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Linear Regression
Recap

• Supervised learning
• Have: (𝑥, 𝑦)

• 𝑥 – input
• 𝑦 – target

• Goal: Learn a function to map 𝑥 →𝑦.
• 𝒉 𝒙 = ŷ

• ŷ = 𝜽𝟏𝒙 + 𝜽𝟎

• Regression – Predict real-valued / 
continuous output: 
• ŷ ∈ ℝ

• Given the height and weight of a person, 
predict the age of the person.

• Age can be: 10,25,33,71,…
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Linear Regression
• Supervised learning
• Have: (𝑥, 𝑦)

• 𝑥: input
• 𝑦: target ∈ ℝ

• Goal: Learn a function to map 𝑥 →𝑦.
• ℎ 𝑥 = ŷ

• ŷ = σ𝑗=0
𝑚 𝑤𝑗𝑥𝑗 + 𝑏

• Regression – Predict real-valued / 
continuous output: 
• ŷ ∈ ℝ

Linear Regression vs Classification
1. Image Classif ication

Binary Classification
• Supervised learning
• Have: (𝑥, 𝑦)

• 𝑥: input
• 𝑦: target ∈ {0, 1}

• Goal: Learn a function to map 𝑥 →𝑦.
• ℎ 𝑥 = ŷ

• ŷ = 𝑔 σ𝑗=0
𝑚 𝑤𝑗𝑥𝑗 + 𝑏  Add non-linear activation function

• Classification – Predict discrete set of values: 
• ŷ ∈ {0, 1}
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Binary classification – which of the two classes does the input belong to?
• Cat vs Dog
• Dog vs Mop

Binary Classification
1. Image Classif ication
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Artificial Neural Network (ANN) 
Recap

• Using ANN for linear regression
• 𝑥𝑗  – the inputs 
• 𝑤𝑗  – parameters we will train
• b – bias parameter
• g – nonlinear activation function
• o – the output
• One neuron with m inputs does the 

following:
• 𝒐 = 𝒈 σ𝒋=𝟎

𝒎 𝒘𝒋𝒙𝒋 + 𝒃

Activation function
• Adds non-linearity
• Output limited to a range (i.e. 0-1)
• Given the height and weight information, 

predict if it is a human or an animal.
• 0: human; 1: animal

10/7/2025 6Deep Network Development
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• Binary classification – Two classes
• Is x in the target class C?
• Output 𝑃(𝑥∈𝐶), the probability of x is in C
• The network will have 1 output
• h(x) must be between 0 and 1

Dog vs Mop

Binary Classification
1. Image Classif ication
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Binary Classification
1. Image Classif ication
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• h(x) must be between 0 and 1
• Use the sigmoid activation on last layer

• Linear regression becomes Logistic Regression (Binary Classification), if we add a Sigmoid activation function to the 
output

• Linear Regression: 𝒉 𝒙 = 𝑊𝑥 + 𝑏 (continuous output)
• Binary Classification: 𝒉 𝒙 = 𝑔 𝑊𝑥 + 𝑏 (discrete output between 0 and 1)

𝜎(𝑧)  =
1

1 + 𝑒−𝑧

Binary Classification
1. Image Classif ication
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• Binary cross-entropy loss
𝐿𝐵𝐶 ℎ 𝑥 , 𝑦 = −𝑦 log ℎ 𝑥 − (1 − 𝑦) log 1 − ℎ(𝑥)

• Assumptions:
y  is 0 or 1
h(x) = ŷ  is between 0 and 1

𝐿𝐵𝐶 ℎ 𝑥 , 𝑦 = −𝑦 log ℎ 𝑥 − (1 − 𝑦) log 1 − ℎ(𝑥)
𝐿𝐵𝐶 1,1 = −1 log 1 − 1 − 1 log 1 − 1

𝐿𝐵𝐶 1,1 = 0 − (0) log 0
𝐿𝐵𝐶 1,1 = 0

𝐿𝐵𝐶 ℎ(𝑥), 1

𝐿𝐵𝐶 ℎ(𝑥), 0

Binary cross-entropy

Loss

Prediction

Binary Classification Loss
1. Image Classif ication Linear Regression

log(0) is undefined -> clipping
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Classes C = {0: Dog, 1: Cat}

LOSS
𝐿𝐵𝐶 ℎ 𝑥 , 𝑦 = −𝑦 log ℎ 𝑥 − (1 − 𝑦) log 1 − ℎ(𝑥)
𝐿𝐵𝐶 0.73,1 = −1 log 0.73 − 1 − 1 log 1 − 0.73
𝐿𝐵𝐶 0.73,1 = −1 ∗ −0.13667714 − (0) log 0.23

𝐿𝐵𝐶 0.73,1 = 0.13667714

𝑳𝑩𝑪 𝟎. 𝟕𝟑, 𝟏 = 𝟎. 𝟏𝟒

INPUT NEURAL NETWORK

σ
Sigmoid 
Activation 
Function

OUTPUT TARGET

Y = 1

Binary Classification example
1. Image Classif ication
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More neurons and categories

• Single artificial neuron

• Binary Classification (0 or 1)

• Deep Neural Network

• Multi-Class Classification (0,1,2,3…)

Next

1.  Image Classif ication
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• Neural networks are built up from neurons, that have inputs and outputs
• Neurons are organised into layers
• Layers refine the output of the previous layers

Deep Neural Networks
1. Image Classif ication
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https://adamharley.com/nn_vis/

• Each layer refines the previous layer
• Visualization demo: https://adamharley.com/nn_vis/ 

Deep Neural Networks
1. Image Classif ication
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• Artificial Neural Networks ⟺ Feed Forward Neural Networks ⟺ Fully 
Connected Networks 

