
DEEP NETWORK
DEVELOPMENT

Tamás Takács
PhD student, ELTE, AI Department

tamastheactual@inf.elte.hu
tamastheactual.github.io

Imre Molnár
PhD student, ELTE, AI Department

imremolnar@inf.elte.hu
curiouspercibal.github.io

DEEP NETWORK DEVELOPMENT

mailto:tamastheactual@inf.elte.hu
http://tamastheactual.github.io/
mailto:imremolnar@inf.elte.hu
mailto:imremolnar@inf.elte.hu
http://curiouspercibal.github.io/

Deep Network Development

Lecture 8.

Object Detect ion
Budapest, 14th October 2025

Two Stage Detectors1 Object Detection Metrics3One Stage Detectors2

Recap

Previously on Lecture 4
CNN architectures

When to use Transfer Learning
• Task A and B have the same input x
• When you have a lot of data for the problem you are transferring from (A) and few data

for the problem you are transferring to (B)
• Low level features from A could be helpful for learning B
• Faster training. Use pre-trained weights as initialization point whether than randomly

initializing weights

1/14/2026 Deep Network Development 3

Recap

Supervised Learning tasks

1/14/2026 Deep Network Development

Classification Semantic
Segmentation

Classification
+ Localization

Object
Detection

Instance
Segmentation

CAT GRASS, CAT,
TREE, SKY

Single Object Multiple Objects

CAT DOG, DOG, CAT DOG, DOG, CAT

Single Object No objects, just pixels Multiple Objects

4

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

Introduction to Object Detection

What is Object Detection?

1/14/2026 Deep Network Development

Classification
[cat, dog, car]

[0.9, 0.05, 0.05] [0.7, 0.21, 0.09]

[0.48, 0.51, 0.01]

WHERE?

5

Introduction to Object Detection

What is Object Detection?

1/14/2026 Deep Network Development

• Supervised Learning Task

• Input: RGB image

• Output: A set of detected objects;

For each object predict:
• Category label (from fixed, known set of categories)
• Bounding box (four numbers: x, y, width, height)

(x,y)

Height

Width

6

Introduction to Object Detection

What is Object Detection?

1/14/2026 Deep Network Development

• Multiple outputs: Need to output variable numbers of
objects per image

• Multiple types of outputs: Need to predict “what”
(category label) as well as “where” (bounding box)

• Large images: Classification works at 224x224; need
higher resolution for detection, often ~800x600

7

Introduction to Object Detection

Classification + Localization (Object Detection for a single object)

1/14/2026 Deep Network Development 8

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

Introduction to Object Detection

Classification + Localization (Object Detection for a single object)

1/14/2026 Deep Network Development

Correct Bounding box
[x,y,w,h]
[365, 288, 500, 350]

9

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

Introduction to Object Detection

Classification + Localization (Object Detection for a single object)

1/14/2026 Deep Network Development

Correct Bounding box
[x,y,w,h]
[365, 288, 500, 350]

10

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

Introduction to Object Detection

Classification + Localization (Object Detection for a single object)

1/14/2026 Deep Network Development

Multi-Head Loss

11

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

Introduction to Object Detection

Classification + Localization (Object Detection for a single object)

1/14/2026 Deep Network Development 12

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

Introduction to Object Detection

Sliding Window (Naïve approach)

1/14/2026 Deep Network Development 13

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

Introduction to Object Detection

Sliding Window (Naïve approach)

1/14/2026 Deep Network Development 14

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

Introduction to Object Detection

Sliding Window (Naïve approach)

1/14/2026 Deep Network Development 15

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

Introduction to Object Detection

Object Detection for multiple objects

1/14/2026 Deep Network Development

Region proposal based (Two Stage Detectors)
• R-CNN
• Fast R-CNN
• Faster R-CNN

16

Deep Network Development

Lecture 8.

