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Recap

Previously on Lecture 4

CNN architectures
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When to use Transfer Learning

\

Task A and B have the same input x

When you have a lot of data for the problem you are transferring from (A) and few data

for the problem you are transferring to (B)
Low level features from A could be helpful for learning B
Faster training. Use pre-trained weights as initialization point whether than randomly

initializing weights

Plane classifier

Learned features
from autoencoder
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ELTE

EOTVOS LORAND
UNIVERSITY &
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Backbone (feature Extractor)
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Recap ELTE
Supervised Learning tasks

@ EGTVOS LORAND
UNIVERSITY &

Semantic Classification Object Instance
Segmentation + Localization Detection Segmentation

Classification

"y CAT DOG, DOG, CAT DOG, DOG, CAT
N J A\ JREESKY J U J o\ y
Y Y Y Y Y
Single Object No objects, just pixels Single Object Multiple Objects Multiple Objects

0 =\\| =\\|
- . -, .
/Il\ 3 /Il‘ \

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/W12022/
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Introduction to Object Detection FITE

D)) oo 4
What is Object Detection?

Classification
[cat, dog, car]

[0.9, 0.05, 0.05] [0.7,0.21, 0.09]

[0.48, 0.51, 0.01]

1/14/2026 Deep Network Development 5



Introduction to Object Detection @ \EITE

% EGTVOS LORAND
What is Object Detection?

- Supervised Learning Task

 Input: RGB image

 Qutput: A set of detected objects;

For each object predict:
- (Category label (from fixed, known set of categories)
« Bounding box (four numbers: x, y, width, height)

1/14/2026 Deep Network Development 6



Introduction to Object Detection @ \EITE

% EGTVOS LORAND
What is Object Detection?

 Multiple outputs: Need to output variable numbers of
objects per image

* Multiple types of outputs: Need to predict “what”
(category label) as well as “where” (bounding box)

- Large images: Classification works at 224x224; need
higher resolution for detection, often ~800x600

1/14/2026 Deep Network Development 1



Introduction to Object Detection FITE g

EQTVOS LORAND ,‘ = 9
GUNIVERSITY A 2L W

Classification + Localization (Object Detection for a single object)

Detecting a single object ~ “What”  Correctlabel:

Cat \
Fully Class Scores
Connected: Cat:09 — Softmax
4096 to 1000 Dog: 0.05 Loss
Car: 0.01

Vector:
4096

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/W12022/

1/14/2026 Deep Network Development 8



Introduction to Object Detection

EOTVOS LORAND /i

_UNIVERSITY & T W

Classification + Localization (Object Detection for a single object)

Detecting a single object ~ “What”  Correctlabel:

Cat l
Fully Class Scores
Connected: Cat: 09 — Softmax
4096 to 1000 Dog: 0.05 Loss
Car: 0.01
Treat localization as a roae g BOX . — 12 10ss [XyWh]
regression problem! Coordinates ! [365, 288, 500, 350]
(X, ¥, w, h)
“Where” Correct box:

(x’, ¥, w’, h')

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/W12022/
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Introduction to Object Detection

EOTVOS LORAND /i

_UNIVERSITY & T W

Classification + Localization (Object Detection for a single object)

Detecting a single object ~ “What”  Correctlabel:

Cat l
Fully Class Scores
Connected: Cat: 09 — Softmax
4096 to 1000 Dog: 0.05 Loss
Car: 0.01
Treat localization as a roae g BOX . — 12 10ss [XyWh]
regression problem! Coordinates ! [365, 288, 500, 350]
(X, ¥, w, h)
“Where” Correct box:

(x’, ¥, w’, h')

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/W12022/
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Introduction to Object Detection

EITE /&

FoTvos LoRAND /S I

Classification + Localization (Object Detection for a single object)

Detecting a single object ~ “What”  Correctlabel:

Cat \
Fully Class Scores
Connected: Cat: 09 — So:tmax
4096 to 1000 Dog: 0.05 0SS
Car: 0.01 \
i Multi-Head Loss
%, ‘. ol ‘; i -“T "7._.1.; :H.! ff“: i WEightEd ) Loss
\ :;:.; R Sum
This image icdumam ’ VeCtor: \
096 Fully
Treat localization as a 4 gggg‘:;t:d‘ Box — L2 Loss
regression problem! Coordinates '
(x, v, w, h)
“Where” Correct box:

’ 7 ’ ]
(X, ¥y, w’, h’)
Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/W12022/
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Introduction to Object Detection FITE &

ESTVOS LORAND ‘ =
_UNIVERSITY &

Classification + Localization (Object Detection for a single object)

CAT: (x, y, w, h) 4 numbers

ﬁf DOG: (x,y, w, h)

} DOG: (x, Y, w, h) 16 numbers
L CAT:(x,y,w, h)

DUCK: (x, y, w, h) Many
DUCK: (XI Y, W, h) numbers!

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/W12022/
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Introduction to Object Detection

»\ ELTE
@ EOTVOS LORAND 4
UNIVERSITY &

Sliding Window (Naive approach)

Apply a CNN to many different
crops of the image, CNN classifies
each crop as object or background

- = ——
Gw A —— } — Dog? NO
i o L Cat? NO
N NP
Background? YES

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/W12022/

1/14/2026 Deep Network Development 13



Introduction to Object Detection FITE

i
Sliding Window (Naive approach)
Apply a CNN to many different
crops of the image, CNN classifies
each crop as object or background
Dog? YES
Cat? NO
Background? NO

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/W12022/

1/14/2026 Deep Network Development 14



Introduction to Object Detection

Sliding Window (Naive approach)

@ EOTVOS LORAND /S
UNIVERSITY &

800 x 600 image
has ~58M boxes!
No way we can

evaluate them all

Apply a CNN to many different
crops of the image, CNN classifies
each crop as object or background

Question: How many possible boxes
are there in an image of size H x W?

Total possible boxes:
Consider a box of size h x w: P

H w
Possible x positions: W —w + 1 z Z W—w+1)(H—-h+1)
Possible y positions: H—h + 1 e

Possible positions:
(W-w+1)*(H-h+1) _CHH+DWW +1)
B 2 2

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/W12022/

1/14/2026 Deep Network Development 15



Introduction to Object Detection

Object Detection for multiple objects

Region proposal based (Two Stage Detectors)
« R-CNN

« Fast R-CNN

- Faster R-CNN

1/14/2026 Deep Network Development 16



Deep Network Development ELTE m

Lecture 8.

Two Stage Detectors

Budapest, 14th October 2025

[1]Two Stage Detectors 2 | One Stage Detectors 3 | Object Detection Metrics




1. Two Stage Detectors @\ FILTE

Region Proposal Detectors (Two Stage Detectors) S

UNIVERSITY &

e Find a small set of boxes that are likely to cover all objects

e Often based on heuristics: e.g. look for “blob-like” image regions

e Relatively fast to run; e.g. Selective Search gives 2000 region
proposals in a few seconds on CPU

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/W12022/

1/14/2026 Deep Network Development 18



1. Two Stage Detectors EITE

% EGTVOS LORAND /8 £ )
UNIVERSITY 4 TL W

Region Proposal Detectors (Two Stage Detectors)

 Selective Search

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/W12022/

1/14/2026 Deep Network Development 19



1. Two Stage Detectors EITE

R-CNN: Region-Based Gonvolutional Neural Network [1]

o5 4
Eg EGTVOS LORAND
UNIVERSITY &

aeroplane? no.

person? yes.

s
s
:
-
-
s
.
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\
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»
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-
o
staooorono f ¢

”~
/)/ A

P
R G
™ s
-
)
ST

" tvmonitor? no.
1. Input images 2. Extract region 3. Compute CNN features 4. Classify regions

proposals (~2k)

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/W12022/
[1] Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. arXiv [Cs.GV]. Retrieved from http://arxiv.org/abs/1311.2524

1/14/2026 Deep Network Development 20


https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

1. Two Stage Detectors ELTE
R-CNN: Region-Based Convolutional Neural Network

! y .‘. .‘.‘.‘.‘.
< UNIVERSITY & LW

7

~—  Regions of
Interest (Rol)
from a proposal
method (~2k)

Example: Justin, J. (2022). EEGS 498 Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

1/14/2026 Deep Network Development 21



1. Two Stage Detectors ELTE J

R-CNN: Region-Based Gonvolutional Neural Network

/~ Warped image
A regions (224x224)

| 1€ \ Interest (Rol)
image 4 — ‘ 7 = from a proposal
' ’ SO method (~2k)

Example: Justin, J. (2022). EEGS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/W12022/

1/14/2026 Deep Network Development 22



1. Two Stage Detectors ELTE
R-CNN: Region-Based Convolutional Neural Network

! y .‘. .‘.‘.‘.‘.
< UNIVERSITY & LW

Chinie Forward each
CoiY Net region through
Comy Net ConvNet
Net ﬁ Warped image
Ay regions (224x224)

M Interest (Rol)
image / — A-l = from a proposal
‘ b method (~2k)

Example: Justin, J. (2022). EEGS 498 Deep Learning for Gomputer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

1/14/2026 Deep Network Development 23



1. Two Stage Detectors @\ FILTE

& EGTVOS LORAND f' =
UNIVERSITY & JL W&

R-CNN: Region-Based Convolutional Neural Network

Class
Class %
Class Conv Forward each
Conv Net region through
Conv Net ConvNet
Net ﬁ Warped image
m regions (224x224)

—  Regions of

‘ Interest (Rol)
image Al £omsarny > from a proposal
' &) method (~2Kk)

Example: Justin, J. (2022] EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI12022/
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1. Two Stage Detectors @\ FILTE

& EGTVOS LORAND f' =
UNIVERSITY & JL W&

R-CNN: Region-Based Convolutional Neural Network

Bbox || Class
Bbox Class f

Bbox | | Class | ® Forward each
Conv ion through
Cony Net | region g

Net ConvNet

Conv =

Net ﬁ Warped image

regions (224x224)

/ -g"—g“"" Regions of
: : ,. Interest (Rol)
image L ‘ X from a proposal
' & ) method (~2k)

Example: Justin, J. (2022] EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI12022/
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1. Two Stage Detectors
Ervlég’l-l;mED y ¢
/) Unversity M3

R-CNN: Region-Based Convolutional Neural Network
R-CNN: Region-Based CNN it ijpeathimeglon

Bounding box regression:

Bbox || Class Predict “transform” to correct the
Bbox % Class Rol: 4 numbers (t,, t, t,, t,)
Bhox | | Class Conv Foryvard each [ Region proposal: (P, Py Py P

Conv Net region through | ransform: (t,, %

Net ConvNet Output box: (b,, b,, by, b,)

Conv y w

Net ﬁ Warped image _ ,

E regions (224x224) Translate relative to box size:

bx = Py + pwtx by = py + phty

Regions of
Interest (Rol)
from a proposal

#:Zl\g T '.
Pl oS = method (~2k)

Log-space scale transform:
bw = pwexp(tw) bh = phexp(th)

Girshick et al, “Rich feature hierarchies for accurate object detection and
semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

d
';‘\—

Input \ P &

;~\

— =/ ™

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/W12022/

1/14/2026 Deep Network Development 26



1. Two Stage Detectors @\ FILTE

% EOTVOS LORAND , P A
UNIVERSITY & JL W&

R-CNN: Region-Based Gonvolutional Neural Network

— > Predicted class:
Input Image “ |
> BBox transformation:

> Predicted class:

Selective . - e ! - Background
by MENESS Y | nie > BBox transformation:
SR | s tx, ty, tw, th
> Predicted class:
, Dog
Proposed boxes ot > BBox transformation:
(px,py,pw,ph) . tx ty, tw, th
(500,250,50,50)
(220,190,70,72)

1/14/2026 Deep Network Development 21



1. Two Stage Detectors ELT E
R-CNN: Region-Based Gonvolutional Neural Network

UNIVERSITY &

Ground Truth:
« (Class: Dog
- Bounding Box (x,y,w,h) = (200,200,120,80)

How to transform the proposed box into the correct bounding box?
We use the predicted transformation values (tx,ty,tw,th)

For example:
X = pX + tX

Bounding box regression:
Predict “transform” to correct the
Rol: 4 numbers (t,, t,, t,, t,)

1/14/2026 Deep Network Development 28



1. Two Stage Detectors EITE

&
2/ Unversity
R-CNN: Region-Based Convolutional Neural Network
R-CNN: Region-Based CNN Classify each region
Bounding box regression:
Bbox || Class Predict “transform” to correct the
Bbox | | Class Rol: 4 numbers (t,, t,, t;, t,)
Bbox | | Class N, E
Eoni orward each
o Net region through PrObIem Very SlOW'
Net ConvNet Need to do ~2k forward
Conv :
asses for each image!
Net & Warped image P &
A regions (224x224)

&7 —= Regions of
Input 4 P V- Interest (Rol)
Image — & N from a proposal
Z - U b Girshick et al, “Rich feature hierarchies for accurate object detection and

m et h Od (N 2 k) semantic segmentation”, CVPR 2014.

