convolutional Neural Networks

10/7/2025 37Deep Network Development

• Convolution operation
• Input: 5 x 5
• Filter / kernel size = 3 x 3

• Output = ?

10 2 4 1 1

0 4 0 2 2

1 8 16 0 0

8 1 1 0 0

0 0 2 6 1

x 2 x 2 x 2

x 1 x 0 x 1

x 2 x 2 x 2

0 x 2 + 4 x 2 + 0 x 2 +
1 x 1 + 8 x 0 + 16 x 1 +
8 x 2 + 1 x 2 + 1 x 2 = 46

82 68 46

45

Convolutional layer
2. Convolutional Neural Networks

10/7/2025 38Deep Network Development

• Convolution operation
• Input: 5 x 5
• Filter / kernel size = 3 x 3

• Output = 3 x 3

10 2 4 1 1

0 4 0 2 2

1 8 16 0 0

8 1 1 0 0

0 0 2 6 1

2 2 2

1 0 1

2 2 2

*

82 68 46

45 24 26

63 65 51

=

Convolutional layer
2. Convolutional Neural Networks

10/7/2025 39Deep Network Development

Learnable filter1

w1 w2 w3

w4 w5 w6

w7 w8 w9

1. The filter weights are like the weights in Feed Forward Networks (FFN). Similar to FFN, a bias term is added after applying the filter weights.

Convolutional layer
2. Convolutional Neural Networks

10/7/2025 40Deep Network Development

• Without Padding – corners / edges are not “seen” enough
• Number of times blue pixel is in the filter’s receptive field: 0
• Number of times green pixel is in the filter’s receptive field: 0

Convolutional layer - Padding
2. Convolutional Neural Networks

10/7/2025 41Deep Network Development

• Without Padding – corners / edges are not “seen” enough
• Number of times blue pixel is in the filter’s receptive field: 0
• Number of times green pixel is in the filter’s receptive field: 1

Convolutional layer - Padding
2. Convolutional Neural Networks

10/7/2025 42Deep Network Development

• Without Padding – corners / edges are not “seen” enough
• Number of times blue pixel is in the filter’s receptive field: 0
• Number of times green pixel is in the filter’s receptive field: 2

Convolutional layer - Padding
2. Convolutional Neural Networks

10/7/2025 43Deep Network Development

• Without Padding – corners / edges are not “seen” enough
• Number of times blue pixel is in the filter’s receptive field: 1
• Number of times green pixel is in the filter’s receptive field: 3

Convolutional layer - Padding
2. Convolutional Neural Networks

10/7/2025 44Deep Network Development

• Without Padding – corners / edges are not “seen” enough
• Number of times blue pixel is in the filter’s receptive field: 1
• Number of times green pixel is in the filter’s receptive field: 4

Convolutional layer - Padding
2. Convolutional Neural Networks

10/7/2025 45Deep Network Development

• Without Padding – corners / edges are not “seen” enough
• Number of times blue pixel is in the filter’s receptive field: 1
• Number of times green pixel is in the filter’s receptive field: 5

Convolutional layer - Padding
2. Convolutional Neural Networks

10/7/2025 46Deep Network Development

• Without Padding – corners / edges are not “seen” enough
• Number of times blue pixel is in the filter’s receptive field: 1
• Number of times green pixel is in the filter’s receptive field: 6

Convolutional layer - Padding
2. Convolutional Neural Networks

10/7/2025 47Deep Network Development

… Skip to the end

• Without Padding – corners / edges are not “seen” enough
• Number of times blue pixel is in the filter’s receptive field: 1
• Number of times green pixel is in the filter’s receptive field: 9

Convolutional layer - Padding
2. Convolutional Neural Networks

10/7/2025 48Deep Network Development

• With Padding
• Number of times blue pixel is in the filter’s receptive field: 0
• Number of times green pixel is in the filter’s receptive field: 0

Convolutional layer - Padding
2. Convolutional Neural Networks

10/7/2025 49Deep Network Development

• With Padding
• Number of times blue pixel is in the filter’s receptive field: 0
• Number of times green pixel is in the filter’s receptive field: 0

Convolutional layer - Padding
2. Convolutional Neural Networks

10/7/2025 50Deep Network Development

• With Padding
• Number of times blue pixel is in the filter’s receptive field: 0
• Number of times green pixel is in the filter’s receptive field: 0