Two Stage Detectors
Budapest, 14th October 2025

Two Stage Detectors1 Object Detection Metrics3One Stage Detectors2

1. Two Stage Detectors

Region Proposal Detectors (Two Stage Detectors)

1/14/2026 Deep Network Development 18

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

1. Two Stage Detectors

Region Proposal Detectors (Two Stage Detectors)

1/14/2026 Deep Network Development

• Selective Search

19

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

1. Two Stage Detectors

R-CNN: Region-Based Convolutional Neural Network [1]

1/14/2026 Deep Network Development 20

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/
[1] Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. arXiv [Cs.CV]. Retrieved from http://arxiv.org/abs/1311.2524

https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

1. Two Stage Detectors

R-CNN: Region-Based Convolutional Neural Network

1/14/2026 Deep Network Development 21

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

1. Two Stage Detectors

R-CNN: Region-Based Convolutional Neural Network

1/14/2026 Deep Network Development 22

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

1. Two Stage Detectors

R-CNN: Region-Based Convolutional Neural Network

1/14/2026 Deep Network Development 23

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

1. Two Stage Detectors

R-CNN: Region-Based Convolutional Neural Network

1/14/2026 Deep Network Development 24

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

1. Two Stage Detectors

R-CNN: Region-Based Convolutional Neural Network

1/14/2026 Deep Network Development 25

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

1. Two Stage Detectors

R-CNN: Region-Based Convolutional Neural Network

1/14/2026 Deep Network Development 26

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

1. Two Stage Detectors

R-CNN: Region-Based Convolutional Neural Network

Input Image

Selective
Search

R-CNN

R-CNN

➢ Predicted class:
• Background

➢ BBox transformation:
• tx, ty, tw, th

➢ Predicted class:
• Dog

➢ BBox transformation:
• tx, ty, tw, th

R-CNN
➢ Predicted class:

• Background
➢ BBox transformation:

• tx, ty, tw, th

Proposed boxes
(px,py,pw,ph)
• (10,250,50,50)
• (500,250,50,50)
• (220,190,70,72)

1/14/2026 Deep Network Development1/14/2026 Deep Network Development 27

1. Two Stage Detectors

R-CNN: Region-Based Convolutional Neural Network

1/14/2026 Deep Network Development

How to transform the proposed box into the correct bounding box?
We use the predicted transformation values (tx,ty,tw,th)
For example:
x = px + tx

Ground Truth:
• Class: Dog
• Bounding Box (x,y,w,h) = (200,200,120,80)

1/14/2026 Deep Network Development 28

1. Two Stage Detectors

R-CNN: Region-Based Convolutional Neural Network

1/14/2026 Deep Network Development1/14/2026 Deep Network Development 29

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

1. Two Stage Detectors

R-CNN: Region-Based Convolutional Neural Network

1/14/2026 Deep Network Development 301/14/2026 Deep Network Development 30

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

1. Two Stage Detectors

Fast R-CNN: Region-Based Convolutional Neural Network [2]

1/14/2026 Deep Network Development 311/14/2026 Deep Network Development 31

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/
[2] Girshick, R. (2015). Fast R-CNN. arXiv [Cs.CV]. Retrieved from http://arxiv.org/abs/1504.08083

https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

1. Two Stage Detectors

Fast R-CNN: Region-Based Convolutional Neural Network

1/14/2026 Deep Network Development 321/14/2026 Deep Network Development 32

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

1. Two Stage Detectors

Fast R-CNN: Region-Based Convolutional Neural Network

1/14/2026 Deep Network Development 331/14/2026 Deep Network Development 33

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

1. Two Stage Detectors

Fast R-CNN: Region-Based Convolutional Neural Network

1/14/2026 Deep Network Development 341/14/2026 Deep Network Development 34

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

1. Two Stage Detectors

Quick ROI projection to feature map insight

1/14/2026 Deep Network Development 35

Convolutional Layer
• Filter / Kernel size = f x f

Convolution
Input: 5x5
Filter: 3x3
Output: 3x3

In practice it is harder, there are several tricks. For example: ROI Pool and
ROI Align

