
DEEP NETWORK 
DEVELOPMENT

Tamás Takács
PhD student, ELTE, AI Department

tamastheactual@inf.elte.hu
tamastheactual.github.io

Imre Molnár
PhD student, ELTE, AI Department

imremolnar@inf.elte.hu
curiouspercibal.github.io

DEEP NETWORK DEVELOPMENT

mailto:tamastheactual@inf.elte.hu
http://tamastheactual.github.io/
mailto:imremolnar@inf.elte.hu
mailto:imremolnar@inf.elte.hu
http://curiouspercibal.github.io/


Deep Network Development

Lecture 8.

Object  Detect ion
Budapest, 14th October 2025

Two Stage Detectors1 Object Detection Metrics3One Stage Detectors2



Recap

Previously on Lecture 4
CNN architectures

When to use Transfer Learning
• Task A and B have the same input x
• When you have a lot of data for the problem you are transferring from (A) and few data 

for the problem you are transferring to (B)
• Low level features from A could be helpful for learning B
• Faster training. Use pre-trained weights as initialization point whether than randomly 

initializing weights

1/14/2026 Deep Network Development 3



Recap

Supervised Learning tasks

1/14/2026 Deep Network Development

Classification Semantic 
Segmentation

Classification 
+ Localization

Object 
Detection

Instance 
Segmentation

CAT GRASS, CAT,
TREE, SKY

Single Object Multiple Objects

CAT DOG, DOG, CAT DOG, DOG, CAT

Single Object No objects, just pixels Multiple Objects

4

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/



Introduction to Object Detection

What is Object Detection?
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Classification
[cat, dog, car]

[0.9, 0.05, 0.05] [0.7, 0.21, 0.09]

[0.48, 0.51, 0.01]

WHERE?
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Introduction to Object Detection

What is Object Detection?

1/14/2026 Deep Network Development

• Supervised Learning Task

• Input: RGB image

• Output: A set of detected objects;

For each object predict:
• Category label (from fixed, known set of categories)
• Bounding box (four numbers: x, y, width, height)

(x,y)

Height

Width

6



Introduction to Object Detection

What is Object Detection?
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• Multiple outputs: Need to output variable numbers of 
objects per image

• Multiple types of outputs: Need to predict “what” 
(category label) as well as “where” (bounding box)

• Large images: Classification works at 224x224; need 
higher resolution for detection, often ~800x600

7



Introduction to Object Detection

Classification + Localization (Object Detection for a single object)
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Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/



Introduction to Object Detection

Classification + Localization (Object Detection for a single object)
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Correct Bounding box
[x,y,w,h]
[365, 288, 500, 350]

9

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/



Introduction to Object Detection

Classification + Localization (Object Detection for a single object)
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Correct Bounding box
[x,y,w,h]
[365, 288, 500, 350]
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Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/



Introduction to Object Detection

Classification + Localization (Object Detection for a single object)
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Multi-Head Loss
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Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/



Introduction to Object Detection

Classification + Localization (Object Detection for a single object)
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Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/



Introduction to Object Detection

Sliding Window (Naïve approach)
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Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/



Introduction to Object Detection

Sliding Window (Naïve approach)
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Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/



Introduction to Object Detection

Sliding Window (Naïve approach)
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Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/



Introduction to Object Detection

Object Detection for multiple objects
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Region proposal based (Two Stage Detectors)
• R-CNN
• Fast R-CNN
• Faster R-CNN

16



Deep Network Development

Lecture 8.

Two Stage Detectors
Budapest, 14th October 2025

Two Stage Detectors1 Object Detection Metrics3One Stage Detectors2



1. Two Stage Detectors

Region Proposal Detectors (Two Stage Detectors)
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Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/



1. Two Stage Detectors

Region Proposal Detectors (Two Stage Detectors)
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• Selective Search

19

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/



1. Two Stage Detectors

R-CNN: Region-Based Convolutional Neural Network [1]
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Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/
[1] Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. arXiv [Cs.CV]. Retrieved from http://arxiv.org/abs/1311.2524

https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/


1. Two Stage Detectors

R-CNN: Region-Based Convolutional Neural Network
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Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/



1. Two Stage Detectors

R-CNN: Region-Based Convolutional Neural Network
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Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/



1. Two Stage Detectors

R-CNN: Region-Based Convolutional Neural Network
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Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/



1. Two Stage Detectors

R-CNN: Region-Based Convolutional Neural Network
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Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/



1. Two Stage Detectors

R-CNN: Region-Based Convolutional Neural Network
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Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/



1. Two Stage Detectors

R-CNN: Region-Based Convolutional Neural Network
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Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/



1. Two Stage Detectors

R-CNN: Region-Based Convolutional Neural Network

Input Image

Selective 
Search

R-CNN

R-CNN

➢ Predicted class:
• Background

➢ BBox transformation:
• tx, ty, tw, th

➢ Predicted class:
• Dog

➢ BBox transformation:
• tx, ty, tw, th

R-CNN
➢ Predicted class:

• Background
➢ BBox transformation:

• tx, ty, tw, th

Proposed boxes 
(px,py,pw,ph)
• (10,250,50,50)
• (500,250,50,50)
• (220,190,70,72)

1/14/2026 Deep Network Development1/14/2026 Deep Network Development 27



1. Two Stage Detectors

R-CNN: Region-Based Convolutional Neural Network

1/14/2026 Deep Network Development

How to transform the proposed box into the correct bounding box?
We use the predicted transformation values (tx,ty,tw,th)
For example: 
x = px + tx

Ground Truth:
• Class: Dog
• Bounding Box (x,y,w,h) = (200,200,120,80)

1/14/2026 Deep Network Development 28



1. Two Stage Detectors

R-CNN: Region-Based Convolutional Neural Network
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Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/



1. Two Stage Detectors

R-CNN: Region-Based Convolutional Neural Network
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Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/



1. Two Stage Detectors

Fast R-CNN: Region-Based Convolutional Neural Network [2]
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Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/
[2] Girshick, R. (2015). Fast R-CNN. arXiv [Cs.CV]. Retrieved from http://arxiv.org/abs/1504.08083

https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/


1. Two Stage Detectors

Fast R-CNN: Region-Based Convolutional Neural Network
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Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/



1. Two Stage Detectors

Fast R-CNN: Region-Based Convolutional Neural Network
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Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/



1. Two Stage Detectors

Fast R-CNN: Region-Based Convolutional Neural Network
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Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/



1. Two Stage Detectors

Quick ROI projection to feature map insight

1/14/2026 Deep Network Development 35

Convolutional Layer
• Filter / Kernel size = f x f

Convolution
Input: 5x5
Filter: 3x3
Output: 3x3

In practice it is harder, there are several tricks. For example: ROI Pool and 
ROI Align

1/14/2026 Deep Network Development 35



1. Two Stage Detectors

Fast R-CNN: Region-Based Convolutional Neural Network
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Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/



1. Two Stage Detectors

Fast R-CNN: Region-Based Convolutional Neural Network
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Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/



1. Two Stage Detectors

Fast R-CNN: Region-Based Convolutional Neural Network
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Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/



1. Two Stage Detectors

Fast R-CNN: Region-Based Convolutional Neural Network
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Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/