Convolutional layer - Padding
2. Convolutional Neural Networks

10/7/2025 51Deep Network Development

• With Padding
• Number of times blue pixel is in the filter’s receptive field: 0
• Number of times green pixel is in the filter’s receptive field: 0

Convolutional layer - Padding
2. Convolutional Neural Networks

10/7/2025 52Deep Network Development

• With Padding
• Number of times blue pixel is in the filter’s receptive field: 1
• Number of times green pixel is in the filter’s receptive field: 0

Convolutional layer - Padding
2. Convolutional Neural Networks

10/7/2025 53Deep Network Development

• With Padding
• Number of times blue pixel is in the filter’s receptive field: 2
• Number of times green pixel is in the filter’s receptive field: 0

Convolutional layer - Padding
2. Convolutional Neural Networks

10/7/2025 54Deep Network Development

• With Padding
• Number of times blue pixel is in the filter’s receptive field: 2
• Number of times green pixel is in the filter’s receptive field: 0

Convolutional layer - Padding
2. Convolutional Neural Networks

10/7/2025 55Deep Network Development

• With Padding
• Number of times blue pixel is in the filter’s receptive field: 2
• Number of times green pixel is in the filter’s receptive field: 1

Convolutional layer - Padding
2. Convolutional Neural Networks

10/7/2025 56Deep Network Development

• With Padding
• Number of times blue pixel is in the filter’s receptive field: 2
• Number of times green pixel is in the filter’s receptive field: 2

Convolutional layer - Padding
2. Convolutional Neural Networks

10/7/2025 57Deep Network Development

• With Padding
• Number of times blue pixel is in the filter’s receptive field: 3
• Number of times green pixel is in the filter’s receptive field: 3

Convolutional layer - Padding
2. Convolutional Neural Networks

10/7/2025 58Deep Network Development

• With Padding
• Number of times blue pixel is in the filter’s receptive field: 4
• Number of times green pixel is in the filter’s receptive field: 3

Convolutional layer - Padding
2. Convolutional Neural Networks

10/7/2025 59Deep Network Development

… Skip to the end

• With Padding
• Number of times blue pixel is in the filter’s receptive field: 4
• Number of times green pixel is in the filter’s receptive field: 9

Convolutional layer - Padding
2. Convolutional Neural Networks

10/7/2025 60Deep Network Development

Valid Padding (No Padding)
p = 0

Same Padding
p ≠ 0

Convolutional layer - Padding
2. Convolutional Neural Networks

10/7/2025 61Deep Network Development

Stride
s = 1

Stride
s = 2

Convolutional layer - Stride
2. Convolutional Neural Networks

10/7/2025 62Deep Network Development

Convolutional layer – Multiple filters
2. Convolutional Neural Networks

10/7/2025 63Deep Network Development

Convolutional layer – Multiple filters
2. Convolutional Neural Networks

10/7/2025 64Deep Network Development

Example:
Input Image = 224x224x3 Filter = 3x3x3 (x32)
 n = 224; p = 0; s = 1; f = 3; c_o = 32

Output = 222x222x32

c channels

Convolutional Layer
2. Convolutional Neural Networks

Summary of convolutions

n m image
padding p

f f filter
stride s

10/7/2025 65Deep Network Development

c𝑛 + 2𝑝 − 𝑓

𝑠
+ 1

𝑚 + 2𝑝 − 𝑓

𝑠
+ 1

ReLU activation function
2. Convolutional Neural Networks

10/7/2025 66Deep Network Development

LeakyReLU activation function
2. Convolutional Neural Networks

10/7/2025 67Deep Network Development

𝑅𝑒𝐿𝑈 = ቊ
0, 𝑥 ≤ 0
𝑥, 𝑥 > 0

 𝐿𝑒𝑎𝑙𝑦𝑅𝑒𝐿𝑈 = ቊ
𝛾𝑥, 𝑥 ≤ 0
𝑥, 𝑥 > 0

Max Pooling
Filter: 2x2
Stride: 2

Pooling layer – Max Pooling
2. Convolutional Neural Networks

10/7/2025 68Deep Network Development

• Translation Equivariant

* =
2 0

0 2

20 0 0

20 0 0

20 20 0

40 0

80 0

0 20 0

0 20 0

0 20 20

2 0

0 2

40 40

40 80

Input 3x3 Filter 2x2 Output 2x2

Both the input and the output
shifted to the right!