1/14/2026 Deep Network Development 35

1. Two Stage Detectors

Fast R-CNN: Region-Based Convolutional Neural Network

1/14/2026 Deep Network Development 361/14/2026 Deep Network Development 36

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

1. Two Stage Detectors

Fast R-CNN: Region-Based Convolutional Neural Network

1/14/2026 Deep Network Development 371/14/2026 Deep Network Development 37

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

1. Two Stage Detectors

Fast R-CNN: Region-Based Convolutional Neural Network

1/14/2026 Deep Network Development 381/14/2026 Deep Network Development 38

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

1. Two Stage Detectors

Fast R-CNN: Region-Based Convolutional Neural Network

1/14/2026 Deep Network Development 391/14/2026 Deep Network Development 39

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

1. Two Stage Detectors

Fast R-CNN: Region-Based Convolutional Neural Network

1/14/2026 Deep Network Development 401/14/2026 Deep Network Development 40

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

1. Two Stage Detectors

Fast R-CNN vs “Slow” R-CNN

1/14/2026 Deep Network Development 411/14/2026 Deep Network Development 41

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

1. Two Stage Detectors

Fast R-CNN vs “Slow” R-CNN

1/14/2026 Deep Network Development 421/14/2026 Deep Network Development 42

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

1. Two Stage Detectors

Region Proposal Network (RPN)

1/14/2026 Deep Network Development 431/14/2026 Deep Network Development 43

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

1. Two Stage Detectors

Region Proposal Network (RPN)

1/14/2026 Deep Network Development 441/14/2026 Deep Network Development 44

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

1. Two Stage Detectors

Region Proposal Network (RPN)

1/14/2026 Deep Network Development 451/14/2026 Deep Network Development 45

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

1. Two Stage Detectors

Region Proposal Network (RPN)

1/14/2026 Deep Network Development 461/14/2026 Deep Network Development 46

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

1. Two Stage Detectors

Region Proposal Network (RPN)

1/14/2026 Deep Network Development 471/14/2026 Deep Network Development 47

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

1. Two Stage Detectors

Faster R-CNN: Learnable Region Proposals [3]

1/14/2026 Deep Network Development 481/14/2026 Deep Network Development 48

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/
[3] Ren, S., He, K., Girshick, R., & Sun, J. (2016). Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. arXiv [Cs.CV]. Retrieved from http://arxiv.org/abs/1506.01497

https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

1. Two Stage Detectors

Faster R-CNN: Learnable Region Proposals [3]

1/14/2026 Deep Network Development 491/14/2026 Deep Network Development 49

1. Two Stage Detectors

R-CNN Family Comparison

1/14/2026 Deep Network Development 501/14/2026 Deep Network Development 50

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

1. Two Stage Detectors

R-CNN Family

1/14/2026 Deep Network Development 511/14/2026 Deep Network Development 51

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

Deep Network Development

Lecture 8.

One Stage Detectors
Budapest, 14th October 2025

Two Stage Detectors1 Object Detection Metrics3One Stage Detectors2

2. One Stage Detectors

Problems with Faster R-CNN

1/14/2026 Deep Network Development 531/14/2026 Deep Network Development 53

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

2. One Stage Detectors

Problems with Faster R-CNN

1/14/2026 Deep Network Development 541/14/2026 Deep Network Development 54

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

2. One Stage Detectors

Single-Shot Detectors (SSD) [4]

1/14/2026 Deep Network Development 551/14/2026 Deep Network Development 55

Key Ideas:
1. Multiple Layers → handle different scales
2. Different filters predict boxes of different shapes/sizes

[4] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., & Berg, A. C. (2016). SSD: Single Shot MultiBox Detector. In Computer Vision – ECCV 2016 (pp. 21–37). doi:10.1007/978-3-319-46448-0_2