• A neural network is built up from neurons
• Neurons are organised into layers
• Layers refine the output of the previous layers

• 𝒉𝟏 𝒙 = 𝑔 𝑊 1 𝑥 + 𝑏 1

• ℎ2 𝑥 = 𝑔 𝑊 2 𝒉𝟏 + 𝑏 2

• ℎ2 𝑥 = 𝑔 𝑊 2 𝒈 𝑾 𝟏 𝒙 + 𝒃 𝟏 + 𝑏 2

Deep Neural Networks
1. Image Classif ication
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• How to find W and b? 
• Given ℎ = 𝑔 𝑊 2 𝒈 𝑾 𝟏 𝒙 + 𝒃 𝟏 + 𝑏 2

• Select a loss function L that measures how good h is:
• the smaller L(h(x),y) , the better h is

• Update 𝑾 𝟏  :
 𝑾𝒕

𝟏 = 𝑾𝒕 − 𝟏
𝟏 − 𝛼𝛻𝐽(𝑾 𝟏 )

• Update 𝑾 𝟐  :
 𝑾𝒕

𝟐 = 𝑾𝒕 − 𝟏
𝟐 − 𝛼𝛻𝐽(𝑾 𝟐 )

• Update 𝒃 𝟏  :
 𝒃𝒕

𝟏 = 𝒃𝒕 − 𝟏
𝟏 − 𝛼𝛻𝐽(𝒃 𝟏 )

• Update 𝒃 𝟐  :
 𝒃𝒕

𝟐 = 𝒃𝒕 − 𝟏
𝟐 − 𝛼𝛻𝐽(𝒃 𝟐 )

Terminology
• L(h(x),y) – loss or error function for a single data point 

of the dataset
• C(θ), J(W) – cost or objective function for the entire 

dataset (usually average)
• The update rule can also be in the form: 

[1] Backpropagation derivation: https://www.cs.put.poznan.pl/pliskowski/pub/teaching/eio/lab1/eio-supplementary.pdf 
[2] Another backpropagation derivation (be aware of notation differences): https://www.cs.swarthmore.edu/~meeden/cs81/s10/BackPropDeriv.pdf 

Deep Neural Networks [1, 2]
1. Image Classif ication
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1. Select 𝑊0 randomly
2. Calculate ℎ 𝑋  for all training examples
3. Calculate the cost:

𝐽 𝑊 =
1

𝑁
෍

𝑖=1

𝑁

𝐿 ℎ 𝑥𝑖 , 𝑦𝑖

4. Update W:
𝑊𝑡 = 𝑊(𝑡−1) − 𝛼𝛻𝐽(𝑊)

5. Repeat steps 2-4 until convergence

Deep Neural Networks
1. Image Classif ication
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Batch size – the number of training samples used to optimize the model’s parameters

Types (with Gradient Descent)
• Batch Gradient Descent

o Batch size = Size of dataset
• Mini-Batch Gradient Descent 

o Batch size = a subset of the dataset examples; typically, 2n , e.g., 8,16,32,128,…
o In each iteration, a mini-batch is randomly sampled from the dataset

• Stochastic Gradient Descent
o Batch size = 1
o In each iteration, a single example is randomly sampled from the dataset

Deep Neural Networks
1. Image Classif ication
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Training Deep Neural Networks
1. Image Classif ication
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Hyperparameters
To create and train Neural Networks we must make certain decisions (we choose the values):
• Number of layers; Number of neurons in each layer
• Activation functions
• Learning rate
• Batch size
• Many more (optimization related)

Parameters
What the Neural Network learns. The weights and biases of the network are optimized with an algorithm (Gradient Descent, 
etc.). We do not choose the values for them.3

3. We can choose the initial values (weight initialization), it can be initialized with zeros, ones, random values, etc. However, the network learns the optimal values through training.

Hyperparameter vs Parameter
1. Image Classif ication
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Deep Neural Networks
1. Image Classif ication
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• Single artificial neuron

• Binary Classification (0 or 1)

More neurons and categories
• Deep Neural Network

• Multi-Class Classification (0,1,2,3…)

Next

1.  Image Classif ication
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• With K classes
• The network will have K outputs
• Softmax activation for squashing outputs between 0 and 1

𝜎(𝒛)𝑗=
𝑒𝑧𝑗

σ𝑖=1
𝐾 𝑒𝑧𝑖

This is basically a probability distribution on the classes. 
They sum up to 1.

Multi-Class Classification
1. Image Classif ication
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Output of the neural network is a K long vector

How should we encode the ground-truth values?
One-hot encoding (K=3):
(cat) 1 -> [1, 0, 0]
(dog) 2 -> [0, 1, 0]
(horse) 3 -> [0, 0, 1,]

Just as h(x): values between 0 and 1, sum up to 1

Multi-Class Classification
1. Image Classif ication
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• K = 3 
• Softmax activation 𝜎(𝒛)𝑗=

𝑒
𝑧𝑗

σ𝑖=1
𝐾 𝑒𝑧𝑖

• Probability distribution on the classes. They sum 
up to 1.

(Cat, Dog, Horse)
Multi-Class Classification

1. Image Classif ication
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With K classes
Categorical Cross-entropy loss

𝐿 ℎ 𝑥 , 𝑦 = − ෍

𝑖=1

𝐾

𝑦𝑖 log ℎ𝑖(𝑥)

Assumptions:
y is a vector of K elements with values 0 or 1, exactly one element is 1
hi(x) is a vector of K elements between 0 and 1, the sum of all elements is equal to 1

Multi-Class Classification Loss
1. Image Classif ication
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More neurons and categories
• Single artificial neuron

• Binary Classification (0 or 1)

• Deep Neural Network

• Multi-Class Classification (0,1,2,3…)

1. Image Classif ication
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Problems
Computational inefficiency
Loss of spatial information
Independent weights/features

Disadvantages of Feed Forward Neural Networks
1. Image Classif ication
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Disadvantages of Feed Forward Neural Networks (Intro to CNNs)
1. Image Classif ication
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CNNs extract relevant features from an image.
Like a magnifying glass “enhancing” details of the 
image.