1. Two Stage Detectors

Fast R-CNN: Region-Based Convolutional Neural Network
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Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/



1. Two Stage Detectors

Fast R-CNN vs “Slow” R-CNN
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Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/



1. Two Stage Detectors

Fast R-CNN vs “Slow” R-CNN
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Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/



1. Two Stage Detectors

Region Proposal Network (RPN)
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Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/



1. Two Stage Detectors

Region Proposal Network (RPN)
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Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/



1. Two Stage Detectors

Region Proposal Network (RPN)
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Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/



1. Two Stage Detectors

Region Proposal Network (RPN)
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Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/



1. Two Stage Detectors

Region Proposal Network (RPN)
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Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/



1. Two Stage Detectors

Faster R-CNN: Learnable Region Proposals [3]
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Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/
[3] Ren, S., He, K., Girshick, R., & Sun, J. (2016). Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. arXiv [Cs.CV]. Retrieved from http://arxiv.org/abs/1506.01497

https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/


1. Two Stage Detectors

Faster R-CNN: Learnable Region Proposals [3]
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1. Two Stage Detectors

R-CNN Family Comparison
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Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/



1. Two Stage Detectors

R-CNN Family
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Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/



Deep Network Development

Lecture 8.

One Stage Detectors
Budapest, 14th October 2025

Two Stage Detectors1 Object Detection Metrics3One Stage Detectors2



2. One Stage Detectors

Problems with Faster R-CNN
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Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/



2. One Stage Detectors

Problems with Faster R-CNN
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Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/



2. One Stage Detectors

Single-Shot Detectors (SSD) [4]
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Key Ideas:
1. Multiple Layers → handle different scales
2. Different filters predict boxes of different shapes/sizes

[4] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., & Berg, A. C. (2016). SSD: Single Shot MultiBox Detector. In Computer Vision – ECCV 2016 (pp. 21–37). doi:10.1007/978-3-319-46448-0_2



2. One Stage Detectors

Single-Shot Detectors (SSD) [4]

1/14/2026 Deep Network Development 561/14/2026 Deep Network Development 56

[4] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., & Berg, A. C. (2016). SSD: Single Shot MultiBox Detector. In Computer Vision – ECCV 2016 (pp. 21–37). doi:10.1007/978-3-319-46448-0_2



2. One Stage Detectors

Single-Shot Detectors (SSD) [4]
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[4] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., & Berg, A. C. (2016). SSD: Single Shot MultiBox Detector. In Computer Vision – ECCV 2016 (pp. 21–37). doi:10.1007/978-3-319-46448-0_2



2. One Stage Detectors

Single-Shot Detectors (SSD) [4]
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[4] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., & Berg, A. C. (2016). SSD: Single Shot MultiBox Detector. In Computer Vision – ECCV 2016 (pp. 21–37). doi:10.1007/978-3-319-46448-0_2



2. One Stage Detectors

Single-Shot Detectors (SSD) [4]
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[4] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., & Berg, A. C. (2016). SSD: Single Shot MultiBox Detector. In Computer Vision – ECCV 2016 (pp. 21–37). doi:10.1007/978-3-319-46448-0_2



2. One Stage Detectors

Single-Shot Detectors (SSD) [4]
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[4] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., & Berg, A. C. (2016). SSD: Single Shot MultiBox Detector. In Computer Vision – ECCV 2016 (pp. 21–37). doi:10.1007/978-3-319-46448-0_2



2. One Stage Detectors

Single-Shot Detectors (SSD) [4]
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[4] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., & Berg, A. C. (2016). SSD: Single Shot MultiBox Detector. In Computer Vision – ECCV 2016 (pp. 21–37). doi:10.1007/978-3-319-46448-0_2



2. One Stage Detectors

You Only Look Once (YOLO) [5]
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[5] Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You Only Look Once: Unified, Real-Time Object Detection. arXiv [Cs.CV]. Retrieved from http://arxiv.org/abs/1506.02640



2. One Stage Detectors

You Only Look Once (YOLO) [5]
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• Anchor boxes are highly overlapped in SSD

• YOLO cuts the input image uniformly into S x S anchor boxes

• Each anchor box predicts B bounding boxes

• V2 and V3 add more improvements

[5] Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You Only Look Once: Unified, Real-Time Object Detection. arXiv [Cs.CV]. Retrieved from http://arxiv.org/abs/1506.02640



2. One Stage Detectors

You Only Look Once (YOLO) [5]
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[5] Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You Only Look Once: Unified, Real-Time Object Detection. arXiv [Cs.CV]. Retrieved from http://arxiv.org/abs/1506.02640



2. One Stage Detectors

You Only Look Once (YOLO) - Format
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𝑃𝑐

𝐵𝑥

𝐵𝑦

𝐵𝑤

𝐵ℎ

𝐶1

𝐶2

0

−

−

−

−

−

−



2. One Stage Detectors

You Only Look Once (YOLO) - Format

1/14/2026 Deep Network Development 661/14/2026 Deep Network Development 66

𝑃𝑐

𝐵𝑥

𝐵𝑦

𝐵𝑤

𝐵ℎ

𝐶1

𝐶2

0

−

−

−

−

−

− 1

0.05

0.3

2

1.3

1

0

(0,0)

(1,1)



2. One Stage Detectors

You Only Look Once (YOLO) - Format
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𝑃𝑐

𝐵𝑥

𝐵𝑦

𝐵𝑤

𝐵ℎ

𝐶1

𝐶2

0

−

−

−

−

−

− 1

0.05

0.3

2

1.3

1

0

(0,0)

(1,1)

1

0.32

0.02

3

2

0

1



2. One Stage Detectors

You Only Look Once (YOLO) - Training
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X_train Y_train
𝑃𝑐

𝐵𝑥

𝐵𝑦

𝐵𝑤

𝐵ℎ
𝐶1

𝐶2

𝑃𝑐

𝐵𝑥

𝐵𝑦

𝐵𝑤

𝐵ℎ
𝐶1

𝐶2

𝑃𝑐

𝐵𝑥

𝐵𝑦

𝐵𝑤

𝐵ℎ
𝐶1

𝐶2

16 such 
vectors

16 such 
vectors

16 such 
vectors



2. One Stage Detectors

You Only Look Once (YOLO) - Prediction
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X_train Y_train
𝑃𝑐

𝐵𝑥

𝐵𝑦

𝐵𝑤

𝐵ℎ
𝐶1

𝐶2

𝑃𝑐

𝐵𝑥

𝐵𝑦

𝐵𝑤

𝐵ℎ
𝐶1

𝐶2

𝑃𝑐

𝐵𝑥

𝐵𝑦

𝐵𝑤

𝐵ℎ
𝐶1

𝐶2

16 such 
vectors

16 such 
vectors

16 such 
vectors

𝑃𝑐

𝐵𝑥

𝐵𝑦

𝐵𝑤

𝐵ℎ
𝐶1

𝐶2

16 such 
vectors



2. One Stage Detectors

You Only Look Once (YOLO)
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2. One Stage Detectors