* =

1. Translation equivariance means that the model responds predictably to translations, while translation invariance means that the model produces the same output regardless of translations

Convolutional layer – Convolution properties
2. Convolutional Neural Networks

10/7/2025 69Deep Network Development

𝑓 𝑡 𝑥 = 𝑡 𝑓 𝑥 ,

where t is a transformation

• Translation Invariant

80

80

Input 3x3 Filter 2x2 Output 2x2

Pooling 2x2

Pooling 2x2

1. Translation equivariance means that the model responds predictably to translations, while translation invariance means that the model produces the same output regardless of translations

Pooling layer – Max Pooling properties
2. Convolutional Neural Networks

Change in the input results in
the same output

10/7/2025 70Deep Network Development

𝑓 𝑡 𝑥 = 𝑓(𝑥),

where t is a transformation

* =
2 0

0 2

20 0 0

20 0 0

20 20 0

40 0

80 0

0 20 0

0 20 0

0 20 20

2 0

0 2

40 40

40 80* =

Flatten and Fully Connected layer
2. Convolutional Neural Networks

10/7/2025 71Deep Network Development

Visualization:
• https://poloclub.github.io/cnn-explainer/
• https://distill.pub/2017/feature-visualization/

Convolutional Neural Network
2. Convolutional Neural Networks

10/7/2025 72Deep Network Development

https://poloclub.github.io/cnn-explainer/
https://poloclub.github.io/cnn-explainer/
https://poloclub.github.io/cnn-explainer/
https://poloclub.github.io/cnn-explainer/
https://distill.pub/2017/feature-visualization/
https://distill.pub/2017/feature-visualization/
https://distill.pub/2017/feature-visualization/
https://distill.pub/2017/feature-visualization/

[3] Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, "Gradient-based learning applied to document recognition," in Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998, doi: 10.1109/5.726791.

“LeNet 5” Y. Lecun et al. (1998) [3]
2. Convolutional Neural Networks

10/7/2025 73Deep Network Development

[3] Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, "Gradient-based learning applied to document recognition," in Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998, doi: 10.1109/5.726791.

“LeNet 5” Y. Lecun et al. (1998) [3]
2. Convolutional Neural Networks

10/7/2025 74Deep Network Development

Deep Network Development

Lecture 7.
Image C lass i f i ca t ion
Convo lu t iona l Neura l Networks
Trans fer Learn ing

Image Classification1 Convolutional Neural Networks2

Budapest , 7th October 2025

CNN Architectures3

Transfer Learning4 Autoencoders5

Convolutional Layer

76

• Purpose: To quantify the correspondence with
the characteristics defined by the weights of
the filters

• E.g.: how much of a (vertical
edge)/nose/wheel/face is in the image part
under consideration

• Play

Source

Source

10/7/2025 Deep Network Development

1. Convolutional Neural Networks

https://ezyang.github.io/convolution-visualizer/
https://ezyang.github.io/convolution-visualizer/
https://colab.research.google.com/drive/1GhO1DN8J1lmgIgV1zuKKMWd6m0SCUC5m
https://github.com/vdumoulin/conv_arithmetic

Example:
Input Image = 224x224x3 Filter = 3x3x3 (x32)
 n = 224; p = 0; s = 1; f = 3; m = 32

Output = 222x222x32

Convolutional Layer
Summary of convolutions

7710/7/2025 Deep Network Development

1. Convolutional Neural Networks

c channelsn m image padding pf f filter stride s

c𝑛 + 2𝑝 − 𝑓

𝑠
+ 1

𝑚 + 2𝑝 − 𝑓

𝑠
+ 1

[2] Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, "Gradient-based learning applied to document recognition," in Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998, doi: 10.1109/5.726791.