How do Convolutional Neural Networks (CNNs) work?
2. Convolutional Neural Networks
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Filter / Kernel size = f x f

Convolution
Input: 5x5
Filter: 3x3
Output: 3x3

2. Convolutional Neural Networks

Convolutional layer

10/7/2025 33Deep Network Development



• Convolution operation
• Input: 5 x 5

10 2 4 1 1

0 4 0 2 2

1 8 16 0 0

8 1 1 0 0

0 0 2 6 1

2 2 2

1 0 1

2 2 2
*

• Filter / kernel size = 3 x 3 • Output = ?

Convolutional layer
2. Convolutional Neural Networks
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• Convolution operation
• Input: 5 x 5
• Filter / kernel size = 3 x 3

• Output = ?

10 2 4 1 1

0 4 0 2 2

1 8 16 0 0

8 1 1 0 0

0 0 2 6 1

x 2 x 2 x 2

x 1 x 0 x 1

x 2 x 2 x 2

10 x 2   +   2 x 2   +   4 x 2   +
0 x 1     +   4 x 0   +   0 x 1   + 
1 x 2     +   8 x 2   +   16 x 2   =    82

82

Convolutional layer
2. Convolutional Neural Networks
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• Convolution operation
• Input: 5 x 5
• Filter / kernel size = 3 x 3

• Output = ?

10 2 4 1 1

0 4 0 2 2

1 8 16 0 0

8 1 1 0 0

0 0 2 6 1

x 2 x 2 x 2

x 1 x 0 x 1

x 2 x 2 x 2

2 x 2     +   4 x 2   +   1 x 2   +
4 x 1     +   0 x 0   +   2 x 1   + 
8 x 2     +   16 x 2   +   0 x 2   =    68

82 68

Convolutional layer
2. Convolutional Neural Networks
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• Convolution operation
• Input: 5 x 5
• Filter / kernel size = 3 x 3

• Output = ?

10 2 4 1 1

0 4 0 2 2

1 8 16 0 0

8 1 1 0 0

0 0 2 6 1

x 2 x 2 x 2

x 1 x 0 x 1

x 2 x 2 x 2

4 x 2     +   1 x 2   +   1 x 2   +
0 x 1     +   2 x 0   +   2 x 1   + 
16 x 2     +   0 x 2   +   0 x 2   =    46

82 68 46

Convolutional layer
2. Convolutional Neural Networks
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• Convolution operation
• Input: 5 x 5
• Filter / kernel size = 3 x 3

• Output = ?

10 2 4 1 1

0 4 0 2 2

1 8 16 0 0

8 1 1 0 0

0 0 2 6 1

x 2 x 2 x 2

x 1 x 0 x 1

x 2 x 2 x 2

0 x 2     +   4 x 2   +   0 x 2   +
1 x 1     +   8 x 0   +   16 x 1   + 
8 x 2     +   1 x 2   +   1 x 2   =    46

82 68 46

45

Convolutional layer
2. Convolutional Neural Networks
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• Convolution operation
• Input: 5 x 5
• Filter / kernel size = 3 x 3

• Output = 3 x 3

10 2 4 1 1

0 4 0 2 2

1 8 16 0 0

8 1 1 0 0

0 0 2 6 1

2 2 2

1 0 1

2 2 2

*

82 68 46

45 24 26

63 65 51

=

Convolutional layer
2. Convolutional Neural Networks
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Learnable filter1

w1 w2 w3

w4 w5 w6

w7 w8 w9

1. The filter weights are like the weights in Feed Forward Networks (FFN). Similar to FFN, a bias term is added after applying the filter weights.

Convolutional layer
2. Convolutional Neural Networks
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• Without Padding – corners / edges are not “seen” enough
• Number of times blue pixel is in the filter’s receptive field: 0
• Number of times green pixel is in the filter’s receptive field: 0

Convolutional layer - Padding
2. Convolutional Neural Networks
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• Without Padding – corners / edges are not “seen” enough
• Number of times blue pixel is in the filter’s receptive field: 0
• Number of times green pixel is in the filter’s receptive field: 1

Convolutional layer - Padding
2. Convolutional Neural Networks
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• Without Padding – corners / edges are not “seen” enough
• Number of times blue pixel is in the filter’s receptive field: 0
• Number of times green pixel is in the filter’s receptive field: 2

Convolutional layer - Padding
2. Convolutional Neural Networks
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• Without Padding – corners / edges are not “seen” enough
• Number of times blue pixel is in the filter’s receptive field: 1
• Number of times green pixel is in the filter’s receptive field: 3

Convolutional layer - Padding
2. Convolutional Neural Networks
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• Without Padding – corners / edges are not “seen” enough
• Number of times blue pixel is in the filter’s receptive field: 1
• Number of times green pixel is in the filter’s receptive field: 4

Convolutional layer - Padding
2. Convolutional Neural Networks
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• Without Padding – corners / edges are not “seen” enough
• Number of times blue pixel is in the filter’s receptive field: 1
• Number of times green pixel is in the filter’s receptive field: 5