2. One Stage Detectors

Single-Shot Detectors (SSD) [4]

1/14/2026 Deep Network Development 561/14/2026 Deep Network Development 56

[4] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., & Berg, A. C. (2016). SSD: Single Shot MultiBox Detector. In Computer Vision – ECCV 2016 (pp. 21–37). doi:10.1007/978-3-319-46448-0_2

2. One Stage Detectors

Single-Shot Detectors (SSD) [4]

1/14/2026 Deep Network Development 571/14/2026 Deep Network Development 57

[4] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., & Berg, A. C. (2016). SSD: Single Shot MultiBox Detector. In Computer Vision – ECCV 2016 (pp. 21–37). doi:10.1007/978-3-319-46448-0_2

2. One Stage Detectors

Single-Shot Detectors (SSD) [4]

1/14/2026 Deep Network Development 581/14/2026 Deep Network Development 58

[4] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., & Berg, A. C. (2016). SSD: Single Shot MultiBox Detector. In Computer Vision – ECCV 2016 (pp. 21–37). doi:10.1007/978-3-319-46448-0_2

2. One Stage Detectors

Single-Shot Detectors (SSD) [4]

1/14/2026 Deep Network Development 591/14/2026 Deep Network Development 59

[4] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., & Berg, A. C. (2016). SSD: Single Shot MultiBox Detector. In Computer Vision – ECCV 2016 (pp. 21–37). doi:10.1007/978-3-319-46448-0_2

2. One Stage Detectors

Single-Shot Detectors (SSD) [4]

1/14/2026 Deep Network Development 601/14/2026 Deep Network Development 60

[4] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., & Berg, A. C. (2016). SSD: Single Shot MultiBox Detector. In Computer Vision – ECCV 2016 (pp. 21–37). doi:10.1007/978-3-319-46448-0_2

2. One Stage Detectors

Single-Shot Detectors (SSD) [4]

1/14/2026 Deep Network Development 611/14/2026 Deep Network Development 61

[4] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., & Berg, A. C. (2016). SSD: Single Shot MultiBox Detector. In Computer Vision – ECCV 2016 (pp. 21–37). doi:10.1007/978-3-319-46448-0_2

2. One Stage Detectors

You Only Look Once (YOLO) [5]

1/14/2026 Deep Network Development 621/14/2026 Deep Network Development 62

[5] Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You Only Look Once: Unified, Real-Time Object Detection. arXiv [Cs.CV]. Retrieved from http://arxiv.org/abs/1506.02640

2. One Stage Detectors

You Only Look Once (YOLO) [5]

1/14/2026 Deep Network Development 631/14/2026 Deep Network Development 63

• Anchor boxes are highly overlapped in SSD

• YOLO cuts the input image uniformly into S x S anchor boxes

• Each anchor box predicts B bounding boxes

• V2 and V3 add more improvements

[5] Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You Only Look Once: Unified, Real-Time Object Detection. arXiv [Cs.CV]. Retrieved from http://arxiv.org/abs/1506.02640

2. One Stage Detectors

You Only Look Once (YOLO) [5]

1/14/2026 Deep Network Development 641/14/2026 Deep Network Development 64

[5] Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You Only Look Once: Unified, Real-Time Object Detection. arXiv [Cs.CV]. Retrieved from http://arxiv.org/abs/1506.02640

2. One Stage Detectors

You Only Look Once (YOLO) - Format

1/14/2026 Deep Network Development 651/14/2026 Deep Network Development 65

𝑃𝑐

𝐵𝑥

𝐵𝑦

𝐵𝑤

𝐵ℎ

𝐶1

𝐶2

0

−

−

−

−

−

−

2. One Stage Detectors

You Only Look Once (YOLO) - Format

1/14/2026 Deep Network Development 661/14/2026 Deep Network Development 66

𝑃𝑐

𝐵𝑥

𝐵𝑦

𝐵𝑤

𝐵ℎ

𝐶1

𝐶2

0

−

−

−

−

−

− 1

0.05

0.3

2

1.3

1

0

(0,0)