1. Convolutional Neural Networks

“LeNet 5” Y. Lecun et al. (1998) [2]

7810/7/2025 Deep Network Development

10/7/2025 Deep Network Development 79

Going deeper
1. Convolutional Neural Networks

What prevents us from creating CNN with arbitrary depth?
- Underfitting/Overfitting
- Vanishing/Exploding gradient
- And many more…

10/7/2025 Deep Network Development 80

Underfitting/Overfitting
1. Convolutional Neural Networks

• Underfitting
• we train the model for more epochs
• If we have more parameter, we can

counter this issue

• Overfitting
• Regularization (early-stopping, dropout,

etc.)
• If we have less parameters, it is less

likely that our model will overfit

10/7/2025 Deep Network Development 81

Vanishing/Exploding Gradient
1. Convolutional Neural Networks

• Weight initialization
• Activation function
• Regularization

• Batch Normalization
• Dropout
• Weight decay

• “Skip connection”
• And many more…

10/7/2025 Deep Network Development 82

Weight initialization
1. Convolutional Neural Networks

• As the name suggest specifies the method how we initialize
the weight of our neural network
• Sample from a uniform distribution in [𝑎, 𝑏]
• Sample from a normal distribution 𝑁(𝜇, 𝜎) – usually

with 0 mean and 1 standard deviation
• Set it to some constant value
• Or manually add the initial weights

• In pytorch the weights of the Convolution is sampled from
𝑈(− 𝑘, 𝑘), where 𝑘 =

𝑔𝑟𝑜𝑢𝑝𝑠

𝐶𝑖𝑛∗ς𝑖=0
1 𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒[𝑖]

• And in Linear layers is sampled from 𝑈(− 𝑘, 𝑘), where
𝑘 =

1

𝑖𝑛_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠

10/7/2025 Deep Network Development 83

Regularization
1. Convolutional Neural Networks

• Weight related regularizations:
• L1 regularization (also called LASSO) leads to sparse

models by adding a penalty based on the absolute
value of coefficients.

• L2 regularization (also called ridge regression)
encourages smaller, more evenly distributed weights
by adding a penalty based on the square of the
coefficients.

• Early stopping
• Data augmentation
• Batch normalization
• Dropout
• And many more…

10/7/2025 Deep Network Development 84

Batch Normalization
1. Convolutional Neural Networks

• Batch normalization is achieved through a normalization
step that fixes the means and variances of each layer's
inputs

• It basically normalizes the output of the previous layer in
this batch
• It also keeps track of moving averages, and can do

some transformations too

𝑦𝐵 =
𝑥𝐵 − 𝐄[𝑥B]

𝐕𝐚𝐫 𝑥B

10/7/2025

ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) [10]

1. Convolutional Neural Networks

Deep Network Development 85

• 1000 classes
• 1M Images

• Serves as the common benchmark for
neural nets

[10] J. Deng, W. Dong, R. Socher, L. -J. Li, Kai Li and Li Fei-Fei, "ImageNet: A large-scale hierarchical image database," 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 2009, pp. 248-255, doi:
10.1109/CVPR.2009.5206848.

[3] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet classification with deep convolutional neural networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 1 (NIPS'12).
Curran Associates Inc., Red Hook, NY, USA, 1097–1105.

10/7/2025 Deep Network Development 86

“AlexNet” A. Krizhevsky et al. (2012) [3]
1. Convolutional Neural Networks

[3] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet classification with deep convolutional neural networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 1 (NIPS'12).
Curran Associates Inc., Red Hook, NY, USA, 1097–1105.

10/7/2025 Deep Network Development 87

“AlexNet” A. Krizhevsky et al. (2012) [3]
1. Convolutional Neural Networks

Dropout:
• We are dropping some neurons between layers

with some probability p.
• The dropped out neurons do not contribute to the

forward pass and do not participate in the
backpropagation.

• “Every time we sample from a different
architecture”

• Reduces neuron co-adaptation
• The model forced to learn more robust features

[3] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet classification with deep convolutional neural networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 1 (NIPS'12).
Curran Associates Inc., Red Hook, NY, USA, 1097–1105.

10/7/2025 Deep Network Development 88

“AlexNet” A. Krizhevsky et al. (2012) [3]
1. Convolutional Neural Networks

ReLU over Sigmoid or tanh:
• During training with Gradient Descent using ReLU (non-saturating

nonlinearity) results in less training time compared to Sigmoid or tanh
(saturating nonlinearity).

• Does not require input normalization
• Learning will happen if at least some training examples produce positive input

10/7/2025

“Inception / GoogLeNet” C. Szegedy et al. (2014) [5]
1. Convolutional Neural Networks

Deep Network Development 89

[5] Szegedy, C., et al. “Going Deeper with Convolutions”, <i>arXiv e-prints</i>, 2014. doi:10.48550/arXiv.1409.4842.