Convolutional layer - Padding
2. Convolutional Neural Networks
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• Without Padding – corners / edges are not “seen” enough
• Number of times blue pixel is in the filter’s receptive field: 1
• Number of times green pixel is in the filter’s receptive field: 6

Convolutional layer - Padding
2. Convolutional Neural Networks
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… Skip to the end

• Without Padding – corners / edges are not “seen” enough
• Number of times blue pixel is in the filter’s receptive field: 1
• Number of times green pixel is in the filter’s receptive field: 9

Convolutional layer - Padding
2. Convolutional Neural Networks
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• With Padding
• Number of times blue pixel is in the filter’s receptive field: 0
• Number of times green pixel is in the filter’s receptive field: 0

Convolutional layer - Padding
2. Convolutional Neural Networks
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• With Padding
• Number of times blue pixel is in the filter’s receptive field: 0
• Number of times green pixel is in the filter’s receptive field: 0

Convolutional layer - Padding
2. Convolutional Neural Networks
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• With Padding
• Number of times blue pixel is in the filter’s receptive field: 0
• Number of times green pixel is in the filter’s receptive field: 0

Convolutional layer - Padding
2. Convolutional Neural Networks
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• With Padding
• Number of times blue pixel is in the filter’s receptive field: 0
• Number of times green pixel is in the filter’s receptive field: 0

Convolutional layer - Padding
2. Convolutional Neural Networks
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• With Padding
• Number of times blue pixel is in the filter’s receptive field: 1
• Number of times green pixel is in the filter’s receptive field: 0

Convolutional layer - Padding
2. Convolutional Neural Networks
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• With Padding
• Number of times blue pixel is in the filter’s receptive field: 2
• Number of times green pixel is in the filter’s receptive field: 0

Convolutional layer - Padding
2. Convolutional Neural Networks
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• With Padding
• Number of times blue pixel is in the filter’s receptive field: 2
• Number of times green pixel is in the filter’s receptive field: 0

Convolutional layer - Padding
2. Convolutional Neural Networks
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• With Padding
• Number of times blue pixel is in the filter’s receptive field: 2
• Number of times green pixel is in the filter’s receptive field: 1

Convolutional layer - Padding
2. Convolutional Neural Networks
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• With Padding
• Number of times blue pixel is in the filter’s receptive field: 2
• Number of times green pixel is in the filter’s receptive field: 2

Convolutional layer - Padding
2. Convolutional Neural Networks
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• With Padding
• Number of times blue pixel is in the filter’s receptive field: 3
• Number of times green pixel is in the filter’s receptive field: 3

Convolutional layer - Padding
2. Convolutional Neural Networks
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• With Padding
• Number of times blue pixel is in the filter’s receptive field: 4
• Number of times green pixel is in the filter’s receptive field: 3

Convolutional layer - Padding
2. Convolutional Neural Networks
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… Skip to the end

• With Padding
• Number of times blue pixel is in the filter’s receptive field: 4
• Number of times green pixel is in the filter’s receptive field: 9

Convolutional layer - Padding
2. Convolutional Neural Networks
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Valid Padding (No Padding)
p = 0

Same Padding
p ≠ 0

Convolutional layer - Padding
2. Convolutional Neural Networks
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Stride
s = 1

Stride
s = 2

Convolutional layer - Stride
2. Convolutional Neural Networks
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Convolutional layer – Multiple filters
2. Convolutional Neural Networks
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Convolutional layer – Multiple filters
2. Convolutional Neural Networks
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Example:
Input Image = 224x224x3  Filter = 3x3x3 (x32)    
    n = 224; p = 0; s = 1; f = 3; c_o = 32

Output = 222x222x32

c channels

Convolutional Layer
2. Convolutional Neural Networks

Summary of convolutions

n m image
padding p

f f filter
stride s

10/7/2025 65Deep Network Development

c𝑛 + 2𝑝 − 𝑓

𝑠
+ 1

𝑚 + 2𝑝 − 𝑓

𝑠
+ 1



ReLU activation function
2. Convolutional Neural Networks

10/7/2025 66Deep Network Development



LeakyReLU activation function
2. Convolutional Neural Networks
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𝑅𝑒𝐿𝑈 = ቊ
0, 𝑥 ≤ 0
𝑥, 𝑥 > 0

 𝐿𝑒𝑎𝑙𝑦𝑅𝑒𝐿𝑈 = ቊ
𝛾𝑥, 𝑥 ≤ 0
𝑥,  𝑥 > 0

 



Max Pooling
Filter: 2x2
Stride: 2

Pooling layer – Max Pooling
2. Convolutional Neural Networks
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• Translation Equivariant

* =
2 0

0 2

20 0 0

20 0 0

20 20 0

40 0

80 0

0 20 0

0 20 0

0 20 20

2 0

0 2

40 40

40 80

Input 3x3 Filter 2x2 Output 2x2

Both the input and the output 
shifted to the right!

* =

1. Translation equivariance means that the model responds predictably to translations, while translation invariance means that the model produces the same output regardless of translations

Convolutional layer – Convolution properties
2. Convolutional Neural Networks

10/7/2025 69Deep Network Development

𝑓 𝑡 𝑥 = 𝑡 𝑓 𝑥 , 

where t is a transformation



• Translation Invariant

80

80

Input 3x3 Filter 2x2 Output 2x2

Pooling 2x2

Pooling 2x2

1. Translation equivariance means that the model responds predictably to translations, while translation invariance means that the model produces the same output regardless of translations