Figure copvright Ross Girshick. 2015: source. Reproduced with permission.

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/W12022/

1/14/2026 Deep Network Development 29



1. Two Stage Detectors o
re
@

R-CNN: Region-Based Convolutional Neural Network
R-CNN: Region-Based CNN assiiyeasegion

Bounding box regression:

Bbox || Class Predict “transform” to correct the
Bbox ) Class Rol: 4 numbers (t,, t, t, t,)
Bbox | | Class i Forward each
- e region through  Problem: Very slow!
- ConvNet Need to do ~2k forward
Conv '
asses for each image!
Net b Warped image P .
E regions (224x224)

Solution: Run CNN
*before* warping!

e .
r@é'—vg”’ Regions of
= Interest (Rol)

Input P e—
image / ‘ from a proposal
" method (~2k)

semantic segmentation”, CVPR 2014.

ELTE

FOTVOS LORAND /8

UNIVERSITY &

Girshick et al, “Rich feature hierarchies for accurate object detection and

Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/W12022/

1/14/2026 Deep Network Development
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1. Two Stage Detectors

Fast R-CNN: Region-Based Convolutional Neural Network [2

ELTE

EOTVOS LORAND 4

UNIVERSITY 4

“Slow” R-CNN

Process each region

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI12022/
[2] Girshick, R. (2015). Fast R-CNN. arXiv [Cs.CV]. Retrieved from http://arxiv.org/abs/1504.08083

independently
Bbox || Class
Bbox | | Class
Bbox | | Class o
Conv
Conv Net
Net
Conv

1/14/2026 Deep Network Development
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https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

1. Two Stage Detectors FITE
@ EGTVOS LORAND
Fast R-CNN: Region-Based Convolutional Neural Network

UNIVERSITY & T0 W

“Slow” R-CNN
Process each region
independently

Bbox || Class

Bbox | | Class
Bbox | | Class o

Conv
Conv Net
Net

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/W12022/
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1. Two Stage Detectors @\ FILTE

i
EOTVOS LORAND /4
UNIVERSITY 4

Fast R-CNN: Region-Based Convolutional Neural Network

“Slow” R-CNN
Process each region
independently

Bbox || Class

Bbox | | Class
Bbox | | Class N

Image features B c:;v
“Backbone” ] Run whole image Conv e
network: | through ConvNet
AlexNet, VGG, -—"

ResNet, etc ConvNet

=

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/W12022/
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1. Two Stage Detectors

Fast R-CNN: Region-Based Convolutional Neural Network

Regions of
Interest (Rols)
from a proposal

R . /.~ /" // Image features
“Backbone” L Run whole image
network: through ConvNet
AlexNet, VGG, 23—

ResNet, etc

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/W12022/

ELTE

EOTVOS LORAND /4
UNIVERSITY 4

“Slow” R-CNN

Process each region

Bbox

independently
Bbox || Class
Bbox | | Class
Class o

Conv
Conv Net

Net

Conv

1/14/2026 Deep Network Development
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1. Two Stage Detectors

2 E LTE Jjy
@ EoTvos LorAND Al
UNIVERSITY & JL W

Quick ROI projection to feature map insight

tabby cat heatmap
Convolutional Layer Convolution ¢
. Filter / Kernel size = fx f  Input:5xd
Filter: 3x3
Output: 3x3

In practice it is harder, there are several tricks. For example: ROl Pool and
ROI Align

1/14/2026 Deep Network Development 35



1. Two Stage Detectors FITE
Fast R-CNN: Region-Based Convolutional Neural Network

@ EOTVOS LORAND ,
UNIVERSITY &

“Slow” R-CNN
Process each region

independently

Regions of _ .
Interest (Rols) o ox || Class
from a proposal — Crop + Resize features o] (o] ™
method .

ﬁ@&ﬁ/ Image features ™~ l\c::tv
“Backbone” Run whole image Conv e
network: | through ConvNet
AlexNet, VGG, o s =
ResNet, etc onviNet

Input image

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/W12022/
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1. Two Stage Detectors FITE
Fast R-CNN: Region-Based Convolutional Neural Network

@ EOTVOS LORAND ,
UNIVERSITY &

“Slow” R-CNN
Process each region

independently
Regions of - - —1{ Pper-Reci
-Region Network
Interest (Rols) 5 5 5 o Bbox || Class
from a proposal & b Crop + Resize features Tl SL
method C
; ﬁ@iﬁ/ Image features — l\cl):tv
“Backbone” Run whole image Conv e
network: through ConvNet
AlexNet, VGG, o T
ResNet, etc onviNet

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/W12022/

1/14/2026 Deep Network Development 31



1. Two Stage Detectors @\ FILTE

Fast R-CNN: Region-Based Convolutional Neural Network

@ EOTVOS LORAND ,
UNIVERSITY &

“Slow” R-CNN

Bbox | | Bbox || Bbox | Category and box Process each region
Class Class Class transform per region independently
Reglons vl ’ ’ ’ Per-Region Network Bbox || Class
Interest (Rols) Bbox | | Class
from a proposal b Crop + Resize features Bbox | [ Class | "®
method Conv
ﬁ@é M Image features Conv Net
Net
“Backbone” Run whole image SRS
network: through ConvNet
AlexNet, VGG, E—

ConvNet

ResNet, etc

Example: Justin, J. (2022] EEGS 498: Deep Learnmg fur Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/
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1. Two Stage Detectors

Fast R-CNN

Regions of
Interest (Rols)
from a proposal

ISHIE ﬁ@&ﬁ/ Image features

“Backbone”
network:
AlexNet, VGG,
ResNet, etc

Category and box

transform per region

Bbox Bbox Bbox
Class Class Class
=2 = =
=2 P P
Q (@] (©]

Per-Region Network

Crop + Resize features

ConvNet

un whole image
hrough ConvNet

nput image

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/W12022/

ELTE g
@ EOTVOS LORAND - Y
UNIVERSITY &

Example:

When using
AlexNet for
detection, five
conv layers are
used for
backbone and
two FC layers are
used for per-
region network

1/14/2026

Deep Network Development
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1. Two Stage Detectors FITE
@g EGTVOS LORAND =
Fast R-CNN: Region-Based Convolutional Neural Network

UNIVERSITY & .

Softmax
Fast R-CNN —
Bbox | [ Bbox | [ Bbox | Category and box e . I
. xample:
Class | | Class | | Class | transform per region TS P
— For ResNet, last
: , stage is used as
Regions of z[| [z]| [z]| Per-Region Network BEE
Interest (Rols) 5 5 5 per-region
from a proposal Crop + Resize features — network; the re§t
method I - o of the network is
ﬁé T; 1, 5/ rRAgE TediULES — used as backbone
“Backbone” un whole image '
3x3 conv, 64
network: hrough ConvNet '
AlexNet, VGG, o —
n
ResNet, etc bl

nput image

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/W12022/
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1. Two Stage Detectors EITE

@
) e 4
Fast R-CNN vs “Slow” R-CNN
L Test time (seconds)
Tl'alnlng tlme (HOUI"S) B Including Region propos... [l Excluding Region Propo...

R-CNN R-CNN

SPP-Net 4.3

2.3

SPP-Net

Fast R-CNN 8.75

3
Fast R-CNN l 3
0 25 50 75 100 0.32

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/W12022/
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1. Two Stage Detectors @\ FILTE

Fast R-CNN vs “Slow” R-CNN

@ EOTVOS LORAND /8
UNIVERSITY &

Test time (seconds)

I |ncluding Region propos...

Training time (Hours)

I Excluding Region Propo...

R-CNN R-CNN

SPP-Net
SPP-Net

Fast R-CNN 8.75

Problem: Runtime
dominated by

' |
region prgposals. .

Fast R-CNN

0 25 50 75 100

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/W12022/

1/14/2026 Deep Network Development 42



1. Two Stage Detectors EITE

Region Proposal Network (RPN) D) G 4

UNIVERSITY 4

Run backbone CNN to get
features aligned to input image

Input Image

(e.g. 3 x 640 x 480) Image features
(e.g. 512 x 20 x 15)

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/W12022/
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1. Two Stage Detectors @\ FILTE

iy

2 Qi 4
Region Proposal Network (RPN)
Run backbone CNN to get Imagine an anchor box of

fixed size at each point in

features aligned to input image

the feature map
a s
. g -

e | : -.‘ | b

= 5 I

%) v i
i \
¥ ‘ o 14

Input Image

(e.g. 3 x 640 x 480) Image features
(e.g. 512 x 20 x 15)

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/W12022/
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1. Two Stage Detectors @\ FILTE

& ) =l
@ EOTVOS LORAND -
UNIVERSITY &

Region Proposal Network (RPN) Imagine an anchor box of

fixed size at each pointin
Run backbone CNN to get the feature map
features aligned to input image

EE R Anchor is an
*.-..‘ — T, i __,  object?
1x20x 15

At each point, predict whether
Input Image the corresponding anchor
(e.g. 3 x 640 x 480) Image features contains an object (per-cell
(e.g. 512 x 20 x 15) logistic regression, predict
scores with conv layer)

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/W12022/
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1. Two Stage Detectors @\ FILTE

Region Proposal Network (RPN)

@ EQOTVOS LORAND
UNIVERSITY &

Imagine an anchor box of
fixed size at each point in
the feature map

Run backbone CNN to get
features aligned to input image

Anchor is an
— object?
1x20x 15

» Box transforms
— 4x20x 15

Input Image For positive boxes, also predict
(e.g. 3 x 640 x 480) Image features a box transform to regress
(e.g. 512 x 20 x 15) from anchor box to

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/W12022/
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1. Two Stage Detectors EITE

Region Proposal Network (RPN)

UNIVERSITY &

Problem: Anchor box may
Run backbone CNN to get have the wrong size / shape

features aligned to input image Solution: Use K different
anchor boxes at each point!