• Aligns with the intuition that visual information should be
processed at various scales:
• Be able to detect bigger and smaller objects on the

image
• 1x1 Convolution blocks for dimensionality reduction

10/7/2025

“Inception / GoogLeNet” C. Szegedy et al. (2014) [5]
1. Convolutional Neural Networks

Deep Network Development 90

[5] Szegedy, C., et al. “Going Deeper with Convolutions”, <i>arXiv e-prints</i>, 2014. doi:10.48550/arXiv.1409.4842.

• Attached multiple classifier network during training
that were discarded during inference
• Multi-objective training
• Minimize the loss function of all the classifier

networks at the same time

Classifier head
Classifier head

Classifier head

10/7/2025

“VGG16” K. Simonyan and A. Zisserman (2014) [4]
1. Convolutional Neural Networks

Deep Network Development 91

[4] Simonyan, K. and Zisserman, A., “Very Deep Convolutional Networks for Large-Scale Image Recognition”, <i>arXiv e-prints</i>, 2014. doi:10.48550/arXiv.1409.1556.

• Increased the depth of the CNN by using smaller
convolutions

• This enables the network the extract more complex
hierarchical features

• Used multiple 3x3 convolutions instead of larger
(5x5 or 7x7) convolutions:
• More non-linearity
• Same receptive field
• Less parameters

10/7/2025

“Residual Network / ResNet” K. He et al. (2015) [6]
1. Convolutional Neural Networks

Deep Network Development 92

[6] He, K., Zhang, X., Ren, S., and Sun, J., “Deep Residual Learning for Image Recognition”, <i>arXiv e-prints</i>, 2015. doi:10.48550/arXiv.1512.03385.

• Learn residual functions reference to layer inputs instead of
unreferenced functions

• If we pretrain a smaller network and then we extend it with extra
blocks it should have similar or better performance compared to
the original network – Identity mapping

10/7/2025

“Residual Network / ResNet” K. He et al. (2015) [6]
1. Convolutional Neural Networks

Deep Network Development 93

[6] He, K., Zhang, X., Ren, S., and Sun, J., “Deep Residual Learning for Image Recognition”, <i>arXiv e-prints</i>, 2015. doi:10.48550/arXiv.1512.03385.

G(x)

F(x) + G(x)

10/7/2025

“DenseNet” G. Huang et al. (2016) [7]
1. Convolutional Neural Networks

Deep Network Development 94

[7] Huang, G., Liu, Z., van der Maaten, L., and Weinberger, K. Q., “Densely Connected Convolutional Networks”, <i>arXiv e-prints</i>, 2016. doi:10.48550/arXiv.1608.06993.

10/7/2025

“MobileNet” A. G. Horward et al. (2017) [8]
1. Convolutional Neural Networks

Deep Network Development 95

[8] Howard, A. G., et al. “MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications”, <i>arXiv e-prints</i>, 2017. doi:10.48550/arXiv.1704.04861.

10/7/2025

“MobileNet” A. G. Horward et al. (2017) [8]
1. Convolutional Neural Networks

Deep Network Development 96

[8] Howard, A. G., et al. “MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications”, <i>arXiv e-prints</i>, 2017. doi:10.48550/arXiv.1704.04861.

Depthwise

Pointwise

10/7/2025

More recent CNN architectures
1. Convolutional Neural Networks

Deep Network Development 97

• ZfNet
• Xception
• InceptionV2, V3, V4
• Inception-ResNet
• MobileNet V3
• FractalNet
• WideResNet
• PyramidalNet
• Residual Attention Net
• EfficientNet
• Etc

• Currently, there are many models using the Transformer architecture (we will explore this later)

10/7/2025

ImageNet – Architectures Top 5 error (2016)
1. Convolutional Neural Networks

Deep Network Development 98

10/7/2025

ImageNet – Architectures Top 5 error (2019)
1. Convolutional Neural Networks

Deep Network Development 99

• More recently:
https://paperswithcode.com/sota/image-
classification-on-imagenet