Pooling layer – Max Pooling properties
2. Convolutional Neural Networks

Change in the input results in 
the same output
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𝑓 𝑡 𝑥 = 𝑓(𝑥), 

where t is a transformation

* =
2 0

0 2

20 0 0

20 0 0

20 20 0

40 0

80 0

0 20 0

0 20 0

0 20 20

2 0

0 2

40 40

40 80* =



Flatten and Fully Connected layer
2. Convolutional Neural Networks
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Visualization: 
• https://poloclub.github.io/cnn-explainer/
• https://distill.pub/2017/feature-visualization/ 

Convolutional Neural Network
2. Convolutional Neural Networks
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https://poloclub.github.io/cnn-explainer/
https://poloclub.github.io/cnn-explainer/
https://poloclub.github.io/cnn-explainer/
https://poloclub.github.io/cnn-explainer/
https://distill.pub/2017/feature-visualization/
https://distill.pub/2017/feature-visualization/
https://distill.pub/2017/feature-visualization/
https://distill.pub/2017/feature-visualization/


[3] Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, "Gradient-based learning applied to document recognition," in Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998, doi: 10.1109/5.726791. 

“LeNet 5” Y. Lecun et al. (1998) [3]
2. Convolutional Neural Networks
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[3] Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, "Gradient-based learning applied to document recognition," in Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998, doi: 10.1109/5.726791. 

“LeNet 5” Y. Lecun et al. (1998) [3]
2. Convolutional Neural Networks
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Convolutional Layer

76

• Purpose: To quantify the correspondence with 
the characteristics defined by the weights of 
the filters

• E.g.: how much of a (vertical
edge)/nose/wheel/face is in the image part 
under consideration

• Play

Source

Source

10/7/2025 Deep Network Development

1. Convolutional Neural Networks

https://ezyang.github.io/convolution-visualizer/
https://ezyang.github.io/convolution-visualizer/
https://colab.research.google.com/drive/1GhO1DN8J1lmgIgV1zuKKMWd6m0SCUC5m
https://github.com/vdumoulin/conv_arithmetic


Example:
Input Image = 224x224x3  Filter = 3x3x3 (x32)    
    n = 224; p = 0; s = 1; f = 3; m = 32

Output = 222x222x32

Convolutional Layer
Summary of convolutions

7710/7/2025 Deep Network Development

1. Convolutional Neural Networks

c channelsn m image padding pf f filter stride s

c𝑛 + 2𝑝 − 𝑓

𝑠
+ 1

𝑚 + 2𝑝 − 𝑓

𝑠
+ 1



[2] Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, "Gradient-based learning applied to document recognition," in Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998, doi: 10.1109/5.726791. 

1. Convolutional Neural Networks

“LeNet 5” Y. Lecun et al. (1998) [2]
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Going deeper
1. Convolutional Neural Networks

What prevents us from creating CNN with arbitrary depth?
- Underfitting/Overfitting
- Vanishing/Exploding gradient
- And many more…
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Underfitting/Overfitting
1. Convolutional Neural Networks

• Underfitting
• we train the model for more epochs
• If we have more parameter, we can 

counter this issue

• Overfitting
• Regularization (early-stopping, dropout, 

etc.)
• If we have less parameters, it is less 

likely that our model will overfit
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Vanishing/Exploding Gradient
1. Convolutional Neural Networks

• Weight initialization
• Activation function
• Regularization

• Batch Normalization
• Dropout
• Weight decay

• “Skip connection”
• And many more…
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Weight initialization
1. Convolutional Neural Networks

• As the name suggest specifies the method how we initialize 
the weight of our neural network
• Sample from a uniform distribution in [𝑎, 𝑏]
• Sample from a normal distribution 𝑁(𝜇, 𝜎) – usually 

with 0 mean and 1 standard deviation
• Set it to some constant value
• Or manually add the initial weights

• In pytorch the weights of the Convolution is sampled from 
𝑈(− 𝑘, 𝑘), where 𝑘 =

𝑔𝑟𝑜𝑢𝑝𝑠

𝐶𝑖𝑛∗ς𝑖=0
1 𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒[𝑖]

• And in Linear layers is sampled from 𝑈(− 𝑘, 𝑘), where 
𝑘 =

1

𝑖𝑛_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠
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Regularization
1. Convolutional Neural Networks

• Weight related regularizations:
• L1 regularization (also called LASSO) leads to sparse 

models by adding a penalty based on the absolute 
value of coefficients.

• L2 regularization (also called ridge regression) 
encourages smaller, more evenly distributed weights 
by adding a penalty based on the square of the 
coefficients.

• Early stopping
• Data augmentation
• Batch normalization
• Dropout
• And many more…
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Batch Normalization
1. Convolutional Neural Networks

• Batch normalization is achieved through a normalization 
step that fixes the means and variances of each layer's 
inputs

• It basically normalizes the output of the previous layer in 
this batch
• It also keeps track of moving averages, and can do 

some transformations too

𝑦𝐵 =
𝑥𝐵  − 𝐄[𝑥B]

𝐕𝐚𝐫 𝑥B
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ImageNet Large Scale Visual Recognition 
Challenge (ILSVRC) [10]

1. Convolutional Neural Networks

Deep Network Development 85

• 1000 classes
• 1M Images

• Serves as the common benchmark for 
neural nets

[10] J. Deng, W. Dong, R. Socher, L. -J. Li, Kai Li and Li Fei-Fei, "ImageNet: A large-scale hierarchical image database," 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 2009, pp. 248-255, doi: 
10.1109/CVPR.2009.5206848.



[3] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet classification with deep convolutional neural networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 1 (NIPS'12). 
Curran Associates Inc., Red Hook, NY, USA, 1097–1105.
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“AlexNet” A. Krizhevsky et al. (2012) [3]
1. Convolutional Neural Networks



[3] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet classification with deep convolutional neural networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 1 (NIPS'12). 
Curran Associates Inc., Red Hook, NY, USA, 1097–1105.
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“AlexNet” A. Krizhevsky et al. (2012) [3]
1. Convolutional Neural Networks

Dropout:
• We are dropping some neurons between layers 

with some probability p.
• The dropped out neurons do not contribute to the 

forward pass and do not participate in the 
backpropagation.