[k Anchor is an
ot _.  object?
) [ Kx20x15

T “ — Box transforms
- — 4K x 20 x 15

Input Image At test time: sort all

Image features K*20*15 boxes by their
(e.g. 3x640x 480) 5 score, and take the top ~300

(e.8.512x20x 15) as our region proposals

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/W12022/
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1. Two Stage Detectors

i
[5es]
@
Faster R-CNN: Learnable Region Proposals [3]
[ S /7
Insert Region Proposal T
Network (RPN) to predict ”pooling
proposals from features r\\propcjy | >/ P
Region Proposal Network 5>
Otherwise same as Fast R-CNN: '
Crop features for each feature map .-
proposal, classify each one
) Y 4
S A 4

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI12022/
[3] Ren, S., He, K., Girshick, R., & Sun, J. (2016). Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. arXiv [Cs.CV]. Retrieved from http://arxiv.org/abs/1506.01497
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1. Two Stage Detectors

Faster R-CNN: Learnable Region Proposals [3]

R-CNN Test-Time Speed

SPP-Netm

Fast R-CNN. 2.3

R-CNN

Faster R-CNN| 0.2

0 15 30 45

1/14/2026 Deep Network Development 49



1. Two Stage Detectors

R-CNN Family Comparison

“Slow” R-CNN: Run
CNN independently
for each region

|Bbox Classl
Bbox | | Class T

| | LY |
Sbox | | Cass Conv Forward each
Conv Net region through
ConvNet
Conv Net
L/Warped image
regions (224x224)

=~ Regionsof

1 Interest (Rol)
image /Al £ _7-—," A from a proposal
method (~2k)

Fast R-CNN: Apply
differentiable
cropping to shared
image features

Bbox |Bbo: Bbox | Category and box

class | Class | | Class | transform per region

' ' Per-Region Network
& Crop + Resize features
l Image features
“Backbone” Run whole image
network: through ConvNet

AlexNet, VGG,
ResNet, etc

Regions of
Interest (Rols)

from a proposal
method

ELTE

@ EOTVOS LORAND ,
UNIVERSITY &

Faster R-CNN:
Compute proposals
with CNN

v ...
proposals i ;
Region Proposal Network I8
feature map '
CHN /

4
—rr———r—"

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/W12022/
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1. Two Stage Detectors o \ELTE &

R-CNN Family

Classification Bounding-box

Question: Do we really oss By Pregresionlos
need the second stage? | L |

VN

Faster R-CNN is a
TWO'Stage ObjECt dEtECtOr Classificatior Bounding-box

loss regression loss

First stage: Run once per image R /j/

booling

- Backbone network proposals ,
- Region proposal network

Region Proposal Network

Second stage: Run once per region feature map
- Crop features: Rol pool / align
- Predict object class
- Prediction bbox offset

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI12022/
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Deep Network Development ELTE m

Lecture 8.

One Stage Detectors

Budapest, 14th October 2025

1] Two Stage Detectors [2] One Stage Detectors

3 | Object Detection Metrics




2. One Stage Detectors EITE

@ EOTVOS LORAND /4
Problems with Faster R-CNN
Problem: Anchor box may

UNIVERSITY &
Run backbone CNN to get have the wrong size / shape

features aligned to input image Solution: Use K different
anchor boxes at each point!

[k Anchor is an
ot _.  object?
) [ Kx20x15

T “ — Box transforms
- — 4K x 20 x 15

Input Image At test time: sort all

Image features K*20*15 boxes by their
(e.g. 3x640x 480) 5 score, and take the top ~300

(e.8.512x20x 15) as our region proposals

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/W12022/
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2. One Stage Detectors @\ FILTE

Problems with Faster R-CNN

£
% EQOTVOS LORAND y
UNIVERSITY &

RPN: Classify each anchor as

Single-Stage Object Detection object / not object
Single-Stage Detector: Classify
Run backbone CNN to get each object as one of C
features aligned to input image = »_ categories (or background)

_ A i ~_ Anchor category

= 17 —(C+1) xKx 20 x 15
\ Conv
‘f : ]“ | —— Box transforms
| e 4K x 20 x 15
. , Y L 4
Input Image Remember: K anchors

(e.g. 3 x 640 x 480) Image features at each position in
(e.g. 512 x 20 x 15) image feature map

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/W12022/
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2. One Stage Detectors EITE

Single-Shot Detectors (SSD) [4]

Key ldeas:
1. Multiple Layers — handle different scales
2. Different filters predict boxes of different shapes/sizes

% EOTVOS LORAND 4
UNIVERSITY &

Feature Scores
Maps & Boxes
T | |
! 1
Featu a Detecti ' .
Image = e —tp TN pdp  NMS =P Predictions
Extraction 1 Heads 1
! 1
! 1

Extra Feature Layers
VGG-16 ( : \
— through Conv5_3 layer Classifier : Conv: 3x3x(4x(Classes +4))

\
N X Classifier : Conv: 3x3x(6x(Classes+4))

38

SSD
]
-

Convd_3

|
|
|
1| 19
| )
| | conve Conv? W Conv: 3x3x(4x(Classes+4))
| | (Fcs) Fcn
300 I Conve_2 ‘ b
\ |
38
AN 1 : 19 19 10 o Convi1_2
\ | m
NN i__ _ 1024 1024 i

“Conv: 3x3x1024 Conv: 1x1x1024 Conv: 1x1x256  Conv: 1x1x128  Conv: 1x1x128 Conv: 1x1x128
Conv: 3x3x512-s2 Conv: 3x3x256-s2 Conv: 3x3x256-s1 Conv: 3x3x256-s1

|
|
I
I
I
300 I
I
I
I
I
|
|
|

| Detections:8732 per Class }
| Non-Maximum Suppression |

lse
-

[4] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., & Berg, A. C. (2016). SSD: Single Shot MultiBox Detector. In Computer Vision — EGGV 2016 (pp. 21-37). doi:10.1007/978-3-319-46448-0_2
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2. One Stage Detectors

Single-Shot Detectors (SSD) [4]

ELTE

EOTVOS LORAND /S
UNIVERSITY &

VGG

conv3-64
conv3-64

Feature

Maps conv3-128
conv3-128

conv3-256
conv3-256
conv3-256
conv3-256

Feature
Extraction

conv3-512
conv3-512
conv3-512
conv3-512

w
@
»
W
o
=

300x300

Image

3 channels conv4d_3g 512 channels

1
1 conv3-512

] conv3-512
conv3-512
conv3-512

maxpool
FC-4096
FC-4096
FC-1000
soft-max

[4] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., & Berg, A. C. (2016). SSD: Single Shot MultiBox Detector. In Computer Vision — EGGV 2016 (pp. 21-37). doi:10.1007/978-3-319-46448-0_2
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2. One Stage Detectors EITE

Single-Shot Detectors (SSD) [4]

EE)
Eg EOTVOS LORAND /S R
UNIVERSITY & -

Feature
Maps

[ |
Feature :
Extraction 1
1

|

|

|}

1

[

[

1

1

1

1

1

1

1

[ ]

[

[

300x300 38x38
Im age _b
convéd_3g
1

[4] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., & Berg, A. C. (2016). SSD: Single Shot MultiBox Detector. In Computer Vision — EGGV 2016 (pp. 21-37). doi:10.1007/978-3-319-46448-0_2
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2. One Stage Detectors EITE

Single-Shot Detectors (SSD) [4]

% EOTVOS LORAND y
UNIVERSITY &

Feature
Maps

]

Featu i

eature 3x3 1
Extraction 3 >

]

1

5x5 :
. i

]

]

10x10 g

1

]

19x19 ¥

[
- >

]

]

]

300x300 38x3s I

Image convd_3

[4] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., & Berg, A. C. (2016). SSD: Single Shot MultiBox Detector. In Computer Vision — EGGV 2016 (pp. 21-37). doi:10.1007/978-3-319-46448-0_2
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2. One Stage Detectors

Single-Shot Detectors (SSD) [4]

&\ ELTE
@ EOTVOS LORAND /4
UNIVERSITY 4

Multibox detector

Feature Scores
Maps & Boxes
EREP LU O confidence scores

conv
3X3XxX(ny-4) box offsets

Detection
Heads

[4] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., & Berg, A. C. (2016). SSD: Single Shot MultiBox Detector. In Computer Vision — EGGV 2016 (pp. 21-37). doi:10.1007/978-3-319-46448-0_2
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2. One Stage Detectors

Single-Shot Detectors (SSD) [4]

Multibox detector

@ EOTVOS LORAND /S
UNIVERSITY & JTL W

Feature Scores
Maps & Boxes

Confidence scores

background: 0.5

o R &R AE OB confidence scores tick: 0.7

3x3x(n,-4) box offsets

Box predictions

1
|
|
*
|
|
1
: NN Output: (3, ﬂy, B Pr)
- S Default box: (d,,d,,d,,, d},)
. ;
|
|
1
|
#
1

Prediction: (b,, b_v, b,.b,)

bx = dx + du)ﬂx b}V = dM7eﬂw
by = d)' + dhﬁ_\‘ bh == dheﬁl’

Detection
Heads

[4] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., & Berg, A. C. (2016). SSD: Single Shot MultiBox Detector. In Computer Vision — EGGV 2016 (pp. 21-37). doi:10.1007/978-3-319-46448-0_2
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2. One Stage Detectors EITE

: 2 R
Single-Shot Detectors (SSD) [4]

Feature Scores

Maps & Boxes
1
Feature :
Extraction 1
:
1

Predictions

Detection
Heads

NMS

[4] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., & Berg, A. C. (2016). SSD: Single Shot MultiBox Detector. In Computer Vision — EGGV 2016 (pp. 21-37). doi:10.1007/978-3-319-46448-0_2
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2. One Stage Detectors EITE

iy
E;ji EOTVOS LORAND
= UNIVERSITY &
You Only Look Once (YOLO) [5]
fully fully x B times x C times
...................... connected connected A A
I Vs N\

Input . U

: - (x, y, w, h, obj score) | class probability
[TEE | :  DarkNet >< ><
length: 5B+C

Architecture

= 7x7x1024 4096 7x7x30
448x448x3

[5] Redmon, J., Diwvala, S., Girshick, R., & Farhadi, A. (2016). You Only Look Once: Unified, Real-Time Object Detection. arXiv [Cs.CV]. Retrieved from http://arxiv.org/abs/1506.02640
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2. One Stage Detectors

You Only Look Once (YOLO) [5]

Anchor boxes are highly overlapped in SSD

YOLO cuts the input image uniformly into S x S anchor boxes

Each anchor box predicts B bounding boxes

V2 and V3 add more improvements

[5] Redmon, J., Diwvala, S., Girshick, R., & Farhadi, A. (2016). You Only Look Once: Unified, Real-Time Object Detection. arXiv [Cs.CV]. Retrieved from http://arxiv.org/abs/1506.02640
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2. One Stage Detectors

You Only Look Once (YOLO) [5]

ELTE

EOTVOS LORAND
UNIVERSITY &

= i "-j For each cell, the CNN predicts a vector y: Probability the bounding box
N e G N | pc I contains an object SXSX(5B+C)
1 1 1
bx I 1 0 1 ; 1
- Coordinates of the bounding box's |- I I
b center . - . L]
A < | H |
[ >bh ="l 5 H
(b,b) “h | | Width (neight) of bounding box as S | H
y b a percent of the cell's width or g
(height) g
“ ) - (5B+0)
AN J
c - . 7
% 1 Probability the cell contains an S
object that belongs to class 1 (or
> object that bel lass 1 (or 2)
C given the bounding box contains
b 9 .
i w _) an object
Berkeley SCE

[5] Redmon, J., Diwvala, S., Girshick, R., & Farhadi, A. (2016). You Only Look Once: Unified, Real-Time Object Detection. arXiv [Cs.CV]. Retrieved from http://arxiv.org/abs/1506.02640
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2. One Stage Detectors @« \FITE 2

You Only Look Once (YOLO) - Format

UNIVERSITY M TT W,

SO ®EE D
|
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2. One Stage Detectors

You Only Look Once (YOLO) - Format

SO® & ® @D
|
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2. One Stage Detectors

You Only Look Once (YOLO) - Format
rPC N 0 3
B, || -
B, —
B, — R
Byl | - 1
Cy — p 0.32
¢, || - 1 0.02
Y 7 Y J 0.05 3
0.3 2
2 0
1.3 1
1 J
0
. J
1/14/2026 Deep Network Development
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2. One Stage Detectors o \ELTE &

You Only Look Once (YOLO) - Training .
4 X_train N\ Y_train )

EOTVOS LORAND /4 Y
UNIVERSITY & L .

16 such
By,
vectors |,
Cy
G,

Convolutional Neural Network

16 such
By,
vectors B,
Gy
C,

rPCN
By
16 such B,
vectors |s,
Cy
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2. One Stage Detectors

You Only Look Once (YOLO) - Prediction

4 X_train )

16 such
vectors

16 such
vectors

16 such
vectors

4 Y_train )

Convolutional Neural Network

EOTVOS LORAND 4 Y
UNIVERSITY & L .

oo
()

16 such
vectors

G, \\
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2. One Stage Detectors

You Only Look Once (YOLO)

2 \ELTE
% EOTVOS LORAND 4

UNIVERSITY &

1. Divide the image into cells 2. Each cell predicts B 3. Return bounding boxes
with an S x § grid. bounding boxes. above confidence threshold.

gCar: 0.93,

Cell A cell is responsible for detecting an All other bounding boxes have a
object if the object's bounding box confidence probability less than
falls within the cell. (Notice that each the threshold (say 0.90) so they

Berkeley SCET cell has 2 blue dots.) are suppressed.