You Only Look Once (YOLO)
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Please check the following links for a detailed explanation of YOLO versions: 
• https://www.v7labs.com/blog/yolo-object-detection 
• https://www.datacamp.com/blog/yolo-object-detection-explained 
• Video comparison

https://www.v7labs.com/blog/yolo-object-detection
https://www.v7labs.com/blog/yolo-object-detection
https://www.v7labs.com/blog/yolo-object-detection
https://www.v7labs.com/blog/yolo-object-detection
https://www.v7labs.com/blog/yolo-object-detection
https://www.v7labs.com/blog/yolo-object-detection
https://www.datacamp.com/blog/yolo-object-detection-explained
https://www.datacamp.com/blog/yolo-object-detection-explained
https://www.datacamp.com/blog/yolo-object-detection-explained
https://www.datacamp.com/blog/yolo-object-detection-explained
https://www.datacamp.com/blog/yolo-object-detection-explained
https://www.datacamp.com/blog/yolo-object-detection-explained
https://www.datacamp.com/blog/yolo-object-detection-explained
https://www.datacamp.com/blog/yolo-object-detection-explained


2. One Stage Detectors

SSD vs YOLO
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2. One Stage Detectors

Other Methods
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Object  Detect ion  Metr ics
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Two Stage Detectors1 Object Detection Metrics3One Stage Detectors2



3. Object Detection Metrics

Comparing predictions: Accuracy
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Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

In case of binary classification, the binary accuracy is:

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

where:

• 𝑇𝑃 = True positive, 
• 𝐹𝑃 = False Positive,
• 𝑇𝑁 = True negative
• 𝐹𝑁 = False negative

False positive False negative



3. Object Detection Metrics

Comparing predictions: Accuracy
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Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

In case of multi class classification, the accuracy is:

Accuracy =
correct classifications

all classifications

• This is usually expressed as a percentage, i.e. 90%
• To get a better insight we usually visualize it in a 

confusion matrix Confusion matrix



3. Object Detection Metrics

Comparing predictions: Accuracy

1/14/2026 Deep Network Development 771/14/2026 Deep Network Development 77

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

Would you consider this model good?

Accuracy: 88%



3. Object Detection Metrics

Comparing boxes: Intersection over Union (IoU)
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Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/



3. Object Detection Metrics

Comparing boxes: Intersection over Union (IoU)
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Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/



3. Object Detection Metrics

Comparing boxes: Intersection over Union (IoU)
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Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/



3. Object Detection Metrics

Comparing boxes: Intersection over Union (IoU)
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Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/



3. Object Detection Metrics

Overlapping boxes
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Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/



3. Object Detection Metrics

Overlapping boxes

1/14/2026 Deep Network Development 831/14/2026 Deep Network Development 83

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/



3. Object Detection Metrics

Overlapping boxes
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Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/



3. Object Detection Metrics

Overlapping boxes
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Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/



3. Object Detection Metrics

NMS Limitations
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Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/



3. Object Detection Metrics

NMS Limitations
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There are a few other methods that try to improve 
detections:

• Soft-NMS: Traditional NMS is a binary 
operation that discards all but the highest-
scoring bounding box. Soft-NMS, on the other 
hand, assigns lower scores to overlapping boxes 
rather than completely removing them. This 
results in smoother score degradation for close-
by objects, reducing the chance of removing 
valid detections.

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/



3. Object Detection Metrics

NMS Limitations
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There are a few other methods that try to improve 
detections:

• IoU Threshold Adaptation: Instead of using a 
fixed IoU (Intersection over Union) threshold for 
NMS, you can dynamically adjust the threshold 
based on the object's characteristics. For 
instance, you might use a higher IoU threshold 
for large objects and a lower IoU threshold for 
smaller objects.

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/



3. Object Detection Metrics

NMS Limitations
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More methods:
• Selection of object detections using overlap map 

predictions 
(https://link.springer.com/article/10.1007/s005
21-022-07469-x )

• https://www.sciencedirect.com/science/article/
pii/S2214914721001914 

• https://arxiv.org/pdf/2207.00865.pdf 

• And more…

• Open research field (make your contribution)

https://link.springer.com/article/10.1007/s00521-022-07469-x
https://link.springer.com/article/10.1007/s00521-022-07469-x
https://link.springer.com/article/10.1007/s00521-022-07469-x
https://link.springer.com/article/10.1007/s00521-022-07469-x
https://link.springer.com/article/10.1007/s00521-022-07469-x
https://link.springer.com/article/10.1007/s00521-022-07469-x
https://link.springer.com/article/10.1007/s00521-022-07469-x
https://link.springer.com/article/10.1007/s00521-022-07469-x
https://www.sciencedirect.com/science/article/pii/S2214914721001914
https://www.sciencedirect.com/science/article/pii/S2214914721001914
https://www.sciencedirect.com/science/article/pii/S2214914721001914
https://arxiv.org/pdf/2207.00865.pdf
https://arxiv.org/pdf/2207.00865.pdf


3. Object Detection Metrics

Evaluating Object Detectors: Mean Average Precision (mAP)
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Example with detecting Traffic lights
Positive: Traffic light
Negative: Background (non traffic light)

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/
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Evaluating Object Detectors: Mean Average Precision (mAP)
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Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/



3. Object Detection Metrics

Evaluating Object Detectors: Mean Average Precision (mAP)
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Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/



3. Object Detection Metrics

Evaluating Object Detectors: Mean Average Precision (mAP)
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Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/



3. Object Detection Metrics

Evaluating Object Detectors: Mean Average Precision (mAP)
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Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/



3. Object Detection Metrics

Evaluating Object Detectors: Mean Average Precision (mAP)

1/14/2026 Deep Network Development 951/14/2026 Deep Network Development 95

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/



3. Object Detection Metrics

Evaluating Object Detectors: Mean Average Precision (mAP)
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Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/



3. Object Detection Metrics

Evaluating Object Detectors: Mean Average Precision (mAP)
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Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/



3. Object Detection Metrics

Evaluating Object Detectors: Mean Average Precision (mAP)
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Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/
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Evaluating Object Detectors: Mean Average Precision (mAP)
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Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/
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Evaluating Object Detectors: Mean Average Precision (mAP)
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Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/



3. Object Detection Metrics

Understanding object detection paper results
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Hardware independent metrics:
• mAP (Mean Average Precision): Overall average 

precision across classes and IoU thresholds, indicating 
detection quality.

• AP50: Average precision at an IoU threshold of 0.50, a 
lenient measure of detection accuracy.

• AP75: Average precision at an IoU threshold of 0.75, a 
stricter measure of accuracy.

• APS/APM/APL: Average precision for small, medium, and 
large objects, assessing model performance across object 
sizes.

• Params (M): Number of model parameters, in millions, 
indicating model size.

• GFLOPs: Computational complexity, showing the number of 
floating-point operations needed for a forward pass.

Hardware dependent metrics:
• Latency, Inference speed

COCO test-dev Benchmark (Object Detection) | Papers With Code

https://paperswithcode.com/sota/object-detection-on-coco
https://paperswithcode.com/sota/object-detection-on-coco
https://paperswithcode.com/sota/object-detection-on-coco


3. Object Detection Metrics

Understanding object detection paper results
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• mAP (Mean Average Precision): This is the average precision across different classes and IoU (Intersection over Union) thresholds. It’s a 
comprehensive metric for measuring the performance of object detection models. The higher the mAP, the better the model's precision and recall 
performance over all categories and thresholds.