• “Every time we sample from a different 
architecture”

• Reduces neuron co-adaptation
• The model forced to learn more robust features 



[3] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet classification with deep convolutional neural networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 1 (NIPS'12). 
Curran Associates Inc., Red Hook, NY, USA, 1097–1105.
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“AlexNet” A. Krizhevsky et al. (2012) [3]
1. Convolutional Neural Networks

ReLU over Sigmoid or tanh:
• During training with Gradient Descent using ReLU (non-saturating 

nonlinearity) results in less training time compared to Sigmoid or tanh 
(saturating nonlinearity).

• Does not require input normalization
• Learning will happen if at least some training examples produce positive input
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“Inception / GoogLeNet” C. Szegedy et al. (2014) [5]
1. Convolutional Neural Networks

Deep Network Development 89

[5] Szegedy, C., et al.  “Going Deeper with Convolutions”, <i>arXiv e-prints</i>, 2014. doi:10.48550/arXiv.1409.4842.

• Aligns with the intuition that visual information should be 
processed at various scales:
• Be able to detect bigger and smaller objects on the 

image
• 1x1 Convolution blocks for dimensionality reduction



10/7/2025

“Inception / GoogLeNet” C. Szegedy et al. (2014) [5]
1. Convolutional Neural Networks

Deep Network Development 90

[5] Szegedy, C., et al.  “Going Deeper with Convolutions”, <i>arXiv e-prints</i>, 2014. doi:10.48550/arXiv.1409.4842.

• Attached multiple classifier network during training 
that were discarded during inference
• Multi-objective training
• Minimize the loss function of all the classifier 

networks at the same time

Classifier head
Classifier head

Classifier head
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“VGG16” K. Simonyan and A. Zisserman (2014) [4]
1. Convolutional Neural Networks

Deep Network Development 91

[4] Simonyan, K. and Zisserman, A., “Very Deep Convolutional Networks for Large-Scale Image Recognition”, <i>arXiv e-prints</i>, 2014. doi:10.48550/arXiv.1409.1556.

• Increased the depth of the CNN by using smaller 
convolutions

• This enables the network the extract more complex 
hierarchical features

• Used multiple 3x3 convolutions instead of larger 
(5x5 or 7x7) convolutions:
• More non-linearity
• Same receptive field
• Less parameters
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“Residual Network / ResNet” K. He et al. (2015) [6]
1. Convolutional Neural Networks

Deep Network Development 92

[6] He, K., Zhang, X., Ren, S., and Sun, J., “Deep Residual Learning for Image Recognition”, <i>arXiv e-prints</i>, 2015. doi:10.48550/arXiv.1512.03385.

• Learn residual functions reference to layer inputs instead of 
unreferenced functions

• If we pretrain a smaller network and then we extend it with extra 
blocks it should have similar or better performance compared to 
the original network – Identity mapping
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“Residual Network / ResNet” K. He et al. (2015) [6]
1. Convolutional Neural Networks

Deep Network Development 93

[6] He, K., Zhang, X., Ren, S., and Sun, J., “Deep Residual Learning for Image Recognition”, <i>arXiv e-prints</i>, 2015. doi:10.48550/arXiv.1512.03385.

G(x)

F(x) + G(x)
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“DenseNet” G. Huang et al. (2016) [7]
1. Convolutional Neural Networks

Deep Network Development 94

[7] Huang, G., Liu, Z., van der Maaten, L., and Weinberger, K. Q., “Densely Connected Convolutional Networks”, <i>arXiv e-prints</i>, 2016. doi:10.48550/arXiv.1608.06993.
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“MobileNet” A. G. Horward et al. (2017) [8]
1. Convolutional Neural Networks

Deep Network Development 95

[8] Howard, A. G., et al. “MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications”, <i>arXiv e-prints</i>, 2017. doi:10.48550/arXiv.1704.04861.
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“MobileNet” A. G. Horward et al. (2017) [8]
1. Convolutional Neural Networks

Deep Network Development 96

[8] Howard, A. G., et al. “MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications”, <i>arXiv e-prints</i>, 2017. doi:10.48550/arXiv.1704.04861.

Depthwise

Pointwise
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More recent CNN architectures
1. Convolutional Neural Networks

Deep Network Development 97

• ZfNet
• Xception
• InceptionV2, V3, V4
• Inception-ResNet
• MobileNet V3
• FractalNet
• WideResNet
• PyramidalNet
• Residual Attention Net
• EfficientNet
• Etc

• Currently, there are many models using the Transformer architecture (we will explore this later)
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ImageNet – Architectures Top 5 error (2016)
1. Convolutional Neural Networks

Deep Network Development 98
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ImageNet – Architectures Top 5 error (2019)
1. Convolutional Neural Networks

Deep Network Development 99

• More recently:
https://paperswithcode.com/sota/image-
classification-on-imagenet

• ImageNet website:
https://www.image-net.org/ 

https://paperswithcode.com/sota/image-classification-on-imagenet
https://paperswithcode.com/sota/image-classification-on-imagenet
https://paperswithcode.com/sota/image-classification-on-imagenet
https://paperswithcode.com/sota/image-classification-on-imagenet
https://paperswithcode.com/sota/image-classification-on-imagenet
https://paperswithcode.com/sota/image-classification-on-imagenet
https://paperswithcode.com/sota/image-classification-on-imagenet
https://www.image-net.org/
https://www.image-net.org/
https://www.image-net.org/
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Traditional ML vs Transfer Learning
2. Transfer Learning