In practice, we we would use large values (S = 19 and B = 5) to identify more objects.

1/14/2026 Deep Network Development 10



2. One Stage Detectors

You Only Look Once (YOLO)

Please check the following links for a detailed explanation of YOLO versions:
« https://www.v/labs.com/blog/yolo-object-detection

- https://www.datacamp.com/blog/yolo-object-detection-explained

« Video comparison

EQOTVOS LORAND
UNIVERSITY &

N

~b

For each cell, the CNN predicts a vector y:
—
L ®
b, )
.
b
Berkeley 5Ct v

I

>

[ SN

‘ <

& ‘gﬂc-

(3]
~

Probability the bounding box
contains an object

> Coordinates of the bounding box's
center

AL

N
Width (height) of bounding box as

i a percent of the cell's width or

(height)

<

<
Probability the cell contains an

> object that belongs to class 1 (or 2)

given the bounding box contains
_) anobject

1. Divide the image into cells
with an S x S grid.

2. Each cell predicts B
bounding boxes.

3. Return bounding boxes
above confidence threshold.

Cell

Berkeley st

A cell is responsible for detecting an
object if the object's bounding box
falls within the cell. (Notice that each
cell has 2 blue dots.)

All other bounding boxes have a
confidence probability less than
the threshold (say 0.90) so they

are suppressed.

In practice, we we would use large values (S = 19 and B = 5) to identify more objects.

1/14/2026
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https://www.v7labs.com/blog/yolo-object-detection
https://www.v7labs.com/blog/yolo-object-detection
https://www.v7labs.com/blog/yolo-object-detection
https://www.v7labs.com/blog/yolo-object-detection
https://www.v7labs.com/blog/yolo-object-detection
https://www.v7labs.com/blog/yolo-object-detection
https://www.datacamp.com/blog/yolo-object-detection-explained
https://www.datacamp.com/blog/yolo-object-detection-explained
https://www.datacamp.com/blog/yolo-object-detection-explained
https://www.datacamp.com/blog/yolo-object-detection-explained
https://www.datacamp.com/blog/yolo-object-detection-explained
https://www.datacamp.com/blog/yolo-object-detection-explained
https://www.datacamp.com/blog/yolo-object-detection-explained
https://www.datacamp.com/blog/yolo-object-detection-explained

2. One Stage Detectors

33D vs YOLO

ELTE

EQOTVOS LORAND .
UNIVERSITY &

No. of

3x3 Conv 4 boxes Classes 4offsets g . Feature Layers

VGG-16 \,I ' A :
—-SOUgh COIVG 3 leyer Classifier - Conv (Basse é | o
'\ c
A\ \ N\ Classifier - Conv: 3x3x(6x(Classes+4)) 8 o
\ \\ \\ \\ x (&) 8
) ey PSR, VI, ..\, \ o o
- | T i 18 (&
| ]
: - : " “ g [ e 74.3mAP
. i | Convé_3 l Convé Conv? 3 g SQFPS
i | ) ] o Cunvi Conv: 3x3x(4x(Classes+4)) 2 s
30 | I I ©
\ | 8 | § =
N AN 19 Convi1_2 g I
|3 \ | t o
- I J 1024 L1 | s12] |8 = L |2
***** ~ “Conv: 3x3x1024 Conv: 1x1x1024 Conv; 1x1x256  Conv: 1x1x128  Conv: 1x1x128  Conv 1x1x128 S
Conv: 3x3x512-s2 Conv: 3x3x256-s2 Conv. 3x3x256-s1 Conv: 3x3x256-s1
]
9 S
73
YOLO Customized Architecture % 8
______________ — =
“ || R : 8 |8
g ! \\\ 2 0 63.4mAP
1l || B Y——— LN o = | g/ 4srps
‘ - o =
w [0 g |3
\ | 7 g 2.
N\ | 1024 s
| 3 \\q __________ L -
Fully Connected  Fully Connected _— —
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2. One Stage Detectors

Other Methods

ELTE

EQTVOS LORAND
UNIVERSITY & .

¢ + Multi-resolution Detection
/‘ + Hard-negative Mining

SSD (W. Liu Retina-Net

t al-16 T.Y. Linetal-17,
Yool ednion ;=0 ( )

/ +Bounding Box Regression
DPM et al-16,17)
HOG Det. (P. Felzenszwalb et al-08, 10) One-stage
(N. Dalal et al-05)

VJ Det. detector
(P. Viola et al-01) /" + AlexNet »

2014 2015 2016 2017 2018 2019

/ ’ DR
2001 2004 2006 2008 2012
2014 2015 2016 2017 2018 2019
>
Traditional Detection RCNN\ \ Two-stage
e A Y (K. He et al-14)
om of the cold weapon J :
p / Deep Learning based Fast RCNN
/  Detection Methods (R. Girshick-15)
Technical aesthetics of GPU Faster RCNN Pyramid Networks
' (S. Ren et al-15) (T. Y. Lin et al-17)
‘ + Multi-reference Detection +Eesture Eiasion
s (Anchors Boxes) /
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Deep Network Development ELTE m

Lecture 8.

Object Detection Metrics

Budapest, 14th October 2025

1] Two Stage Detectors 2 | One Stage Detectors [3] Object Detection Metrics




3. Object Detection Metrics

Comparing predictions: Accuracy

Actual

Positive Negative

In case of binary classification, the binary accuracy is: Positive

True Positive False Positive

Negative

Predicted

TP+TN

False Negative | True Negative

A —
Uy = TP ¥ TN+ FP + FN

False positive

where:

Type | Error

« TP =True positive,

« FP = False Positive,
« TN =True negative
« FN = False negative

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/W12022/

False negative

Type Il Error
4

! N FF
‘.* 4
£ \” e

You're not |
. pregnant!

1/14/2026 Deep Network Development
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3. Object Detection Metrics

iy
58
@
Comparing predictions: Accuracy
In case of multi class classification, the accuracy is: Expected
1 2 3 4
T | 52 3 7 2
correct classifications -
Accuracy = PR £ 2| 2 | 28 || 2 0
all classifications %
E 3 5 2 25 12
- This is usually expressed as a percentage, i.e. 90% O O | I
 To get a better insight we usually visualize it in a
confusion matrix Confusion matrix v7

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/W12022/
1/14/2026
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3. Object Detection Metrics

Comparing predictions: Accuracy

Would you consider this model good?

Accuracy: 88%

True label

dogp

catf

carf

Confusion Matrix (35 Dogs)
Accuracy: 0.881

15 20 0

dog cat car
Predicted label

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/W12022/

1/14/2026
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3. Object Detection Metrics EITE

% EOTVOS LORAND ‘ =
UNIVERSITY &

Comparing bhoxes: Intersection over Union (loU)

How can we compare our
prediction to the ground-truth box?

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/W12022/
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3. Object Detection Metrics @\ FILTE

(&) /) EOTVOS ORAND y
Comparing bhoxes: Intersection over Union (loU)

UNIVERSITY & TT W

How can we compare our
prediction to the ground-truth box?

Intersection over Union (loU)

(Also called “Jaccard similarity” or
“Jaccard index”):

Area of Intersection

Area of Union

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/W12022/
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3. Object Detection Metrics @\ FILTE

(&) /) EOTVOS ORAND y
Comparing bhoxes: Intersection over Union (loU)

UNIVERSITY & TT W

How can we compare our
prediction to the ground-truth box?

Intersection over Union (loU)

(Also called “Jaccard similarity” or
“Jaccard index”):

Area of Intersection

Area of Union

loU > 0.5 is “decent”

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/W12022/
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3. Object Detection Metrics @\ FILTE

Comparing boxes: Intersection over Union (loU)

UNIVERSITY &

How can we compare our
prediction to the ground-truth box?

Intersection over Union (loU)

(Also called “Jaccard similarity” or
“Jaccard index”):

Area of Intersection

Area of Union

loU > 0.5 is “decent”,
loU > 0.7 is “pretty good”, e
loU > 0.9 is “almost perfect” e ’

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/W12022/
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3. Object Detection Metrics EITE

EQOTVOS LORAND y 4 %
UNIVERSITY &

G5

Overlapping hoxes

Problem: Object detectors often
output many overlapping detections:

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/W12022/
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3. Object Detection Metrics ELTE
Overlapping boxes

Problem: Object detectors often
output many overlapping detections:

Solution: Post-process raw
detections using Non-Max
Suppression (NMS)

1. Select next highest-scoring box
2. Eliminate lower-scoring boxes

with loU > threshold (e.g. 0.7)
3. If any boxes remain, GOTO 1

loU(M, M) =0.78 o
loU(M, M) = 0.05 3\ ‘*\‘
loU(M, ) = 0.07 |

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/W12022/

FETE AN S AT R "
A

\\zr'_pr\ ‘,A\
‘L \.b":\

R ~‘t“

Puppy image is CCO Public Domain
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3. Object Detection Metrics
Overlapping boxes

Problem: Object detectors often
output many overlapping detections:

N N _“‘_ -m-A

Solution: Post-process raw
detections using Non-Max
Suppression (NMS)

1. Select next highest-scoring box
2. Eliminate lower-scoring boxes
with loU > threshold (e.g. 0.7)

! b : U N
3. If any boxes remain, GOTO 1 R S \i -

/‘,\ R
( ,\\

loU(M, W) =0.74

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/W12022/
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3. Object Detection Metrics

EITE |
@ eorvos LoranD S
UNIVERSITY &

Overlapping boxes

Problem: Object detectors often
output many overlapping detections:

Solution: Post-process raw
detections using Non-Max
Suppression (NMS)

1. Select next highest-scoring box
2. Eliminate lower-scoring boxes

with loU > threshold (e.g. 0.7)
3. If any boxes remain, GOTO 1

| nt\ ’.1 m \'. ’
N\ o |\ "---‘V",’ NG =P fEm——

.‘;.\ ) X \ \‘E‘f%i

\";‘.- s N .

"l

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/W12022/
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3. Object Detection Metrics

NMS Limitations

Problem: Object detectors often N
output many overlapping detections: =;

Solution: Post-process raw
detections using Non-Max
Suppression (NMS)

1. Select next highest-scoring box
2. Eliminate lower-scoring boxes

with loU > threshold (e.g. 0.7)
3. If any boxes remain, GOTO 1

Problem: NMS may eliminate “good”
boxes when objects are highly

overlapping... no good solution =(
Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/W12022/

Crowd image is free for commercial use under the Pixabay license
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3. Object Detection Metrics .
= EATVOS LORAND ,- \ \
NMS Limitations

There are a few other methods that try to improve
detections:

 Soft-NMS: Traditional NMS is a binary
operation that discards all but the highest-
scoring bounding box. Soft-NMS, on the other
hand, assigns lower scores to overlapping boxes
rather than completely removing them. This
results in smoother score degradation for close-
by objects, reducing the chance of removing
valid detections.

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/W12022/
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3. Object Detection Metrics

NMS Limitations

There are a few other methods that try to improve
detections:

Greedy-NMS

 loU Threshold Adaptation: Instead of using a
fixed loU (Intersection over Union) threshold for
NMS, you can dynamically adjust the threshold
based on the object's characteristics. For
instance, you might use a higher loU threshold
for large objects and a lower loU threshold for
smaller objects.

SoftNMS

Adaptive-NMS

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/W12022/
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3. Object Detection Metrics T R
N M S I'i m itat i o n s B ﬁ?(fi boxes @ rorvos oo g i \

0.8
0.7°
0.6

05 Overlap agnostic box selection

More methods: oo |8 .

- Selection of object detections using overlap map ‘;-jI PRI
prEdICtmns B | & Overlap aware box selection
(https://link.springer.com/article/10.1007/s005 T A
21-022-07469-x )  ovrnmap -

« https://www.sciencedirect.com/science/article/
pii/S2214914721001914

« https://arxiv.org/pdf/2201.00865.pdf

 And more...