• AP50 (Average Precision at IoU=0.50): This metric evaluates the average precision when the IoU threshold is set to 0.50. This means that, for a 
detection to be considered correct, the predicted bounding box must overlap the ground truth by at least 50%. It is often considered a relatively 
lenient metric.

• AP75 (Average Precision at IoU=0.75): Like AP50.
• APS (Average Precision for Small Objects): This metric calculates the average precision for detecting small objects. Smaller objects can be more 

difficult to detect accurately, so this metric specifically tracks how well the model handles smaller object sizes.
• APM/APL: Average precision for medium and large objects, assessing model performance across object sizes.
• Params (M) (Model Parameters in Millions): This metric shows the number of parameters in the model, typically in millions (M). More parameters 

often mean a larger, more complex model, but not necessarily better performance.
• GFLOPs (Giga Floating Point Operations): This refers to the number of floating-point operations required to make a single forward pass through 

the model, usually measured in gigaflops (GFLOPs). It is an indicator of the model's computational complexity and can be used to gauge the efficiency 
of the model.



Applications

Autonomous Driving
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Applications

Inventory Scan
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Applications

Face Detection
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+ Face Recognition (endless applications)
Attendance check
Entry access to specific place
Security
…



Deep Network Development

Lecture 8.

Upsampling1 Semantic Segmentation2

Image Segmentat ion
Budapest ,  14th October  2025

Instance Segmentation3



Recap

Previously on Lecture 5
• Single-Shot Detectors: Naïve SSD, YOLO
• Multi-box Detection
• Non-Max Suppression (NMS)
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Recap

Previously on Lecture 5
• Object Detection Metrics: IoU, mAP, etc.
•  Applications of Object Detection

How can we compare our prediction 
to the ground-truth box?

Intersection over Union (IoU) 
(Also called “Jaccard similarity” or 
“Jaccard index”):

𝑨𝒓𝒆𝒂 𝒐𝒇 𝑰𝒏𝒕𝒆𝒓𝒔𝒆𝒄𝒕𝒊𝒐𝒏

𝑨𝒓𝒆𝒂 𝒐𝒇 𝑼𝒏𝒊𝒐𝒏
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Recap

Supervised Learning tasks

Classification Semantic 
Segmentation

Classification 
+ Localization

Object 
Detection

Instance 
Segmentation

CAT GRASS, CAT,
TREE, SKY

Single Object Multiple Objects

CAT DOG, DOG, CAT DOG, DOG, CAT

Single Object No objects, just pixels Multiple Objects
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Instance SegmentationSemantic Segmentation

Applications of Image Segmentation

Image Segmentation
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Autonomous Driving example - NVIDIA DRIVE (2024)
Video Segmentation

Applications of Image Segmentation
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• Medical image diagnosis
https://github.com/mateuszbuda/brain-segmentation-pytorch
https://github.com/Saswatm123/3D-Brain-Tumor-Segmentation-PyTorch
https://github.com/hahnicity/pytorch-lung-segmentation 

Applications of Image Segmentation

Applications

Input Image Segmented Image

https://github.com/mateuszbuda/brain-segmentation-pytorch
https://github.com/mateuszbuda/brain-segmentation-pytorch
https://github.com/mateuszbuda/brain-segmentation-pytorch
https://github.com/mateuszbuda/brain-segmentation-pytorch
https://github.com/mateuszbuda/brain-segmentation-pytorch
https://github.com/Saswatm123/3D-Brain-Tumor-Segmentation-PyTorch
https://github.com/Saswatm123/3D-Brain-Tumor-Segmentation-PyTorch
https://github.com/Saswatm123/3D-Brain-Tumor-Segmentation-PyTorch
https://github.com/Saswatm123/3D-Brain-Tumor-Segmentation-PyTorch
https://github.com/Saswatm123/3D-Brain-Tumor-Segmentation-PyTorch
https://github.com/Saswatm123/3D-Brain-Tumor-Segmentation-PyTorch
https://github.com/Saswatm123/3D-Brain-Tumor-Segmentation-PyTorch
https://github.com/Saswatm123/3D-Brain-Tumor-Segmentation-PyTorch
https://github.com/Saswatm123/3D-Brain-Tumor-Segmentation-PyTorch
https://github.com/hahnicity/pytorch-lung-segmentation
https://github.com/hahnicity/pytorch-lung-segmentation
https://github.com/hahnicity/pytorch-lung-segmentation
https://github.com/hahnicity/pytorch-lung-segmentation
https://github.com/hahnicity/pytorch-lung-segmentation


Applications 
Applications of Image Segmentation
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• Medical image diagnosis
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• Entertainment
• Photo effect
• Virtual try on

https://towardsdatascience.com/semantic-image-segmentation-with-deeplabv3-pytorch-989319a9a4fb
https://github.com/thuyngch/Human-Segmentation-PyTorch 
https://github.com/kishorkuttan/Deep-Virtual-Try-On
https://github.com/shadow2496/VITON-HD
https://github.com/JDAI-CV/Down-to-the-Last-Detail-Virtual-Try-on-with-Detail-Carving  