• ImageNet website:
https://www.image-net.org/

https://paperswithcode.com/sota/image-classification-on-imagenet
https://paperswithcode.com/sota/image-classification-on-imagenet
https://paperswithcode.com/sota/image-classification-on-imagenet
https://paperswithcode.com/sota/image-classification-on-imagenet
https://paperswithcode.com/sota/image-classification-on-imagenet
https://paperswithcode.com/sota/image-classification-on-imagenet
https://paperswithcode.com/sota/image-classification-on-imagenet
https://www.image-net.org/
https://www.image-net.org/
https://www.image-net.org/

Deep Network Development

Lecture 7.
Image C lass i f i ca t ion
Convo lu t iona l Neura l Networks
Trans fer Learn ing

Image Classification1 Convolutional Neural Networks2

Budapest , 7th October 2025

CNN Architectures3

Transfer Learning4 Autoencoders5

10/7/2025

Traditional ML vs Transfer Learning
2. Transfer Learning

Deep Network Development 101

10/7/2025

Learned / Transferrable features
2. Transfer Learning

Deep Network Development 102

• The characteristics are built up in a
pyramidal way

• Initial edge filtering with different
orientation, "color" and cut-off values

• Simpler shapes, forms
• Part components (nose, eye, wheel,...)
• Faces, cars

10/7/2025

Learned / Transferrable features
2. Transfer Learning

Deep Network Development 103

10/7/2025

Backbone vs head
2. Transfer Learning

Deep Network Development 104

Backbone Head

10/7/2025

Feature extraction
2. Transfer Learning

Deep Network Development 105

• We initialize the network with pre-trained weights from a pre-trained model. We freeze all the weights from the backbone, and
we replace the head with a new one, initialized with random weights. We only train the new head, and not the backbone.

Backbone Head

Backbone (Feature Extractor) New Head

10/7/2025

Fine-tuning
2. Transfer Learning

Deep Network Development 106

• Instead of randomly initializing the weights for training , we initialize the network with pretrained weights from a
pretrained model trained on a bigger dataset such as ImageNet (1M images and 1K class) and then we can fine-tune
(train) the whole network.

Backbone Head

Fine-tuned Backbone Fine-tuned Head

10/7/2025

Performance comparison
2. Transfer Learning

Deep Network Development 107

Model A
(trained on dataset A)

Dataset A
(Cats vs Dogs)

Dataset B
(Cat breeds)

Model B
(Using Model A for Feature

Extraction)

Model C
(Fine-Tuned from Model A)

Good performance;
Fast Training;
Less data needed.

Model D
(Using Model A for Feature

Extraction)

Model E
(Fine-Tuned from Model A)

Good performance;
Slower Training;
More data needed.

Dataset C
(Kangaroos)

Worse
performance

Good performance;
Slow Training;
More data needed.

10/7/2025

When to use Transfer Learning?
2. Transfer Learning

Deep Network Development 108

• Task A and B have the same input x
• When you have a lot of data for the problem you are transferring from (A) and few data for the problem you are

transferring to (B)
• Low level features from A could be helpful for learning B
• Faster training. Use pre-trained weights as initialization point whether than randomly initializing weights

10/7/2025

Deep Learning common steps - Parameter learning
2. Transfer Learning

Deep Network Development 109

• General
• large dataset
• Training
• Fine-tuning
• Foundational model

General
training

General fine-
tuning

Foundational
model

Selective
training

Selective
fine-tuning

Final model

Deep Network Development

Lecture 7.
Image C lass i f i ca t ion
Convo lu t iona l Neura l Networks
Trans fer Learn ing

Image Classification1 Convolutional Neural Networks2

Budapest , 7th October 2025

CNN Architectures3

Transfer Learning4 Autoencoders5

10/7/2025

Feature learning: Autoencoders
3. Autoencoders

Deep Network Development 111

10/7/2025

Reconstruction Task

Deep Network Development 112

3. Autoencoders

10/7/2025

Reconstruction Task
3. Autoencoders

Deep Network Development 113

10/7/2025

Image Classification: Supervised Learning (labelled data is needed)
3. Autoencoders

Deep Network Development 114

0.73

Loss between prediction and target
𝐿𝐵𝐶 ℎ 𝑥 , 𝑦 = −𝑦 log ℎ 𝑥 − (1 − 𝑦) log 1 − ℎ(𝑥)
𝐿𝐵𝐶 0.73,1 = −1 log 0.73 − 1 − 1 log 1 − 0.73
𝐿𝐵𝐶 0.73,1 = −1 ∗ −0.13667714 − (0) log 0.23