« Open research field (make your contribution)
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https://link.springer.com/article/10.1007/s00521-022-07469-x
https://link.springer.com/article/10.1007/s00521-022-07469-x
https://link.springer.com/article/10.1007/s00521-022-07469-x
https://link.springer.com/article/10.1007/s00521-022-07469-x
https://link.springer.com/article/10.1007/s00521-022-07469-x
https://www.sciencedirect.com/science/article/pii/S2214914721001914
https://www.sciencedirect.com/science/article/pii/S2214914721001914
https://www.sciencedirect.com/science/article/pii/S2214914721001914
https://arxiv.org/pdf/2207.00865.pdf
https://arxiv.org/pdf/2207.00865.pdf

3. Object Detection Metrics

Evaluating Object Detectors: Mean Average Precision (mAP

1. Run object detector on all test images (with NMS)

2. For each category, compute Average Precision (AP) =
area under Precision vs Recall Curve

Actual
Positive Negative

= Positive True Positive False Positive
2

.S _

b5 Negative | False Negative | True Negative
=

(o

True Positive True Positive
Precision = P EEE—

True Positive True Positive
Recall —_—

or
Actual Results True Positive + False Positive

or
Predicted Results True Positive + False Negative

precision = recall

F]:2$

precision + recall

@ \ELTE
!! EOTVOS LORAND ‘f.‘.‘-"
UNIVERSITY &

Example with detecting Traffic lights
Positive: Traffic light
Negative: Background (non traffic light)

AXIMU

g e ' ‘ ;
g i
TRUE NEGATIVE
FALSE NEGATIVE

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/W12022/
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3. Object Detection Metrics EITE

EOTVOS LORAND S
UNIVERSITY &

@

Evaluating Object Detectors: Mean Average Precision (mAP

1. Run object detector on all test images (with NMS) All dog detections sorted by score

o
2. For each category, compute Average Precision (AP) =
area under Precision vs Recall Curve m m

1. For each detection (highest score to lowest score)
All ground-truth dog boxes

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/W12022/
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3. Object Detection Metrics

Evaluating Object Detectors: Mean Average Precision (mAP

1. Run object detector on all test images (with NMS) All dog detections sorted by score

2. For each category, compute Average Precision (AP) = g
m

area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)

1. If it matches some GT box with loU > 0.5, Match: loU > 0.5

mark it as positive and eliminate the GT
2. Otherwise mark it as negative

All ground-truth dog boxes

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/W12022/
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3. Object Detection Metrics EITE

oo
()

Evaluating Object Detectors: Mean Average Precision (mAP

1. Run object detector on all test images (with NMS) All dog detections sorted by score

2. For each category, compute Average Precision (AP) = g
m

area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)

1. If it matches some GT box with loU > 0.5, Match: loU > 0.5

mark it as positive and eliminate the GT
2. Otherwise mark it as negative

3. Plot a point on PR Curve

All ground-truth dog boxes
Precision=1/1=1.0
Recall=1/3=0.33

+

Precision

| |
Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teachinmg‘@MWIZOZZ/ 1.0

EOTVOS LORAND ,- 2 N
UNIVERSITY &
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3. Object Detection Metrics EITE

oo
()

Evaluating Object Detectors: Mean Average Precision (mAP

1. Run object detector on all test images (with NMS) All dog detections sorted by score
2. For each category, compute Average Precision (AP) =

area under Precision vs Recall Curve ﬂ - m - -
1. For each detection (highest score to lowest score)
1. If it matches some GT box with loU > 0.5, Match: loU > 0.5
mark it as positive and eliminate the GT
2. Otherwise mark it as negative -

3. Plot a point on PR Curve

All ground-truth dog boxes
Precision=2/2=1.0
Recall =2/3 =0.67
T @ ®

Precision

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teachinge%G@UWIZOZZ/ 1.0

EGTVOS LORAND ,‘ =
UNIVERSITY &

1/14/2026 Deep Network Development 94



3. Object Detection Metrics EITE
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Evaluating Object Detectors: Mean Average Precision (mAP

1. Run object detector on all test images (with NMS) All dog detections sorted by score
2. For each category, compute Average Precision (AP) =

.
area under Precision vs Recall Curve ﬂ m
1. For each detection (highest score to lowest score)
1. If it matches some GT box with loU > 0.5, No match > 0.5 loU with GT
mark it as positive and eliminate the GT
2. Otherwise mark it as negative -

3. Plot a point on PR Curve

All ground-truth dog boxes
Precision =2/3 =0.67
Recall =2/3 =0.67

+ O ®
c
S ®
4]
Q
Q
| -
a
| l |
| |
Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teachinﬁe@c@@“WlZOﬂ/ 1.0
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3. Object Detection Metrics EITE
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Evaluating Object Detectors: Mean Average Precision (mAP

1. Run object detector on all test images (with NMS) All dog detections sorted by score
2. For each category, compute Average Precision (AP) =

.
area under Precision vs Recall Curve ﬂ m
1. For each detection (highest score to lowest score)
1. If it matches some GT box with loU > 0.5, No match > 0.5 loU with GT
mark it as positive and eliminate the GT
2. Otherwise mark it as negative -

3. Plot a point on PR Curve

All ground-truth dog boxes
Precision =2/4=0.5
Recall =2/3 =0.67

T @ @
c
o ®
AN
Q
S o
| -
o
] l |
| | |
Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://weh.eecs.umich.edu/~justincj/teaching%ﬁ@tuwmﬂl 1.0

1/14/2026 Deep Network Development 96



3. Object Detection Metrics EITE
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Evaluating Object Detectors: Mean Average Precision (mAP

1. Run object detector on all test images (with NMS) All dog detections sorted by score
2. For each category, compute Average Precision (AP) =

area under Precision vs Recall Curve ﬂ m 0.10
1. For each detection (highest score to lowest score)
1. If it matches some GT box with loU > 0.5, Match: > 0.5 loU /

mark it as positive and eliminate the GT
2. Otherwise mark it as negative
3. Plot a point on PR Curve

>

All ground-truth dog boxes
Precision=3/5=0.6
Recall=3/3=1.0

T @ o
c
ke ®
%] O
Q
9 @
S
('
| l |
| |
Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teachingB&Gﬁ”NIZOZZI 1.0
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3. Object Detection Metrics EITE
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Evaluating Object Detectors: Mean Average Precision (mAP

2. For each category, compute Average Precision (AP) = g
ST T
1. If it matches some GT box with loU > 0.5,

1. Run object detector on all test images (with NMS) All dog detections sorted by score
area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)
mark it as positive and eliminate the GT
2. Otherwise mark it as negative -
3. Plot a point on PR Curve

All ground-truth dog boxes

Precision

Dog AP =0.86
| |

|
Recall 10
Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/W12022/
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3. Object Detection Metrics

Evaluating Object Detectors: Mean Average Precision (mAP %

1. Run object detector on all test images (with NMS)

2. For each category, compute Average Precision (AP) = Car AP = 0 65
area under Precision vs Recall Curve
1. For each detection (highest score to lowest score) Cat AP =0.80

1. If it matches some GT box with loU > 0.5, _
mark it as positive and eliminate the GT Dog AP - 086

2. Otherwise mark it as negative mAP@OS =0.77
3. Plot a point on PR Curve
2. Average Precision (AP) = area under PR curve
3. Mean Average Precision (mAP) = average of AP for
each category

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/W12022/
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3. Object Detection Metrics

Evaluating Object Detectors: Mean Average Precision (mAP

1. Run object detector on all test images (with NMS) D -
MAP@0.5=0.77
2. For each category, compute Average Precision (AP) = 0.5=0

area under Precision vs Recall Curve mA D@)055 =0.71

1. For each detection (highest score to lowest score) > .
1. If it matches some GT box with loU > 0.5, MAP@0.60 = 0.65

mark it as positive and eliminate the GT
2. Otherwise mark it as negative
3. Plot a point on PR Curve mAP@095 =0.2
2. Average Precision (AP) = area under PR curve
3. Mean Average Precision (mAP) = average of AP for
each category COCOmAP=0.4
4. For “COCO mAP”: Compute mAP@thresh for each loU
threshold (0.5, 0.55, 0.6, ..., 0.95) and take average

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/W12022/
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3. Object Detection Metrics

Understanding object detection paper results

Object Detection on COCO test-dev

Hardware independent metrics:

«  mAP (Mean Average Precision): Overall average
precision across classes and loU thresholds, indicating
detection quality.

«  AP50: Average precision at an loU threshold of 0.50, a
lenient measure of detection accuracy.

«  AP75: Average precision at an loU threshold of 0.75, a
stricter measure of accuracy.

«  APS/APM/APL: Average precision for small, medium, and
large objects, assessing model performance across object
sizes.

«  Params (M): Number of model parameters, in millions,
indicating model size.

«  GFLOPs: Computational complexity, showing the number of
floating-point operations needed for a forward pass.

Hardware dependent metrics:
- latency, Inference speed

COCO test-dev Benchmark (Object Detection) | Papers With Code

Leaderboard Dataset
box mAF il a v
B0
DyHead (Swin-L, multi scale, self=trdinini
60 DetectoRS (ResNeXt-101-64x4d, multizscale
MNAS-FPN (AmoebaNet=D-learnedaug)y
o D-RFCN + SNIP (DPN-98 with flip, multizscale)
g Mask R-CNN (ResNeXt-101-EEN)
é 40 Faster R-CNN (box refinement, context ymulti-scale testing)
e 550512
FastzRCAN
20
o
2016 2017 2018 2018 2020 2027 2022
Other models Models with highest box mAP
Filter:
box + P =
box arams
Ran Mod AP50 AP73 AP5 APM APL GFLOPs Training Pap
mAP M}
DETRs with
Collaborative
1 Co-DETR 66.0 348 N Hybrid

Assignments

Traininn

ELTE fa
EOTVOS LORAND /
UNIVERSITY &

Internimage-H

2023 2024

Edit Leaderboard
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3. Object Detection Metrics ELTE
Understanding object detection paper results

-  mAP (Mean Average Precision): This is the average precision across different classes and loU (Intersection over Union) thresholds. It’s a
comprehensive metric for measuring the performance of object detection models. The higher the mAP, the better the model's precision and recall
performance over all categories and thresholds.

«  AP50 (Average Precision at 1o0U=0.50): This metric evaluates the average precision when the loU threshold is set to 0.50. This means that, for a
detection to be considered correct, the predicted bounding box must overlap the ground truth by at least 50%. It is often considered a relatively
lenient metric.

«  AP75 (Average Precision at loU=0.75): Like AP50.

« APS (Average Precision for Small Objects): This metric calculates the average precision for detecting small objects. Smaller objects can he more
difficult to detect accurately, so this metric specifically tracks how well the model handles smaller object sizes.

«  APM/APL: Average precision for medium and large objects, assessing model performance across object sizes.

« Params (M) (Model Parameters in Millions): This metric shows the number of parameters in the model, typically in millions (M). More parameters
often mean a larger, more complex model, but not necessarily better performance.

«  GFLOPs (Giga Floating Point Operations): This refers to the number of floating-point operations required to make a single forward pass through
the model, usually measured in gigaflops (GFLOPs). It is an indicator of the model's computational complexity and can be used to gauge the efficiency
of the model.
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Applications ELTE

Autonomous Driving

N
traffic light
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Applications ELTE
Inventory Scan

() EGTVOS LORAND ‘
UNIVERSITY &
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Applications

Face Detection

@ EOTVOS LORAND /4 ;J
UNIVERSITY &

+ Face Recognition (endless applications)
Attendance check

Entry access to specific place
Security

1/14/2026
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Deep Network Development

Lecture 8.