Applications
Applications of Image Segmentation

https://towardsdatascience.com/semantic-image-segmentation-with-deeplabv3-pytorch-989319a9a4fb
https://towardsdatascience.com/semantic-image-segmentation-with-deeplabv3-pytorch-989319a9a4fb
https://towardsdatascience.com/semantic-image-segmentation-with-deeplabv3-pytorch-989319a9a4fb
https://towardsdatascience.com/semantic-image-segmentation-with-deeplabv3-pytorch-989319a9a4fb
https://towardsdatascience.com/semantic-image-segmentation-with-deeplabv3-pytorch-989319a9a4fb
https://towardsdatascience.com/semantic-image-segmentation-with-deeplabv3-pytorch-989319a9a4fb
https://towardsdatascience.com/semantic-image-segmentation-with-deeplabv3-pytorch-989319a9a4fb
https://towardsdatascience.com/semantic-image-segmentation-with-deeplabv3-pytorch-989319a9a4fb
https://towardsdatascience.com/semantic-image-segmentation-with-deeplabv3-pytorch-989319a9a4fb
https://towardsdatascience.com/semantic-image-segmentation-with-deeplabv3-pytorch-989319a9a4fb
https://towardsdatascience.com/semantic-image-segmentation-with-deeplabv3-pytorch-989319a9a4fb
https://towardsdatascience.com/semantic-image-segmentation-with-deeplabv3-pytorch-989319a9a4fb
https://towardsdatascience.com/semantic-image-segmentation-with-deeplabv3-pytorch-989319a9a4fb
https://github.com/thuyngch/Human-Segmentation-PyTorch
https://github.com/thuyngch/Human-Segmentation-PyTorch
https://github.com/thuyngch/Human-Segmentation-PyTorch
https://github.com/thuyngch/Human-Segmentation-PyTorch
https://github.com/thuyngch/Human-Segmentation-PyTorch
https://github.com/kishorkuttan/Deep-Virtual-Try-On
https://github.com/kishorkuttan/Deep-Virtual-Try-On
https://github.com/kishorkuttan/Deep-Virtual-Try-On
https://github.com/kishorkuttan/Deep-Virtual-Try-On
https://github.com/kishorkuttan/Deep-Virtual-Try-On
https://github.com/kishorkuttan/Deep-Virtual-Try-On
https://github.com/kishorkuttan/Deep-Virtual-Try-On
https://github.com/shadow2496/VITON-HD
https://github.com/shadow2496/VITON-HD
https://github.com/shadow2496/VITON-HD
https://github.com/JDAI-CV/Down-to-the-Last-Detail-Virtual-Try-on-with-Detail-Carving
https://github.com/JDAI-CV/Down-to-the-Last-Detail-Virtual-Try-on-with-Detail-Carving
https://github.com/JDAI-CV/Down-to-the-Last-Detail-Virtual-Try-on-with-Detail-Carving
https://github.com/JDAI-CV/Down-to-the-Last-Detail-Virtual-Try-on-with-Detail-Carving
https://github.com/JDAI-CV/Down-to-the-Last-Detail-Virtual-Try-on-with-Detail-Carving
https://github.com/JDAI-CV/Down-to-the-Last-Detail-Virtual-Try-on-with-Detail-Carving
https://github.com/JDAI-CV/Down-to-the-Last-Detail-Virtual-Try-on-with-Detail-Carving
https://github.com/JDAI-CV/Down-to-the-Last-Detail-Virtual-Try-on-with-Detail-Carving
https://github.com/JDAI-CV/Down-to-the-Last-Detail-Virtual-Try-on-with-Detail-Carving
https://github.com/JDAI-CV/Down-to-the-Last-Detail-Virtual-Try-on-with-Detail-Carving
https://github.com/JDAI-CV/Down-to-the-Last-Detail-Virtual-Try-on-with-Detail-Carving
https://github.com/JDAI-CV/Down-to-the-Last-Detail-Virtual-Try-on-with-Detail-Carving
https://github.com/JDAI-CV/Down-to-the-Last-Detail-Virtual-Try-on-with-Detail-Carving
https://github.com/JDAI-CV/Down-to-the-Last-Detail-Virtual-Try-on-with-Detail-Carving
https://github.com/JDAI-CV/Down-to-the-Last-Detail-Virtual-Try-on-with-Detail-Carving
https://github.com/JDAI-CV/Down-to-the-Last-Detail-Virtual-Try-on-with-Detail-Carving
https://github.com/JDAI-CV/Down-to-the-Last-Detail-Virtual-Try-on-with-Detail-Carving
https://github.com/JDAI-CV/Down-to-the-Last-Detail-Virtual-Try-on-with-Detail-Carving
https://github.com/JDAI-CV/Down-to-the-Last-Detail-Virtual-Try-on-with-Detail-Carving
https://github.com/JDAI-CV/Down-to-the-Last-Detail-Virtual-Try-on-with-Detail-Carving
https://github.com/JDAI-CV/Down-to-the-Last-Detail-Virtual-Try-on-with-Detail-Carving
https://github.com/JDAI-CV/Down-to-the-Last-Detail-Virtual-Try-on-with-Detail-Carving
https://github.com/JDAI-CV/Down-to-the-Last-Detail-Virtual-Try-on-with-Detail-Carving
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• Microsoft Teams segmentation
Video Segmentation

Applications of Image Segmentation



Classification Task

0.01 Dog

0.01 Cat

0.91 Racoon*

… …

0.01 Flower

We map images (x) to labels (y)

The Reconstruction Task
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Reconstruction task

We try to get back the original image while constraining the network to only learn meaningful information
- Can be used for denoising images
- We lose information during the constraining
- How can we upsample from the latent representation?

Latent space 
representation

BottleneckEncoder Decoder

The Reconstruction Task
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Lecture 8.

Upsampling1 Semantic Segmentation2

Upsampl ing
Budapest ,  14th October  2025
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How to upsample?
1. Unpooling
2. Transposed Convolution

1. Upsampling

Upsampling
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• Whereas pooling operations downsample the resolution by summarizing a local area with a single value (ie. average or max pooling), 
"unpooling" operations upsample the resolution by distributing a single value into a higher resolution.

Pooling Unpooling

Bilinear
Linear Shifted

1. Upsampling

Unpooling
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• Whereas pooling operations downsample the resolution by summarizing a local area with a single value (I.e. average or max pooling), 
"unpooling" operations upsample the resolution by distributing a single value into a higher resolution.

• No weights, nothing to learn here!

Unpooling

1. Upsampling

In-Network upsampling: “Max Unpooling”
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• Most popular approach
• Whereas a typical convolution operation will take the dot product of the values currently in the filter's view and produce a single value 

for the corresponding output position, a transpose convolution essentially does the opposite. For a transpose convolution, we take a 
single value from the low-resolution feature map and multiply all the weights in our filter by this value, projecting those weighted 
values into the output feature map.

1.  Upsampling

Transposed Convolution
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• 1D example

a

b

c

d

e

x

y

z

Good explanation: https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0 

Input size: 5 Filter size: 3
Stride: 2

*

1. Upsampling

Normal Convolution

https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
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a

b

c

d

e

x

y

z

Input size: 5 Filter size: 3
Stride: 2

*

1. Upsampling

Normal Convolution

Output size: 2

ax + by + cz=

Good explanation: https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0 

• 1D example

https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
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x

y

z

Input size: 5 Filter size: 3
Stride: 2

*

1. Upsampling

Normal Convolution

Output size: 2

= ax + by + cz

cx + dy + ez

a

b

c

d

e

Good explanation: https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0 

𝑛 × 𝑛 𝑖𝑚𝑎𝑔𝑒 𝑓 × 𝑓 𝑓𝑖𝑙𝑡𝑒𝑟

𝑝𝑎𝑑𝑑𝑖𝑛𝑔 𝑝 𝑠𝑡𝑟𝑖𝑑𝑒 𝑠

𝑛 + 2𝑝 − 𝑓

𝑠
+ 1

• 1D example

https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
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x

y

z

Input size: 2 Filter size: 3
Stride: 2

a

b *

1. Upsampling

Transposed Convolution

Good explanation: https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0 

• 1D example

https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
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x

y

z

Input size: 2 Filter size: 3
Stride: 2

a

b
*

1. Upsampling

Transposed Convolution

ax

ay

az

Output size: 5

=

Good explanation: https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0 

• 1D example

https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
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x

y

z

Input size: 2 Filter size: 3
Stride: 2

*

1. Upsampling

Transposed Convolution

ax

ay

az

Output size: 5

ax

ay

az + bx

by

bz

𝒐𝒖𝒕𝒑𝒖𝒕 𝒔𝒊𝒛𝒆 = (𝑖𝑛𝑝𝑢𝑡 𝑠𝑖𝑧𝑒 − 1) ∗ 𝑠𝑡𝑟𝑖𝑑𝑒 − 2 ∗ 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 + (𝑘𝑒𝑟𝑛𝑒𝑙 𝑠𝑖𝑧𝑒 − 1) + 1
a

b

Good explanation: https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0 

• 1D example

https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
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• 1D example
• For filter sizes which produce an overlap in the output feature map, the overlapping values are simply added 

together.
• Less common names: Deconvolution, Fractionally strided convolution, Up convolution, …