𝐿𝐵𝐶 0.73,1 = 0.13667714

𝑳𝑩𝑪 𝟎. 𝟕𝟑, 𝟏 = 𝟎. 𝟏𝟒

Reconstruction: Self-Supervised Learning (no need for labelled data)
Loss between prediction and input

Data:
X = image
Y = X

-()**2

= 0.2

Data:
X = image
Y = label /
target (1)

10/7/2025

Autoencoder structure
3. Autoencoders

Deep Network Development 115

Autoencoder is a machine learning algorithm that learns a compressed
representation of an input. Because it requires no label it is an
unsupervised method1. However, the output is a reconstruction of the
input, thus it is also considered as a self-supervised method.

An autoencoder consists of three parts:
• Encoder: the part of the network that compresses the input into a latent-

space representation of reduced dimension. It can be represented by an
encoding function h=f(x).

• Latent space (bottleneck/code): the part of the network which contains
the reduced representation of the input.

• Decoder: the part that aims to reconstruct the input from the latent space
representation. It has a similar structure to the encoder and can be
represented by a decoding function r=g(h).

10/7/2025

Autoencoder structure
3. Autoencoders

Deep Network Development 116

• Autoencoders are learned automatically from data examples, using the input as output target, making them easy to train. However,
they do not generalize to new data.

• If the only purpose of autoencoders was to copy the input to the output, they would be useless. The main idea is that by training the
autoencoder to copy the input to the output, the latent representation will learn the most important features of the input.

• The bottleneck is designed in such a way that the maximum information possessed by an input is captured in it, therefore, the
bottleneck forms a knowledge-representation of the input.

10/7/2025

Autoencoder structure
3. Autoencoders

Deep Network Development 117

The input and output layers of the autoencoder can be formed with:

• Feed Forward neural networks (Dense / Fully connected layers)

• Convolutional neural networks

• Recurrent neural networks

• Others (Restricted Boltzmann Machine, …)

10/7/2025

Autoencoder Types
3. Autoencoders

Deep Network Development 118

• Convolutional Autoencoder
• Denoising Autoencoder
• Sparse Autoencoder
• Variational Autoencoder
• and more

10/7/2025

Convolutional Autoencoders
3. Autoencoders

Deep Network Development 119

• Specifically designed for image data.
• They employ convolutional layers in both the

encoder and decoder parts of the network.
• This architecture allows them to capture spatial

dependencies and hierarchical features
effectively.

• The reconstruction of the input image is often
blurry and of lower quality due to compression
during which information is lost.

10/7/2025

Denoising Autoencoders
3. Autoencoders

Deep Network Development 120

• Designed to remove noise from input data.
• Noise can be added to the input, by modifying different

parts of the input:
• Gaussian noise; Salt-and-Pepper noise; Random

Masking; Perturbation noise; etc
• During training, a noisy version of the input is provided,

and the network learns to reconstruct the clean, noise-
free data.

• This encourages the model to capture robust and
meaningful features while filtering out irrelevant or
noisy information.

10/7/2025

Sparse Autoencoders
3. Autoencoders

Deep Network Development 121

• Designed to impose sparsity constraints on the representations
learned by the autoencoder.

• Sparsity means that only a small subset of neurons in the hidden layer
is active at a time

• They take the highest activation values in the hidden layer and zero
out the rest of the hidden nodes. This prevents autoencoders to use all
the hidden nodes at a time and forcing only a reduced number of
hidden nodes to be used.

• Sparse autoencoders have a sparsity penalty, a value close to zero but
not exactly zero. Sparsity penalty is applied on the hidden layer and to
the reconstruction error. This prevents overfitting.

10/7/2025

Applications
3. Autoencoders

Deep Network Development 122

(Not for) Data Compression
• Although autoencoders can compress the input into a latent representation, it is usually not used for

data compression. The reasons are:
• Lossy compression: The output of the autoencoder is not the same as the input, it is a close but

degraded representation because information is lost in the latent representation.
• Data-specific: Autoencoders are only able to meaningfully compress data like what they have been

trained on. Since they learn features specific for the given training data. Hence, we can’t expect an
autoencoder trained on handwritten digits to compress landscape photos.