B A
UNIVERSITY

Image Segmentation

Budapest, 14th October 2025

1| Upsampling

Semantic Segmentation

Instance Segmentation



Recap — ETE
Previously on Lecture 5
« Single-Shot Detectors: Naive SSD, YOLO -

Feature
-

* Multi-box Detection B
« Non-Max Suppression (NMS) '

Predictions

Detection
Heads

NMS

fully .
fully x B times x C times
X TREEEEIRRPREERPPRERRS necte 4  connected n I
T — 's N N
Input | |- S T _ —~
: . >< >< (x, y, w, h, obj score) | class probability
length: 5B+C

Image DarkNet

\ Architecture
|| 7x7x1024 4096 7x7x30

448x448x3
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Recap

Previously on Lecture 5

« (Object Detection Metrics: loU, mAP, etc.
« Applications of Object Detection

EOTVOS LORAND , -
UNIVERSITY &

How can we compare our prediction
to the ground-truth box?

Intersection over Union (loU)
(Also called “Jaccard similarity” or
“Jaccard index”):

Area of Intersection

Area of Union
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Supervised Learning tasks

UNIVERSITY &

Semantic Classification Object Instance
Segmentation + Localization Detection Segmentation

Classification

CAT sy CAT
N J U ’ J U J N J
Y Y Y Y Y
Single Object No objects, just pixels Single Object Multiple Objects Multiple Objects

0 2\“ 0 0 2\“
Zn® Zn\®
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Applications of Image Segmentation | (()) EII\“ETR;E m
Image Segmentation -
A/_/SA
Semantic Segmentation Instance Segmentation
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Applications of Image Segmentation o\ FEILTE

g2 )
% EOTVOS LORAND 8

UNIVERSITY & JL W

Video Segmentation
Autonomous Driving example - NVIDIA DRIVE (2024)

road | sidewalk = buiding = wall [IfeRcel N pole vegetation

terrain sky person  rider truck train motorcycle  bike NVIDIA.

DRIVE

Impulse Noise

= T

CNN Method SegFormer
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Applications of Image Segmentation FITE

() EQTVOS LORAND ,; =
UNIVERSITY & JL W

Applications

 Medical image diagnosis

https://github.com/mateuszbuda/brain-segmentation-pytorch
‘ https://github.com/Saswatm123/3D-Brain-Tumor-Segmentation-PyTorch

https://github.com/hahnicity/pytorch-lung-segmentation
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Applications of Image Segmentation

Applications

 Medical image diagnosis

4

i

» , »
Bt ; ‘ , \
A . | Advancing
W ' tumor

. Edema

Non-advancing
tumor

Necrotic
tumor core
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Applications of Image Segmentation FITE

o
E;ji EOTVOS LORAND /4 £ |3 Y
& UNIVERSITY & \
Applications
* Entertamment https://towardsdatascience.com/semantic-image-segmentation-with-deeplabv3-pytorch-989319a9a4fb
https://github.com/thuyngch/Human-Segmentation-PyTorch
* PhOtO Effe(;t https://github.com/kishorkuttan/Deep-Virtual-Try-On
: https://github.com/shadow2496/VITON-HD
* Vlrtual try on https://github.com/JDAI-CV/Down-to-the-Last-Detail-Virtual-Try-on-with-Detail-Carving
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Applications of Image Segmentation o\ FEILTE
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Video Segmentation
« Microsoft Teams segmentation
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The Reconstruction Task ELTE
- ] G/ Unversiry M
Classification Task
We map images (x) to labels (y)
Dense
Conv1
| L 1L 2 L 3 L 4 Flatten
riLayer. r ayer:
64 ,g‘i’i_)’i, ayers  Layers FD 0.01 Dog
128 256
512 Soﬁ_max 0-01 Cat
, 012 0.91 Racoon*
= 1
st > ‘ 14
' ' s V/’/f “\ 56 28
- i i 0.01 Flower
Rt o s Lo
i bt 1 Il
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The Reconstruction Task &\ EITE

e

r roTvos Lorann 48
UNIVERSITY &

Reconstruction task

We try to get back the original image while constraining the network to only learn meaningful information
- Can be used for denoising images

- We lose information during the constraining

- How can we upsample from the latent representation?

Latent space
representation

Conv1 {_‘_\
33—

— A —

128 256
512

7

14

28

56

112
224

\ J \ J \ J
1 | I

Encoder Bottleneck Decoder
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Deep Network Development

Lecture 8.

Upsampling

Budapest, 14th October 2025

[1] Upsampling 2

Semantic Segmentation

DLy N
UNIVERSITY

Instance Segmentation



1. Upsampling ELTE

) EGTVOS LORAND / 5

Upsampling
How to upsample?
1. Unpooling
2. Transposed Convolution
19
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1. Upsampling

Unpooling

« Whereas pooling operations downsample the resolution by summarizing a local area with a single value (ie. average or max pooling),
"unpooling” operations upsample the resolution by distributing a single value into a higher resolution.

Pooling Unpooling
A A
Nearest Neighbor | “Bed of Nails” 1 ol2 o
et 30 | O
1 2 1 2 1 2 0 0 0 0
B 2 [ 0 | 9% 9 MaxPool HEEE 30 — i
X ax 00) 3 4 3 4 3 4 3 0 4 0
S 37 | 4 N 37
0 0 0 O
IR 25 | 12 3 4
Input: 2 x 2 Output: 4 x 4 Input: 2 x 2 Output: 4 x 4
Bilinear
Linear Shifted
1/14/2026 Deep Network Development 120




1. Upsampling

@ EOTVOS LORAND /: AN
UNIVERSITY &

Unpooling

« Whereas pooling operations downsample the resolution by summarizing a local area with a single value (l.e. average or max pooling),
"unpooling” operations upsample the resolution by distributing a single value into a higher resolution.

« No weights, nothing to learn here!
In-Network upsampling: “Max Unpooling”

Max Pooling

. Max Unpoolin
Remember which element was max! P g

Use positions from

1 | 216 3 pooling layer 0 0 2 0

3 5|2 1 5 6 112 0/ 1 0 O
. 5 | 2 | | |

: | 212 _ L 78 Rest of the network . 0 _ 0 _ 0 | 0

7| 314 8 3 0 0 4
Input: 4 x 4 Output: 2x 2 Input: 2 x 2 Output: 4 x 4

Corresponding pairs of
downsampling and
upsampling layers
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1. Upsampling EITE
) Wversry M

Transposed Gonvolution

- Most popular approach

- Whereas a typical convolution operation will take the dot product of the values currently in the filter's view and produce a single value
for the corresponding output position, a transpose conveolution essentially does the opposite. For a transpose convolution, we take a
single value from the low-resolution feature map and multiply all the weights in our filter by this value, projecting those weighted
values into the output feature map.

L5 . Input (2D image)
1 2 of size2x 2

2 | Type: transposed’'conv - Stride: 1 Padding: 0

Filter (Kernel)
of size2x2

0 1 Output

2 3

OT:‘::H Tnput Output
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1. Upsampling @ \ELTE

() EOTVOS LORAND ,; L“""'
UNIVERSITY & JL W

Normal Convolution

e 1D example
Input size: 5 Filter size: 3
Stride: 2
a
b X
*
c y
d Z
e

Good explanation: https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
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1. Upsampling @ \ELTE

@ EOTVOS LORAND ,; .
UNIVERSITY & JL W&

Normal Convolution

e 1D example

Input size: 5 Filter size: 3 Output size: 2
Stride: 2
a
b X
* =
c y
d Z

Good explanation: https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
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1. Upsampling

Normal Convolution

e 1D example
Input size: 5 Filter size: 3 Output size: 2
Stride: 2

a

h X nXnimage f X f filter
E * y = ax + by + ez padding p stride s

cx + dy + ez n+2p—f+1
d z S
e

Good explanation: https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
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1. Upsampling @ \ELTE

& EGTVOS LORAND ,; L“""'&
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Transposed Gonvolution

e 1D example

Input size: 2 Filter size: 3

Stride: 2
X
a
* y
]
/4

Good explanation: https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0

1/14/2026 Deep Network Development 126


https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0

1. Upsampling @ \ELTE

& EGTVOS LORAND ,; L“""'&
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Transposed Gonvolution

e 1D example

Input size: 2 Filter size: 3 Output size: 5

Stride: 2
ax
X ay
a * _
b : -
Z

Good explanation: https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
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1. Upsampling @ \ELTE

&) = e
2/ (Nversiry MPIEN
Transposed Gonvolution
e 1D example
Input size: 2 Filter size: 3 Output size: 5
Stride: 2
ax
X ay
* y output size = (input size — 1) * stride — 2 * padding + (kernel size — 1) +1
z hy
hz

Good explanation: https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0

1/14/2026 Deep Network Development 128


https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0

1. Upsampling

Transposed Gonvolution

« 1D example

« For filter sizes which produce an overlap in the output feature map, the overlapping values are simply added
together.

« Less common names: Deconvolution, Fractionally strided convolution, Up convolution, ...

Output

Input Filter -~
/ X < ay
a
y az H|bx
b k
Z /
\ bZ

Good explanation: https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0

|
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1. Upsampling

Normal Convolution

nXnimage [ X f filter
padding p stride s

Padding =1 | g Padding =1 | g r+2p—f+1‘
a a S
b X b X
c * y c y =
d z d Z
e €

Padding =1 | g Padding =1 | g
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1. Upsampling ELTE
@

Normal Convolution

Padding=1 | ¢ Padding=1 | ¢ Padding=1 | ¢ l Stride = 2
a a a
b X b X Ox + ay + bz b X Ox + ay + bz
cC|*|Vy ]| = c| x|y | = bx + ¢y + dz c| x|y | = bx + ¢y + dz
d z d 1 d 1 dx + ey + 0z
e e e

Padding=1 | ¢ Padding=1 | ¢ Padding=1 | ¢
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1. Upsampling

Transposed Gonvolution

output size = (input size — 1) * stride — 2 * padding + (kernel size — 1) + 1

Padding = 1 Y

a X a X
h * y = h * y =
c z c z

Padding = 1 x
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1. Upsampling

Transposed Gonvolution

ELTE

EOTVOS LORAND ,
UNIVERSITY & JL W,

Padding = 1 g Padding = 1 Z Stride = 2 Padding = 1 Z Stride = 2
—p — ———]
ay ay y
n X X X
az +hx az +hx Stride = 2
b * y = * y = * y =
by by '
(H 4 H 4 z
hz hz + ¢x
cy
Padding = 1 Padding = 1 Padding = 1 X
g > g > X g >
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1. Upsampling @ \ELTE
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Transposed Gonvolution

Padding = 1 z 2 Stride = 2
. —
ay Stride = 2 9 ]
X az +hx v 2 2+4=6 Stride = 2
x [y | = by Stride = 2 *x | 2| = 4
z bz + cx ! 2 4+6=10
cy 6
Padding = 1 z 6
—

1/14/2026 Deep Network Development 134



1. Upsampling @ \ELTE
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Summary on 1D

Convolution VS Transposed Convolution
Input size: 5 Filter size: 3 Output size: 3 Input size: 3 Filter size: 3 Output size: 5
Stride: 2 Stride: 2
Padding: 1 Padding: 1
Padding=1 | ¢ Stride = 2
— Padding = 1 Stride = 2
1 adding x ride
ay !
b Stride = 2 X Ox+ay+hz X
az +hx Stride = 2
(H d * y = bx + cy + dz % y -
hy !
d z dx + ey + 0z z
hz + ex
e
Padding = 1 oy
ﬂ’ 0 Padding=] X
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1. Upsampling @ \ELTE

e

@ EOTVOS LORAND ,;J
UNIVERSITY & TL W

Convolution

« 2D example

Padding = 1
Stride = 2
—p

Stride = 2 l 0 0 0 0 0 0 0

0 4 0 0 2 |10 0

0 8 |16 0 0|2 | 0 2 2 2
0 0 0 0 0 5 0 * 1 0 1 =
0 2 1 0 2 8 0 2 2 2
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1. Upsampling

Transposed Gonvolution

« 2D example

Padding = 1
Stride = 2

XIXIXIX|X

|

Stride = 2 l

XIX X XX XX

XX XXX XX
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1. Upsampling «\ELTE /&
R

Interactive Jupyter Notebook available on Canvas

$jupyter nbconvert <notebookR _name>.ipynb --to slides --post serve

Interactive Explanation on HuggingFace

https://huggingface.co/spaces/PercibalBuxus/TransposedConvolutions
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Lecture 8.