Deep Network Development 101
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Learned / Transferrable features
2. Transfer Learning

Deep Network Development 102

• The characteristics are built up in a 
pyramidal way

• Initial edge filtering with different 
orientation, "color" and cut-off values

• Simpler shapes, forms
• Part components (nose, eye, wheel,...)
• Faces, cars
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Learned / Transferrable features
2. Transfer Learning

Deep Network Development 103
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Backbone vs head
2. Transfer Learning

Deep Network Development 104

Backbone Head
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Feature extraction
2. Transfer Learning

Deep Network Development 105

• We initialize the network with pre-trained weights from a pre-trained model. We freeze all the weights from the backbone, and 
we replace the head with a new one, initialized with random weights. We only train the new head, and not the backbone.

Backbone Head

Backbone (Feature Extractor) New Head
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Fine-tuning
2. Transfer Learning

Deep Network Development 106

• Instead of randomly initializing the weights for training , we initialize the network with pretrained weights from a 
pretrained model trained on a bigger dataset such as ImageNet (1M images and 1K class) and then we can fine-tune 
(train) the whole network.

Backbone Head

Fine-tuned Backbone Fine-tuned Head
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Performance comparison
2. Transfer Learning

Deep Network Development 107

Model A
(trained on dataset A)

Dataset A 
(Cats vs Dogs)

Dataset B 
(Cat breeds)

Model B
(Using Model A for Feature 

Extraction)

Model C
(Fine-Tuned from Model A)

Good performance;
Fast Training;
Less data needed.

Model D
(Using Model A for Feature 

Extraction)

Model E
(Fine-Tuned from Model A)

Good performance;
Slower Training;
More data needed.

Dataset C 
(Kangaroos)

Worse 
performance

Good performance;
Slow Training;
More data needed.



10/7/2025

When to use Transfer Learning?
2. Transfer Learning

Deep Network Development 108

• Task A and B have the same input x
• When you have a lot of data for the problem you are transferring from (A) and few data for the problem you are 

transferring to (B)
• Low level features from A could be helpful for learning B
• Faster training. Use pre-trained weights as initialization point whether than randomly initializing weights
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Deep Learning common steps - Parameter learning
2. Transfer Learning

Deep Network Development 109

• General 
• large dataset
• Training 
• Fine-tuning
• Foundational model

General 
training

General fine-
tuning

Foundational 
model

Selective 
training

Selective 
fine-tuning

Final model
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Feature learning: Autoencoders
3. Autoencoders

Deep Network Development 111
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Reconstruction Task

Deep Network Development 112

3. Autoencoders
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Reconstruction Task
3. Autoencoders

Deep Network Development 113
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Image Classification: Supervised Learning (labelled data is needed)
3. Autoencoders

Deep Network Development 114

0.73

Loss between prediction and target
𝐿𝐵𝐶 ℎ 𝑥 , 𝑦 = −𝑦 log ℎ 𝑥 − (1 − 𝑦) log 1 − ℎ(𝑥)
𝐿𝐵𝐶 0.73,1 = −1 log 0.73 − 1 − 1 log 1 − 0.73
𝐿𝐵𝐶 0.73,1 = −1 ∗ −0.13667714 − (0) log 0.23

𝐿𝐵𝐶 0.73,1 = 0.13667714

𝑳𝑩𝑪 𝟎. 𝟕𝟑, 𝟏 = 𝟎. 𝟏𝟒

Reconstruction: Self-Supervised Learning (no need for labelled data)
Loss between prediction and input

Data:
X = image
Y = X 

-( )**2

= 0.2

Data:
X = image
Y = label / 
target (1)
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Autoencoder structure
3. Autoencoders
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Autoencoder is a machine learning algorithm that learns a compressed 
representation of an input. Because it requires no label it is an 
unsupervised method1. However, the output is a reconstruction of the 
input, thus it is also considered as a self-supervised method.

An autoencoder consists of three parts:
• Encoder: the part of the network that compresses the input into a latent-

space representation of reduced dimension. It can be represented by an 
encoding function h=f(x).

• Latent space (bottleneck/code): the part of the network which contains 
the reduced representation of the input.

• Decoder: the part that aims to reconstruct the input from the latent space 
representation. It has a similar structure to the encoder and can be 
represented by a decoding function r=g(h).
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Autoencoder structure
3. Autoencoders

Deep Network Development 116

• Autoencoders are learned automatically from data examples, using the input as output target, making them easy to train. However, 
they do not generalize to new data.

• If the only purpose of autoencoders was to copy the input to the output, they would be useless. The main idea is that by training the 
autoencoder to copy the input to the output, the latent representation will learn the most important features of the input. 

• The bottleneck is designed in such a way that the maximum information possessed by an input is captured in it, therefore, the 
bottleneck forms a knowledge-representation of the input. 
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Autoencoder structure
3. Autoencoders

Deep Network Development 117

The input and output layers of the autoencoder can be formed with:

• Feed Forward neural networks (Dense / Fully connected layers)

• Convolutional neural networks

• Recurrent neural networks 

• Others (Restricted Boltzmann Machine, …)
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Autoencoder Types
3. Autoencoders

Deep Network Development 118

• Convolutional Autoencoder
• Denoising Autoencoder
• Sparse Autoencoder
• Variational Autoencoder
• and more
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Convolutional Autoencoders
3. Autoencoders

Deep Network Development 119

• Specifically designed for image data. 
• They employ convolutional layers in both the 

encoder and decoder parts of the network. 
• This architecture allows them to capture spatial 

dependencies and hierarchical features 
effectively. 