1. Upsampling

Transposed Convolution

Good explanation: https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0 

https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0


1. Upsampling

Normal Convolution

0

a

b

c

d

e

0
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z

Padding = 1

Padding = 1

*

0

a

b

c

d

e

0

x

y

z

Padding = 1

Padding = 1

* =

𝑛 × 𝑛 𝑖𝑚𝑎𝑔𝑒 𝑓 × 𝑓 𝑓𝑖𝑙𝑡𝑒𝑟

𝑝𝑎𝑑𝑑𝑖𝑛𝑔 𝑝 𝑠𝑡𝑟𝑖𝑑𝑒 𝑠

𝑛 + 2𝑝 − 𝑓

𝑠
+ 1
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1. Upsampling

Normal Convolution
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e
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Padding = 1

x

y

z

0

a

b

c

d

e

0

Padding = 1

* =

Padding = 1
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Stride = 2
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1. Upsampling

𝒐𝒖𝒕𝒑𝒖𝒕 𝒔𝒊𝒛𝒆 = (𝑖𝑛𝑝𝑢𝑡 𝑠𝑖𝑧𝑒 − 1) ∗ 𝑠𝑡𝑟𝑖𝑑𝑒 − 2 ∗ 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 + (𝑘𝑒𝑟𝑛𝑒𝑙 𝑠𝑖𝑧𝑒 − 1) + 1
Transposed Convolution
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c
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z
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z
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Padding = 1

Padding = 1
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1. Upsampling

Transposed Convolution
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1. Upsampling

Transposed Convolution
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Stride = 2
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1. Upsampling

Summary on 1D
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1. Upsampling

Convolution
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• 2D example

0 0 0 0 0 0 0

0 4 0 0 2 10 0

0 8 16 0 0 20 0

0 0 0 0 0 5 0

0 2 1 0 2 8 0

0 7 1 6 0 2 0

0 0 0 0 0 0 0

2 2 2

1 0 1

2 2 2

* =

Stride = 2

Stride = 2

Padding = 1



1. Upsampling

Transposed Convolution
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• 2D example
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Interactive Jupyter Notebook available on Canvas

$jupyter nbconvert <notebook_name>.ipynb --to slides --post serve

Interactive Explanation on HuggingFace
https://huggingface.co/spaces/PercibalBuxus/TransposedConvolutions

1. Upsampling

https://huggingface.co/spaces/PercibalBuxus/TransposedConvolutions
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Budapest ,  14th October  2025

Instance Segmentation3
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Semantic image segmentation is the task of labelling each pixel of an image with a corresponding 
class of what is being represented. 

Input: RGB image (height × width × 3) or a grayscale (height × width × 1)
Output: a segmentation map (height × width × 1), where each pixel contains a class label represented as an integer.

2. Semantic Segmentation

Semantic Segmentation

Input Semantic Labels

Person
Bicycle
Background
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Output of the neural network is a K  long vector

How should we encode the ground-truth values?
One-hot encoding (K=3):

(cat) 1 -> [1, 0, 0]
(dog) 2 -> [0, 1, 0]
(horse) 3 -> [0, 0, 1,]

Just as h(x): values between 0 and 1, sum up to 1

2. Semantic Segmentation

Multiclass Classification (Recap)



1/14/2026 Deep Network Development 142

Similar to how we treat standard categorical values, we'll create our target by one-hot encoding the class 
labels - essentially creating an output channel for each of the possible classes.

A prediction can be collapsed into a segmentation map by taking the argmax of each depth-wise pixel vector.

Depth-wise argmax

2. Semantic Segmentation

Semantic Segmentation

Semantic Labels



• Sliding Windows + Classification
• Computationally expensive
• Not reusing shared features

2. Semantic Segmentation

How to solve it? The naïve approach:
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Cow

Cow

Grass

Classify center 
pixel with CNNExtract patch

Full Image



• Apply convolutions for all pixels at once, keeping original resolution
• Computationally expensive
• Does not enforce network to learn key features. It only learns a direct mapping from 

input pixels to the segmentation pixels.

2.  Semantic Segmentation

How to solve it? The naïve approach:
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Input:
3 × 𝐻 × 𝑊 Convolutions:

𝐷 × 𝐻 × 𝑊 

Scores:
𝐶 × 𝐻 × 𝑊 

Predictions:
𝐻 × 𝑊 

Conv Conv Conv Conv argmax



Convolutional Autoencoders

1/14/2026 Deep Network Development 145

• Specifically designed for image data. 
• They employ convolutional layers in both the encoder and decoder parts of the network. 
• This architecture allows them to capture spatial dependencies and hierarchical features effectively. 
• The reconstruction of the input image is often blurry and of lower quality due to compression during which 

information is lost.

2.  Semantic Segmentation



Convolutional Autoencoders
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Image Segmentation
• Image segmentation is the process of partitioning an image into multiple segments each belonging to a 

class. 
• The goal is to simplify and/or change the representation of an image by grouping pixel values according 

to the class they belong to.

2 .  Semantic Segmentation
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• One popular approach for image segmentation models is to follow an encoder/decoder structure where we downsample the 
spatial resolution of the input, developing lower-resolution feature mappings which are learned to be highly efficient at discriminating 
between classes, and then upsample the feature representations into a full-resolution segmentation map.

BottleneckEncoder Decoder

2. Semantic Segmentation

Encoder-Decoder Structure

Input:
3 × 𝐻 × 𝑊 

High-res:
𝐷1 × 𝐻/2 × 𝑊/2 

High-res:
𝐷1 × 𝐻/2 × 𝑊/2 

Med-res:
𝐷1 × 𝐻/2 × 𝑊/2 

Med-res:
𝐷1 × 𝐻/2 × 𝑊/2 

Predictions:
𝐻 × 𝑊 

Low-res:
𝐷1 × 𝐻/2 × 𝑊/2 
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The approach of using a “Fully Convolutional" network trained end-to-end, pixels-to-pixels for the task of image segmentation was 
introduced by Long et al. in late 2014. The paper's authors propose adapting existing, well-studied image classification networks (e.g. 
AlexNet) to serve as the encoder module of the network, appending a decoder module with transpose convolutional layers to upsample 
the coarse feature maps into a full-resolution segmentation map.

Fully Convolutional Network (FCN) [1]

[1] Long, Jonathan, Evan Shelhamer, and Trevor Darrell. "Fully convolutional networks for semantic segmentation." Proceedings of the IEEE conference on computer vision and pattern recognition. 2015.

2. Semantic Segmentation

Original AlexNet model

Repurposed AlexNet model

The encoder
produces a coarse
feature map which is
then refined by the
decoder module.

https://arxiv.org/abs/1411.4038


However, because the encoder module reduces the resolution of the input by a 
factor of 32, the decoder module struggles to produce fine-grained 
segmentations.