Semantic Segmentation

Budapest, 14th October 2025

1] Upsampling [2] Semantic Segmentation 3| Instance Segmentation




2. Semantic Segmentation FITE

& EOTVOS LORAND ,‘ . ‘
UNIVERSITY & TL W

Semantic Segmentation

Semantic image segmentation is the task of labelling each pixel of an image with a corresponding
class of what is being represented.

Input: RGB image (height = width = 3) or a grayscale (height = width = 1)

Output: a segmentation map (height = width = 1), where each pixel contains a class label represented as an integer.

w wwww
w wwww
wwwwww
w wwww
w w ww

Person
Bicycle

i Background

wwwwwwww

w
w
w
PR R RRWOWREWWWw

w
w
w
NNRPRPRPRPWWWWWW

NNRRRRWWEREWWWw

[ = N O N O = = = =Pty
R R R R RRRRRERRWW
R R R R R WW W W W W

w
w
w
Y
=
=R R

Input Semantic Labels
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2. Semantic Segmentation EITE @
2 RNivererry #9EN

Multiclass Classification (Recap)

Output of the neural network is a A" long vector

How should we encode the ground-truth values?
One-hot encoding (K=3):

(cat)1->[1,0,0]

(dog) 2 ->10, 1, 0]

(horse) 3->[0,0,1,]
Just as h(x): values between 0 and 1, sum up to 1
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2. Semantic Segmentation

Semantic Segmentation
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2. Semantic Segmentation @\ FILTE

% EOTVOS LORAND /A
4 \

How to solve it? The naive approach:

« Sliding Windows + Classification
« Computationally expensive
« Not reusing shared features

Classify center
Extract patch  pixel with CNN

. \LJ E|
T—

Full Image 3 NE
; 5
& 224
5 h o2 - it
3 . T k. il
: AT s
=30 ;
e 2 Max
b ke poaling
.'e’ 3 )
! B { 3
q ok oy
g s ‘
\
g
5
. A

0 | -

,,,,,,
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2. Semantic Segmentation
How to solve it? The naive approach:

g UNIVERSITY &
Apply convolutions for all pixels at once, keeping original resolution
« Computationally expensive
« Does not enforce network to learn key features. It only learns a direct mapping from
input pixels to the segmentation pixels.

Conv Conv Conv argmax
— — — >
J Predictions:
Y Scores: % W
Convolutions: CXHXW
DXHXW
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2. Semantic Segmentation @\ FILTE

) EOTVOS LORAND /; 5%
UNIVERSITY &

Convolutional Autoencoders

- Specifically designed for image data.
« They employ convolutional layers in both the encoder and decoder parts of the network.
« This architecture allows them to capture spatial dependencies and hierarchical features effectively.

« The reconstruction of the input image is often blurry and of lower quality due to compression during which
information is lost.

2Bx28x1

Tdu14x32 1dx14x32
1152 1152
4l
TxTub4 ] 0 \ TxTu64
1 3x3x128 ! Ix3Ix128
1 LT ) 1 % 3x i
o r— -{-* —
a
Conv3 ' Reshape
Conv2 stride=2 h : DeConv3
stride=2 el L stride=2
| Flatten FC L
Convl DeConv2
stride =2 stride=2

DeConv1
stride=2
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2. Semantic Segmentation FITE

& EGTVOS LORAND /8 il ‘
UNIVERSITY & TL W

Convolutional Autoencoders

Image Segmentation

« |mage segmentation is the process of partitioning an image into multiple segments each belonging to a
class.

« The goal is to simplify and/or change the representation of an image by grouping pixel values according
to the class they belong to.

Convolutional encoder-decoder

Output

Pooling Indices

RGB Image Segmentation
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2. Semantic Segmentation

Encoder-Decoder Structure

& ESTVOS LORAND ‘ 2 N
UNIVERSITY &

« One popular approach for image segmentation models is to follow an encoder/decoder structure where we downsample the

spatial resolution of the input, developing lower-resolution feature_mappm%ls : _
between classes, and then upsample the feature representations into a full-resolution segmentation map.

Med-res:
XH/2XW/2

D,

Dy XH/2XW/2

Med-res:

which are learned to be highly efficient at dljgcnmmating

Low-res:
\ - D;XH/2XW/2
Input: High-res: High-res: Predictions:
3IXHXW Dy XxH/2XW/2 Dy XH/2XW/2 HxW
\ ' J\ ' J\ ' J
Encoder Bottleneck Decoder
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2. Semantic Segmentation & ELTE

Fully Convolutional Network (FCN) [1] A

2 Sy 4
The approach of using a “fu/ly Convelutionalnetwork trained end-to-end, pixels-to-pixels for the task of image segmentation was
introduced by Long et al. in late 2014. The paper's authors propose adapting existing, well-studied image classification networks (e.g.
AlexNet) to serve as the encoder module of the network, appending a decoder module with transpose convolutional layers to upsample
the coarse feature maps into a full-resolution segmentation map.

Original AlexNet model

“tabby cat”

! , A PTPT ||
xS 3%“3%“15%0‘)’ O I TR ‘

convolut 1onalization

tabby cat heatmap The en(:Oder
produces a coarse
feature map which is
then refined by the
decoder module.

ZVE@

3@ 3pP 0 AQ

Repurposed AlexNet model

[1] Long, Jonathan, Evan Shelhamer, and Trevor Darrell. "Fully convolutional networks for semantic segmentation.” Proceedings of the IEEE conference on computer vision and pattern recognition. 2015.
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2. Semantic Segmentation FITE

Fully Convolutional Network (FCN) [1] = i £

UNIVERSITY & LW
Input 15-Layer Deep Fully Convolutional Network Output

forward/inference

forward /inference

-
-

- backward/learning

backward /learning

DICOM lmage |:| Max Pooling - Upsampling - Softmax Segmentation Mask

[ Convolution + ReLU + MVN

Ground truth target  Predicted segmentation
However, because the encoder module reduces the resolution of the input by a -
factor of 32, the decoder module struggles to produce fine-grained |
segmentations. )

/

[1] Long, Jonathan, Evan Shelhamer, and Trevor Darrell. "Fully convolutional networks for semantic segmentation.” Proceedings of the IEEE conference on computer vision and pattern recognition. 2015.
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2. Semantic Segmentation FITE

Fully Convolutional Network (FCN) [1] Y i 4

- Adding skip connections - The authors address this tension by slowly upsampling (in stages) the Before
encoded representation, adding "skip connections” from earlier layers, and summing these two
feature maps.

Ground truth target Predicted segmentation

N o

- These skip connections from earlier layers in the network (prior to a downsampling operation)
should provide the necessary detail to reconstruct accurate shapes for segmentation boundaries.
Indeed, we can recover more fine-grain detail with the addition of these skip connections.

Upsampling ] ] ]
|  Output with skip connections
2x upsampled 2x upsampled 8x upsampled
prediction prediction prediction (FCN-8s
Encoder Module | | e B
L N P o o
[ (conv layers not shown) ] {" \‘\ [T117] R
image pooll pool2 poold poold poold :'. poold *\a __________ pool3 *\- ..... “{
T ] i predicti T prediction 4~
‘ } | | ‘ }’ _____ - !4 4
i O R > / WY
' 1\_“ ________________ | — wammen™ | |
J Ground truth target Predicted segmentation
Skip connections

[1] Long, Jonathan, Evan Shelhamer, and Trevor Darrell. "Fully convolutional networks for semantic segmentation.” Praceedings of the IEEE conference on computer vision and pattern recognition. 2015.
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2. Semantic Segmentation FITE

% EQOTVOS LORAND ,
UNIVERSITY & JL W,

U-Net: Convolutional Networks for Biomedical Image Segmentation

[2] 1 64 64
128 64 64 2
« Ronneberger et al. improve upon the "fully put
convolutional” architecture primarily through image w|» >l > gggﬁgtemaﬂon
expanding the capacity of the decoder tle 518 22 map
module of the network. More concretely, they HEE EEE
propose the U-Net architecture which "consists IEE
of a contracting path to capture context and a P
symmetric expanding path that enables precise 2% 128
localization." H.l
512 256 I
g 'z > =» conv 3x3, ReLU
or e S 3 copy and crop
-'?-?- ¥ max pool 2x2
$ 2 B 4 up-conv 2x2
— =» conv 1x1

[2] Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-net: Convolutional networks for hiomedical image segmentation.” Medical image computing and computer-assisted intervention—-MICCAI 2015: 18th international
conference, Munich, Germany, October 5-9, 2015, proceedings, part 111 18. Springer International Publishing, 2015.
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u - N et Encoder

1 64 64

input
image &
tile

A
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’128 128
AN E
COf © Q
AN N (9]
' 256 256
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' 512 512 py p
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o™ o

1/14/2026 Deep Network Development 152



2. Semantic Segmentation FITE

u - N et Encoder

161 6a Decoder

% EQTVOS LORAND
UNIVERSITY &

128 64 64 2

input
image
tile

output
segmentation
map

4
A
\/
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’128 128
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B E 8‘;'3
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2. Semantic Segmentation @\ FILTE

U-Net

@ EGTVOS LORAND ,
How can we use it for images with arbitrary size?

UNIVERSITY & JL W

- Do the segmentation for smaller regions of the image
- On the edges mirror the image
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2. Semantic Segmentation

Architectures

Advanced U-Net variants

- The standard U-Net model consists of a series of convolution operations for each "block” in the architecture. These convolutional blocks
can be replaced for more advanced ones such as:

ResNet blocks

Inception modules

Dense blocks

Etc.

Deeplab
- Deeplab from a group of researchers from Google have proposed a multitude of techniques to improve the existing results and get finer
output at lower computational costs. The 3 main improvements suggested as part of the research are:
« Atrous convolutions
« Atrous Spatial Pyramidal Pooling
- Conditional Random Fields usage for improving final output

Deeplab v3: https://arxiv.org/abs/1706.05581v3
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3. Instance Segmentation

Segment Anything Model (SAM 2)

- Extending SAM with memory to keep the masks over the whole video
- |mages are considered as a single frame video
- iVOS/VOS

« https://sam2.metademolab.com/demo

o]
g
@

|

image _, ~memory
encoder attention 4 4 4

mask decoder memory _ memory

encoder bank

prompt encoder

t 1t

mask points box

[7] Ravi, N., Gabeur, V., Hu, Y.-T., Hu, R., Ryali, C., Ma, T,, ... Feichtenhofer, C. (2024). SAM 2: Segment Anything in Images and Videos. arXiv [Cs.CV]. Retrieved from http://arxiv.org/abs/2408.00714
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2. Semantic Segmentation FITE

& EGTVOS LORAND ‘ -
UNIVERSITY &

Training

How to train such networks?

- Have input X (images) and labels Y (masks).
« Define architecture

- Set hyperparameters

« Define loss function and metrics

1/14/2026 Deep Network Development 191



2. Semantic Segmentation ELTE

EQTVOS LORAND

UNIVERSITY

Losses

Pixel-wise cross entropy loss

- This loss examines each pixe/ individually, comparing the class predictions (depth-wise pixel vector) to our
one-hot encoded target vector.

Problematic for unbalanced classes

Pixel-wise loss is calculated
as the log loss, summed over
all possible classes

- Z Ytrue log()’pred)
classes

The scoring is repeated over

Il pixels and d
Prediction for a selected pixel Target for the corresponding pixel all PIXeIS and average




2. Semantic Segmentation @ \ELTE
VA ‘m
Losses

Pixel-wise cross entropy loss

« This loss examines each pixel individually, comparing the class predictions (depth-wise pixel vector) to our one-hot encoded target
vector.

« Problematic for unbalanced classes




2. Semantic Segmentation

Losses

Dice Loss

EOTVOS LORAND ,; =
UNIVERSITY & JL W&

« Another popular loss function for image segmentation tasks is based on the Dice coefficient, which is essentially a measure of overlap

between two samples. This measure ranges from 0 to 1 where a Dice coefficient of 1 denotes perfect and complete overlap. The Dice

coefficient was originally developed for binary data, and can be calculated as:

_ |ANB]|
Dice =2 X
|A| + |B]

where:

 |AnAF| represents the common elements between sets A and B, and

- |A]| represents the number of elements in set A

« |£] represents the number of elements in set B

Dice

coefficient ~

| predicted

2 X

2x
area of

overlapped
(green)

ground truth

total area
(green)
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Lecture 8.