• The reconstruction of the input image is often 
blurry and of lower quality due to compression 
during which information is lost.
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Denoising Autoencoders
3. Autoencoders
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• Designed to remove noise from input data. 
• Noise can be added to the input, by modifying different 

parts of the input:
• Gaussian noise; Salt-and-Pepper noise; Random 

Masking; Perturbation noise; etc
• During training, a noisy version of the input is provided, 

and the network learns to reconstruct the clean, noise-
free data. 

• This encourages the model to capture robust and 
meaningful features while filtering out irrelevant or 
noisy information. 



10/7/2025

Sparse Autoencoders
3. Autoencoders

Deep Network Development 121

• Designed to impose sparsity constraints on the representations 
learned by the autoencoder. 

• Sparsity means that only a small subset of neurons in the hidden layer 
is active at a time

• They take the highest activation values in the hidden layer and zero 
out the rest of the hidden nodes. This prevents autoencoders to use all 
the hidden nodes at a time and forcing only a reduced number of 
hidden nodes to be used.

• Sparse autoencoders have a sparsity penalty, a value close to zero but 
not exactly zero. Sparsity penalty is applied on the hidden layer and to 
the reconstruction error. This prevents overfitting.
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Applications
3. Autoencoders
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(Not for) Data Compression
• Although autoencoders can compress the input into a latent representation, it is usually not used for 

data compression. The reasons are:
• Lossy compression: The output of the autoencoder is not the same as the input, it is a close but 

degraded representation because information is lost in the latent representation. 
• Data-specific: Autoencoders are only able to meaningfully compress data like what they have been 

trained on. Since they learn features specific for the given training data. Hence, we can’t expect an 
autoencoder trained on handwritten digits to compress landscape photos.
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Applications
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Dimensionality Reduction
• The autoencoders convert the input into a reduced representation which is stored in the latent 

representation space. This is where the information from the input has been compressed. Thus by removing the 
decoder part, an autoencoder can be used for dimensionality reduction with the output being the latent 
representation vector.
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Applications
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Image Denoising
• Example:

• https://huggingface.co/spaces/Xintao/GFPGAN
• https://huggingface.co/spaces/aryadytm/photo-colorization

https://huggingface.co/spaces/Xintao/GFPGAN
https://huggingface.co/spaces/Xintao/GFPGAN
https://huggingface.co/spaces/Xintao/GFPGAN
https://huggingface.co/spaces/Xintao/GFPGAN
https://huggingface.co/spaces/Xintao/GFPGAN
https://huggingface.co/spaces/Xintao/GFPGAN
https://huggingface.co/spaces/aryadytm/photo-colorization
https://huggingface.co/spaces/aryadytm/photo-colorization
https://huggingface.co/spaces/aryadytm/photo-colorization
https://huggingface.co/spaces/aryadytm/photo-colorization
https://huggingface.co/spaces/aryadytm/photo-colorization
https://huggingface.co/spaces/aryadytm/photo-colorization
https://huggingface.co/spaces/aryadytm/photo-colorization
https://huggingface.co/spaces/aryadytm/photo-colorization
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Applications
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Image Segmentation
• Image segmentation is the process of partitioning an image into multiple segments each belonging to a class. The 

goal is to simplify and/or change the representation of an image by grouping pixel values according to the 
class they belong.



10/7/2025

Applications
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Image Generation
Encoder-Decoder swap
Latent Space Manipulation
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Applications
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Feature Extraction
• The Encoding part of Autoencoders helps to learn important hidden features present in the input data, in the 

process to reduce the reconstruction error. During encoding, a new set of combinations of original features is 
generated. By removing the decoder, we can use the encoded features as input features for a network to 
use, for example, in the classification task.

Learned features 
from autoencoder

Autoencoder
Plane 
classifier

Plane



• Fully Connected Networks (Feed Forward Networks) calculate a weighted sum  of the inputs
• We can add non-linear activation functions like Sigmoid to transform linear regression to logistic regression 

(classification)

• Classification is a supervised learning task
• Binary: the target is 0 or 1
• Multiclass: the target is one element out of a discrete set of elements (usually use one-hot encoding)

• Convolutional Neural Networks (CNNs) are efficient algorithms for images
• Weight sharing
• Capture spatial patterns

• By changing the CNN configurations, we create different architectures

Summary
Summary

10/7/2025 128Deep Network Development
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Summary
3. Autoencoders
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• Different CNN hyperparameter choices result in different CNN architectures

• Transfer Learning is used when we want to utilize the learned features from a model A, that can be useful 
for a task that model B is trying to solve.

• We can retrain the whole model or freeze part of the model and only retrain a small part

• Autoencoders are unsupervised / self-supervised methods
• By reconstructing the input, they learn to encode the input into a lower dimensional latent space
• By removing the decoder from a trained autoencoder, the encoder can be used for feature learning



Books:
• Courville, Goodfellow, Bengio: Deep Learning 

Freely available: https://www.deeplearningbook.org/ 
• Zhang, Aston and Lipton, Zachary C. and Li, Mu and Smola, Alexander J.: Dive into Deep Learning
    Freely available: https://d2l.ai/ 

Courses:
• Deep Learning specialization by Andrew NG
• https://www.coursera.org/specializations/deep-learning 

13010/7/2025 Deep Network Development

Resources
Summary

https://www.deeplearningbook.org/
https://d2l.ai/
https://www.coursera.org/specializations/deep-learning
https://www.coursera.org/specializations/deep-learning
https://www.coursera.org/specializations/deep-learning
https://www.coursera.org/specializations/deep-learning


That’s all for today!
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