Fully Convolutional Network (FCN) [1]
2. Semantic Segmentation
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Ground truth target Predicted segmentation

[1] Long, Jonathan, Evan Shelhamer, and Trevor Darrell. "Fully convolutional networks for semantic segmentation." Proceedings of the IEEE conference on computer vision and pattern recognition. 2015.
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• Adding skip connections - The authors address this tension by slowly upsampling (in stages) the 
encoded representation, adding "skip connections" from earlier layers, and summing these two 
feature maps.

• These skip connections from earlier layers in the network (prior to a downsampling operation) 
should provide the necessary detail to reconstruct accurate shapes for segmentation boundaries. 
Indeed, we can recover more fine-grain detail with the addition of these skip connections.

Before

with skip connections

2. Semantic Segmentation

Fully Convolutional Network (FCN) [1]

Skip connections
[1] Long, Jonathan, Evan Shelhamer, and Trevor Darrell. "Fully convolutional networks for semantic segmentation." Proceedings of the IEEE conference on computer vision and pattern recognition. 2015.

Ground truth target Predicted segmentation

Ground truth target Predicted segmentation
Input

Upsampling

Encoder Module

Output



1/14/2026 Deep Network Development 151

• Ronneberger et al. improve upon the "fully 
convolutional" architecture primarily through 
expanding the capacity of the decoder 
module of the network. More concretely, they 
propose the U-Net architecture which "consists 
of a contracting path to capture context and a 
symmetric expanding path that enables precise 
localization."

[2] Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-net: Convolutional networks for biomedical image segmentation." Medical image computing and computer-assisted intervention–MICCAI 2015: 18th international 
conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18. Springer International Publishing, 2015.

U-Net: Convolutional Networks for Biomedical Image Segmentation 
[2]

2. Semantic Segmentation



U-Net Encoder Decoder

2. Semantic Segmentation
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U-Net Encoder

2. Semantic Segmentation

Decoder
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U-Net
2. Semantic Segmentation
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How can we use it for images with arbitrary size?
- Do the segmentation for smaller regions of the image
- On the edges mirror the image
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Advanced U-Net variants
• The standard U-Net model consists of a series of convolution operations for each "block" in the architecture. These convolutional blocks 

can be replaced for more advanced ones such as:
• ResNet blocks
• Inception modules
• Dense blocks
• Etc.

DeepLab
• Deeplab from a group of researchers from Google have proposed a multitude of techniques to improve the existing results and get finer 

output at lower computational costs. The 3 main improvements suggested as part of the research are:
• Atrous convolutions
• Atrous Spatial Pyramidal Pooling
• Conditional Random Fields usage for improving final output

DeepLab v3: https://arxiv.org/abs/1706.05587v3 

Architectures
2. Semantic Segmentation

https://arxiv.org/abs/1706.05587v3


Segment Anything Model (SAM 2)
- Extending SAM with memory to keep the masks over the whole video
- Images are considered as a single frame video 
- iVOS/VOS
• https://sam2.metademolab.com/demo

3. Instance Segmentation

[7] Ravi, N., Gabeur, V., Hu, Y.-T., Hu, R., Ryali, C., Ma, T., … Feichtenhofer, C. (2024). SAM 2: Segment Anything in Images and Videos. arXiv [Cs.CV]. Retrieved from http://arxiv.org/abs/2408.00714
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https://sam2.metademolab.com/demo
https://sam2.metademolab.com/demo
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How to train such networks?
• Have input X (images) and labels Y (masks).
• Define architecture
• Set hyperparameters
• Define loss function and metrics

Training
2. Semantic Segmentation
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Pixel-wise cross entropy loss
• This loss examines each pixel individually, comparing the class predictions (depth-wise pixel vector) to our 

one-hot encoded target vector.
• Problematic for unbalanced classes

Losses
2. Semantic Segmentation

Prediction for a selected pixel Target for the corresponding pixel

Pixel-wise loss is calculated 
as the log loss, summed over 
all possible classes

− ෍
𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝑦𝑡𝑟𝑢𝑒  log 𝑦𝑝𝑟𝑒𝑑

The scoring is repeated over 
all pixels and averaged



1/14/2026 Deep Network Development 159

Pixel-wise cross entropy loss
• This loss examines each pixel individually, comparing the class predictions (depth-wise pixel vector) to our one-hot encoded target 

vector.
• Problematic for unbalanced classes

2. Semantic Segmentation

Losses
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Dice coefficient

Dice Loss
• Another popular loss function for image segmentation tasks is based on the Dice coefficient, which is essentially a measure of overlap 

between two samples. This measure ranges from 0 to 1 where a Dice coefficient of 1 denotes perfect and complete overlap. The Dice 
coefficient was originally developed for binary data, and can be calculated as:

𝐷𝑖𝑐𝑒 = 2 ×
|A∩B|

|A| + |B|
where:
• |A ∩B | represents the common elements between sets A and B, and
• |A | represents the number of elements in set A 
• |B | represents the number of elements in set B 

Losses
2. Semantic Segmentation

https://en.wikipedia.org/wiki/S%C3%B8rensen%E2%80%93Dice_coefficient


Deep Network Development

Lecture 8.

Upsampling1 Semantic Segmentation2

Instance Segmentat ion
Budapest ,  21 st March 2025

Instance Segmentation3



What is Instance Segmentation?
• Instance Segmentation is identifying each object instance for every known object within an image. It 

assigns a label to each pixel of the image.

3. Instance Segmentation
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What is Instance Segmentation?
Semantic Segmentation: gives per-pixel labels, but 
merges instances.

Object Detection: detects individual object instances, but 
only gives boxes.

Instance Segmentation

3. Instance Segmentation
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What is Instance Segmentation?
Things and Stuff

• Things: Object categories that can be separated 
into object instances (e.g. cats, cars, person)

• Stuff: Object categories that cannot be separated 
into instances (sky, grass, water, trees)

3. Instance Segmentation
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What is Instance Segmentation?
Semantic Segmentation: detects both objects and 
regions but doesn't distinguish individual instances.

Instance Segmentation: distinguishes individual object 
instances, but only for countable objects.

3. Instance Segmentation
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What is Instance Segmentation?
3. Instance Segmentation

Beyond Instance Segmentation: Panoptic Segmentation [3]

Label all pixels in the 
image (both things 
and stuff).

For “thing” categories 
also separate into 
instances.

[3] Kirillov, A., He, K., Girshick, R., Rother, C., & Dollár, P. (2019). Panoptic Segmentation. arXiv [Cs.CV]. Retrieved from http://arxiv.org/abs/1801.00868
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How does Instance Segmentation work?
Instance Segmentation:
• Detect all objects in the image and 

identify the pixels that belong to 
each object (Only things!)

Approach:
• Perform object detection, then 

predict a segmentation mask for 
each object!