10/7/2025

Applications
3. Autoencoders

Deep Network Development 123

Dimensionality Reduction
• The autoencoders convert the input into a reduced representation which is stored in the latent

representation space. This is where the information from the input has been compressed. Thus by removing the
decoder part, an autoencoder can be used for dimensionality reduction with the output being the latent
representation vector.

10/7/2025

Applications
3. Autoencoders

Deep Network Development 124

Image Denoising
• Example:

• https://huggingface.co/spaces/Xintao/GFPGAN
• https://huggingface.co/spaces/aryadytm/photo-colorization

https://huggingface.co/spaces/Xintao/GFPGAN
https://huggingface.co/spaces/Xintao/GFPGAN
https://huggingface.co/spaces/Xintao/GFPGAN
https://huggingface.co/spaces/Xintao/GFPGAN
https://huggingface.co/spaces/Xintao/GFPGAN
https://huggingface.co/spaces/Xintao/GFPGAN
https://huggingface.co/spaces/aryadytm/photo-colorization
https://huggingface.co/spaces/aryadytm/photo-colorization
https://huggingface.co/spaces/aryadytm/photo-colorization
https://huggingface.co/spaces/aryadytm/photo-colorization
https://huggingface.co/spaces/aryadytm/photo-colorization
https://huggingface.co/spaces/aryadytm/photo-colorization
https://huggingface.co/spaces/aryadytm/photo-colorization
https://huggingface.co/spaces/aryadytm/photo-colorization

10/7/2025

Applications
3. Autoencoders

Deep Network Development 125

Image Segmentation
• Image segmentation is the process of partitioning an image into multiple segments each belonging to a class. The

goal is to simplify and/or change the representation of an image by grouping pixel values according to the
class they belong.

10/7/2025

Applications
3. Autoencoders

Deep Network Development 126

Image Generation
Encoder-Decoder swap
Latent Space Manipulation

10/7/2025

Applications
3. Autoencoders

Deep Network Development 127

Feature Extraction
• The Encoding part of Autoencoders helps to learn important hidden features present in the input data, in the

process to reduce the reconstruction error. During encoding, a new set of combinations of original features is
generated. By removing the decoder, we can use the encoded features as input features for a network to
use, for example, in the classification task.

Learned features
from autoencoder

Autoencoder
Plane
classifier

Plane

• Fully Connected Networks (Feed Forward Networks) calculate a weighted sum of the inputs
• We can add non-linear activation functions like Sigmoid to transform linear regression to logistic regression

(classification)

• Classification is a supervised learning task
• Binary: the target is 0 or 1
• Multiclass: the target is one element out of a discrete set of elements (usually use one-hot encoding)

• Convolutional Neural Networks (CNNs) are efficient algorithms for images
• Weight sharing
• Capture spatial patterns

• By changing the CNN configurations, we create different architectures

Summary
Summary

10/7/2025 128Deep Network Development

10/7/2025

Summary
3. Autoencoders

Deep Network Development 129

• Different CNN hyperparameter choices result in different CNN architectures

• Transfer Learning is used when we want to utilize the learned features from a model A, that can be useful
for a task that model B is trying to solve.

• We can retrain the whole model or freeze part of the model and only retrain a small part

• Autoencoders are unsupervised / self-supervised methods
• By reconstructing the input, they learn to encode the input into a lower dimensional latent space
• By removing the decoder from a trained autoencoder, the encoder can be used for feature learning

Books:
• Courville, Goodfellow, Bengio: Deep Learning

Freely available: https://www.deeplearningbook.org/
• Zhang, Aston and Lipton, Zachary C. and Li, Mu and Smola, Alexander J.: Dive into Deep Learning
 Freely available: https://d2l.ai/

Courses:
• Deep Learning specialization by Andrew NG
• https://www.coursera.org/specializations/deep-learning

13010/7/2025 Deep Network Development

Resources
Summary

https://www.deeplearningbook.org/
https://d2l.ai/
https://www.coursera.org/specializations/deep-learning
https://www.coursera.org/specializations/deep-learning
https://www.coursera.org/specializations/deep-learning
https://www.coursera.org/specializations/deep-learning

That’s all for today!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131