Instance Segmentation

Budapest, 21st March 2025

1] Upsampling 2 [ Semantic Segmentation [3]Instance Segmentation




3. Instance Segmentation = \FITE &

@

EOTVOS LORAND /Sl I
UNIVERSITY & JL &

What is Instance Segmentation?

- Instance Segmentation is identifying each object instance for every known object within an image. It
assigns a label to each pixel of the image.
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3. Instance Segmentation @\ FILTE

What is Instance Segmentation?
Semantic Segmentation: gives per-pixel labels, but Object Detection: detects individual object instances, but

merges instances. only gives boxes.
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3. Instance Segmentation FEITE

ESTVOS LORAND ‘ 2 N
UNIVERSITY &

@8

What is Instance Segmentation?

Things and Stuff

- Things: Object categories that can be separated
into object instances (e.g. cats, cars, person)

- Stuff: Object categories that cannot be separated
into instances (sky, grass, water, trees)
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3. Instance Segmentation FEITE

r EOTVOS LORAND ‘ ‘
UNIVERSITY & TT W

What is Instance Segmentation?

Semantic Segmentation: detects both objects and Instance Segmentation: distinguishes individual object
regions but doesn't distinguish individual instances. instances, but only for countable objects.
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3. Instance Segmentation FEITE

@ EQTVOS LORAND
UNIVERSITY £

What is Instance Segmentation?

Beyond Instance Segmentation: Panoptic Segmentation [3]

Label all pixels in the
image (both things
and stuff).

For “thing” categories
also separate into
instances.

[3] Kirillov, A., He, K., Girshick, R., Rother, C., & Dollar, P. (2019). Panoptic Segmentation. arXiv [Cs.CV]. Retrieved from http://arxiv.org/abs/1801.00868
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3. Instance Segmentation @\ FILTE

How does Instance Segmentation work?

UNIVERSITY M TT W

Instance Segmentation:

« Detect all objects in the image and
identify the pixels that belong to
each object (Only things!)

Approach:

- Perform object detection, then
predict a segmentation mask for
each object!
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3. Instance Segmentation @\ FILTE

= EOTVOS LORAND /r: =1
UNIVERSITY &

How does Instance Segmentation work?
Faster R-CNN: Learnable Region Proposals [4]

Jointly train with 4 losses:

1. RPN classification: anchor box is 1
object / not an object Rol pooling

2. RPN regression: predict transform 5 1 ) N
from anchor box to proposal box proposeV ‘ /
3. Object classification: classify

proposals as background / object Region Proposal Network &
class .
eature map

4. Object regression: predict transform
from proposal box to object box

L T ) A

CNN .
4 ,

[4] Ren, S., He, K., Girshick, R., & Sun, J. (2016). Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. arXiv [Cs.CV]. Retrieved from http://arxiv.org/abs/1506.01497
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3. Instance Segmentation

ELTE
How does Instance Segmentation work?
Object Detection: Faster R-CNN [4]
) seression | Rol pooling
| proposals : |
Object
Detection Region Proposal Network fy*
feature map ”
CNN
- /
DOG, DOG, CAT R — S~
[4] Ren, S., He, K., Girshick, R., & Sun, J. (2016). Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. arXiv [Cs.CV]. Retrieved from http://arxiv.org/abs/1506.01497
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3. Instance Segmentation FEITE

& EOTVOS LORAND ,;J = X
UNIVERSITY & JL W&

How does Instance Segmentation work?
Instance Segmentation: Mask R-CNN [5]

proposals
Instance

Segmentation

Region Proposal Network V

DOG, DOG, CAT e e 2
[5] He, K., Gkioxari, G., Dolldr, P., & Girshick, R. (2018). Mask R-CNN. arXiv [Cs.CV]. Retrieved from http://arxiv.org/abs/1703.06870
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3. Instance Segmentation FEITE

Mask R-CNN architecture (2017) [5] ) v A

UNIVERSITY &

Mask R-CNN
Classification Scores: C
Box coordinates (per class):
4*C
/ y /
/// /1 /
g / : —_
i ' /Rol Align| [} Conv| (7} Conv
256 x14x14 256x14x14

Predict a mask for
each of C classes:
Cx28x28

[5] He, K., Gkioxari, G., Dolldr, P., & Girshick, R. (2018). Mask R-CNN. arXiv [Cs.CV]. Retrieved from http://arxiv.org/abs/1703.06870
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ELTE 4
EOTVOS LORAND 8
UNIVERSITY &

3. Instance Segmentation

Segmentation labels (recap)

|l create our target by one-hot encoding the class labels - essentially creating

we'

Similar to how we treat standard categorical values
an output channel for each of the possible classes

A prediction can be collapsed into a segmentation map by taking the argmax of each depth-wise pixel vector.
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3. Instance Segmentation

Instance Segmentation labels

Mask R-CNN: Example Training Targets [5]

[5] He, K., Gkioxari, G., Dollar, P., & Girshick, R. (2018). Mask R-CNN. arXiv [Cs.CV]. Retrieved from http://arxiv.org/abs/1703.06870
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3. Instance Segmentation FEITE

EGTVOS LORAND
UNIVERSITY

Mask R-CNN architecture

« From [5] (More details on the paper)

performed on any coordinates involved inthe  per 17 [31] in hidden layers. Lefi: ‘res5’ denotes ResNet's fifth

feature Region Proposal
maps ' I
fril | . regions
| RolAlign| l
—P‘ Rol Align ’
mekew, Y — ;E ----------------- , l
dd H class 1 1
RS zuas - Rl >{Toa ]} ‘ box ! ] -
1A A A 7 5 | conv. ’ 5 FC Layers
: - 28x28) , || 28x28 H ! .
80 E Rol x4 %256 *80 : : 1
frask i i
1 ion: 1 1 1
Flgure 3. RoIAhgn. The d?Sh?d gl’ld rep- Figure 4. Head Architecture: We extend two existing Faster R- ' v ! l l
resents a feature map, the solid lines an Rol NN heads [19, 27]. LefvRight pancls show the heads for the ! !
(with 22 bins in this example), and the dots ResNet C4 and FPN backbones, from [19] and [27], respectively, : conv | FC FC
the 4 sampling points in each bin. RolAlign to which a mask branch is added. Numbers denote spatial resolu- i i
computes the value of each sampling point tion and channels. Arrows denote either conv, deconv, or fe layers ! ! B 1
by bilinear interpolation from the nearby grid as can be inferred from context (conv preserves spatial dimension ! :
ints on the feature map. No quantization is while deconv increases it). All convs are 3x 3, except the output - !
po P- 4 ) conv which is 1x1, deconvs are 2x2 with stride 2, and we use 1 jrr=rrrnmr s nn e | I L geeeeeesessesesiessssesssannes .
i : : i i :
Rol, its bins, or the sampling points. stage, which for simplicity we altered so that the first conv oper- i mask - i classes boundary box
ates on a 7x7 Rol with stride 1 (instead of 14x 14 / stride 2 as in oo T ! (SOftmaX) Lo regressor
[19]). Right: * x4’ denotes a stack of four consecutive convs. e e e e ———————————— . TS ; .
mask

[5] He, K., Gkioxari, G., Dollar, P., & Girshick, R. (2018). Mask R-CNN. arXiv [Cs.CV]. Retrieved from http://arxiv.org/abs/1703.06870
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3. Instance Segmentation

Mask R-GNN results [5]

ELTE

EOTVOS LORAND /4
UNIVERSITY &

*

s '_t )
YL T

backbone AP APs(] AP75 APS APMr APL
MNC [10] ResNet-101-C4 246 443 24.8 4.7 259 436
FCIS [26] +OHEM ResNet-101-C5-dilated | 29.2 495 - 7.1 313 50.0
FCIS+++ [26] +OHEM | ResNet-101-C5-dilated | 33.6 545 - - - -
Mask R-CNN ResNet-101-C4 33.1 54.9 348 12.1 35.6 51.1
Mask R-CNN ResNet-101-FPN 35.7 580 378 15.5 38.1 52.4
Mask R-CNN ResNeXt-101-FPN 371 60.0 394 16.9 399 535

Table 1. Instance segmentation mask AP on COCO test-dev. MNC [10] and FCIS [26] are the winners of the COCO 2015 and 2016
segmentation challenges, respectively. Without bells and whistles, Mask R-CNN outperforms the more complex FCIS+++, which includes
multi-scale train/test, horizontal flip test, and OHEM [38]. All entries are single-model results.

[5] He, K., Gkioxari, G., Dollar, P, & Girshick, R. (2018). Mask R-CNN. arXiv [Cs.CV]. Retrieved from http://arxiv.org/abs/1103.06870
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3. Instance Segmentation FEITE

Mask R-CNN results [5] '

G5

UNIVERSITY &

[5] He, K., Gkioxari, G., Dollar, P., & Girshick, R. (2018). Mask R-CNN. arXiv [Cs.CV]. Retrieved from http://arxiv.org/abs/1703.06870
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Summary . A
) veReiy
Sll m mary

Object Detection is a supervised learning task
Goal is to predict what and where are the objects in an image

(Core) Region proposal methods:
« R-CNN: uses selective search to find regions
« Fast R-CNN: first extracts features and then uses selective search
 Faster R-CNN: uses a learnable region proposal network

«  One-stage methods like YOLO and SSD, remove the region proposal part used in two-stage methods like the R-CNN family
Many useful applications

« Techniques like loU and NMS improve the predictions of object detectors
« mAP is a metric to evaluate object detectors




Image Segmentation R
G A
Summary

 Upsampling is essential to reconstruct the original image from lower-resolution feature maps.
By increasing the resolution, upsampling enlarges images with the following methods:

« Unpooling upsamples by distributing a single value over higher resolution.

- Transpose Convolution reverses the operation of convolution.

« Object masks are predicted within an image through Image Segmentation.

* Fully Convolutional Networks (FCNs) serve as encoders for coarse feature maps but struggle with detailed
segmentations.

U-Net improves localization by expanding the decoder's capacity for segmentation tasks.

With Mask R-CNN, adding a mask prediction head allows for extended segmentation capabilities.

Semantic Segmentation: Treats all objects of the same class as one, using one-hot encoded class labels.
Instance Segmentation: Identifies individual instances of the same object.




Summary

Further Links + Resources

« A survey of loss functions for semantic segmentation -
https://arxiv.org/pdf/2006.14822

* R-CNN - https://medium.com/@selfouly/r-cnn-3a9beddfd55a

« Review: Fully Convolutional Network (Semantic Segmentation) -

https://medium.com/towards-data-science/review-fcn-semantic-
segmentation-eb8¢9b50d2d1

» https://www.youtube.com/watch?v=1B-fdISzpH(Q
. 1':‘.ps.//www.v0utu pe.com/watch?v=9AyMR4IhSWQ
e https://www.youtube.com/watch?v=ag3DLKsl2vk (for the explanation only)
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https://medium.com/towards-data-science/review-fcn-semantic-segmentation-eb8c9b50d2d1
https://medium.com/towards-data-science/review-fcn-semantic-segmentation-eb8c9b50d2d1
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https://www.youtube.com/watch?v=TB-fdISzpHQ
https://www.youtube.com/watch?v=TB-fdISzpHQ
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https://www.youtube.com/watch?v=9AyMR4IhSWQ
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Summary

@

Resources

Books:

« Gourville, Goodfellow, Bengio: Deep Learning
Freely available: https://www.deeplearningbook.org/

« [hang, Aston and Lipton, Zachary C. and Li, Mu and Smola, Alexander J.: Dive into Deep Learning
Freely available: https://d2.ai/

Courses:
« Deep Learning specialization by Andrew NG
- https://www.coursera.org/specializations/deep-learning
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That’s all for today!
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