3. Instance Segmentation
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How does Instance Segmentation work?
3. Instance Segmentation

[4] Ren, S., He, K., Girshick, R., & Sun, J. (2016). Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. arXiv [Cs.CV]. Retrieved from http://arxiv.org/abs/1506.01497
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Faster R-CNN: Learnable Region Proposals [4]



How does Instance Segmentation work?
3. Instance Segmentation

[4] Ren, S., He, K., Girshick, R., & Sun, J. (2016). Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. arXiv [Cs.CV]. Retrieved from http://arxiv.org/abs/1506.01497
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Object Detection: Faster R-CNN [4]



How does Instance Segmentation work?
3. Instance Segmentation

[5] He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2018). Mask R-CNN. arXiv [Cs.CV]. Retrieved from http://arxiv.org/abs/1703.06870
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Instance Segmentation: Mask R-CNN [5]



Mask R-CNN architecture (2017) [5]
3. Instance Segmentation

[5] He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2018). Mask R-CNN. arXiv [Cs.CV]. Retrieved from http://arxiv.org/abs/1703.06870
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Mask R-CNN



Segmentation labels (recap)
• Similar to how we treat standard categorical values, we'll create our target by one-hot encoding the class labels - essentially creating 

an output channel for each of the possible classes.
• A prediction can be collapsed into a segmentation map by taking the argmax of each depth-wise pixel vector.

Depth-wise argmax

3. Instance Segmentation
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Semantic Labels



Instance Segmentation labels
3. Instance Segmentation

[5] He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2018). Mask R-CNN. arXiv [Cs.CV]. Retrieved from http://arxiv.org/abs/1703.06870
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Mask R-CNN: Example Training Targets [5]



Mask R-CNN architecture
• From [5] (More details on the paper)

3. Instance Segmentation

[5] He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2018). Mask R-CNN. arXiv [Cs.CV]. Retrieved from http://arxiv.org/abs/1703.06870
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Mask R-CNN results [5]
3. Instance Segmentation

[5] He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2018). Mask R-CNN. arXiv [Cs.CV]. Retrieved from http://arxiv.org/abs/1703.06870
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Mask R-CNN results [5]
3. Instance Segmentation

[5] He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2018). Mask R-CNN. arXiv [Cs.CV]. Retrieved from http://arxiv.org/abs/1703.06870
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Summary

Summary
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• Object Detection is a supervised learning task
• Goal is to predict what and where are the objects in an image

• (Core) Region proposal methods: 
• R-CNN: uses selective search to find regions
• Fast R-CNN: first extracts features and then uses selective search
• Faster R-CNN: uses a learnable region proposal network

• One-stage methods like YOLO and SSD, remove the region proposal part used in two-stage methods like the R-CNN family

• Many useful applications

• Techniques like IoU and NMS improve the predictions of object detectors
• mAP is a metric to evaluate object detectors



• Upsampling is essential to reconstruct the original image from lower-resolution feature maps. 
• By increasing the resolution, upsampling enlarges images with the following methods:

• Unpooling upsamples by distributing a single value over higher resolution.
• Transpose Convolution reverses the operation of convolution.

• Object masks are predicted within an image through Image Segmentation.
• Fully Convolutional Networks (FCNs) serve as encoders for coarse feature maps but struggle with detailed 

segmentations.
• U-Net improves localization by expanding the decoder's capacity for segmentation tasks.
• With Mask R-CNN, adding a mask prediction head allows for extended segmentation capabilities.
• Semantic Segmentation: Treats all objects of the same class as one, using one-hot encoded class labels.
• Instance Segmentation: Identifies individual instances of the same object.

Summary
Image Segmentation
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Summary

Further Links + Resources
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• A survey of loss functions for semantic segmentation - 
https://arxiv.org/pdf/2006.14822

• R-CNN - https://medium.com/@selfouly/r-cnn-3a9beddfd55a
• Review: Fully Convolutional Network (Semantic Segmentation) -

https://medium.com/towards-data-science/review-fcn-semantic-
segmentation-eb8c9b50d2d1

• https://www.youtube.com/watch?v=TB-fdISzpHQ
• https://www.youtube.com/watch?v=9AyMR4IhSWQ
• https://www.youtube.com/watch?v=ag3DLKsl2vk (for the explanation only)

https://arxiv.org/pdf/2006.14822
https://medium.com/@selfouly/r-cnn-3a9beddfd55a​
https://medium.com/@selfouly/r-cnn-3a9beddfd55a​
https://medium.com/@selfouly/r-cnn-3a9beddfd55a​
https://medium.com/@selfouly/r-cnn-3a9beddfd55a​
https://medium.com/@selfouly/r-cnn-3a9beddfd55a​
https://medium.com/towards-data-science/review-fcn-semantic-segmentation-eb8c9b50d2d1
https://medium.com/towards-data-science/review-fcn-semantic-segmentation-eb8c9b50d2d1
https://medium.com/towards-data-science/review-fcn-semantic-segmentation-eb8c9b50d2d1
https://medium.com/towards-data-science/review-fcn-semantic-segmentation-eb8c9b50d2d1
https://medium.com/towards-data-science/review-fcn-semantic-segmentation-eb8c9b50d2d1
https://medium.com/towards-data-science/review-fcn-semantic-segmentation-eb8c9b50d2d1
https://medium.com/towards-data-science/review-fcn-semantic-segmentation-eb8c9b50d2d1
https://medium.com/towards-data-science/review-fcn-semantic-segmentation-eb8c9b50d2d1
https://medium.com/towards-data-science/review-fcn-semantic-segmentation-eb8c9b50d2d1
https://medium.com/towards-data-science/review-fcn-semantic-segmentation-eb8c9b50d2d1
https://medium.com/towards-data-science/review-fcn-semantic-segmentation-eb8c9b50d2d1
https://medium.com/towards-data-science/review-fcn-semantic-segmentation-eb8c9b50d2d1
https://medium.com/towards-data-science/review-fcn-semantic-segmentation-eb8c9b50d2d1
https://www.youtube.com/watch?v=TB-fdISzpHQ
https://www.youtube.com/watch?v=TB-fdISzpHQ
https://www.youtube.com/watch?v=TB-fdISzpHQ
https://www.youtube.com/watch?v=TB-fdISzpHQ
https://www.youtube.com/watch?v=9AyMR4IhSWQ
https://www.youtube.com/watch?v=9AyMR4IhSWQ
https://www.youtube.com/watch?v=ag3DLKsl2vk
https://www.youtube.com/watch?v=ag3DLKsl2vk


Books:
• Courville, Goodfellow, Bengio: Deep Learning 

Freely available: https://www.deeplearningbook.org/ 
• Zhang, Aston and Lipton, Zachary C. and Li, Mu and Smola, Alexander J.: Dive into Deep Learning
    Freely available: https://d2l.ai/ 

Courses:
• Deep Learning specialization by Andrew NG
• https://www.coursera.org/specializations/deep-learning 

1/14/2026 Deep Network Development 180

Resources
Summary

https://www.deeplearningbook.org/
https://d2l.ai/
https://www.coursera.org/specializations/deep-learning
https://www.coursera.org/specializations/deep-learning
https://www.coursera.org/specializations/deep-learning
https://www.coursera.org/specializations/deep-learning


That’s all for today!
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