(1,1)

2. One Stage Detectors

You Only Look Once (YOLO) - Format

1/14/2026 Deep Network Development 671/14/2026 Deep Network Development 67

𝑃𝑐

𝐵𝑥

𝐵𝑦

𝐵𝑤

𝐵ℎ

𝐶1

𝐶2

0

−

−

−

−

−

− 1

0.05

0.3

2

1.3

1

0

(0,0)

(1,1)

1

0.32

0.02

3

2

0

1

2. One Stage Detectors

You Only Look Once (YOLO) - Training

1/14/2026 Deep Network Development 681/14/2026 Deep Network Development 68

X_train Y_train
𝑃𝑐

𝐵𝑥

𝐵𝑦

𝐵𝑤

𝐵ℎ
𝐶1

𝐶2

𝑃𝑐

𝐵𝑥

𝐵𝑦

𝐵𝑤

𝐵ℎ
𝐶1

𝐶2

𝑃𝑐

𝐵𝑥

𝐵𝑦

𝐵𝑤

𝐵ℎ
𝐶1

𝐶2

16 such
vectors

16 such
vectors

16 such
vectors

2. One Stage Detectors

You Only Look Once (YOLO) - Prediction

1/14/2026 Deep Network Development 691/14/2026 Deep Network Development 69

X_train Y_train
𝑃𝑐

𝐵𝑥

𝐵𝑦

𝐵𝑤

𝐵ℎ
𝐶1

𝐶2

𝑃𝑐

𝐵𝑥

𝐵𝑦

𝐵𝑤

𝐵ℎ
𝐶1

𝐶2

𝑃𝑐

𝐵𝑥

𝐵𝑦

𝐵𝑤

𝐵ℎ
𝐶1

𝐶2

16 such
vectors

16 such
vectors

16 such
vectors

𝑃𝑐

𝐵𝑥

𝐵𝑦

𝐵𝑤

𝐵ℎ
𝐶1

𝐶2

16 such
vectors

2. One Stage Detectors

You Only Look Once (YOLO)

1/14/2026 Deep Network Development 701/14/2026 Deep Network Development 70

2. One Stage Detectors

You Only Look Once (YOLO)

1/14/2026 Deep Network Development 711/14/2026 Deep Network Development 71

Please check the following links for a detailed explanation of YOLO versions:
• https://www.v7labs.com/blog/yolo-object-detection
• https://www.datacamp.com/blog/yolo-object-detection-explained
• Video comparison

https://www.v7labs.com/blog/yolo-object-detection
https://www.v7labs.com/blog/yolo-object-detection
https://www.v7labs.com/blog/yolo-object-detection
https://www.v7labs.com/blog/yolo-object-detection
https://www.v7labs.com/blog/yolo-object-detection
https://www.v7labs.com/blog/yolo-object-detection
https://www.datacamp.com/blog/yolo-object-detection-explained
https://www.datacamp.com/blog/yolo-object-detection-explained
https://www.datacamp.com/blog/yolo-object-detection-explained
https://www.datacamp.com/blog/yolo-object-detection-explained
https://www.datacamp.com/blog/yolo-object-detection-explained
https://www.datacamp.com/blog/yolo-object-detection-explained
https://www.datacamp.com/blog/yolo-object-detection-explained
https://www.datacamp.com/blog/yolo-object-detection-explained

2. One Stage Detectors

SSD vs YOLO

1/14/2026 Deep Network Development 721/14/2026 Deep Network Development 72

2. One Stage Detectors

Other Methods

1/14/2026 Deep Network Development 731/14/2026 Deep Network Development 73

Deep Network Development

Lecture 8.

Object Detect ion Metr ics
Budapest, 14th October 2025

Two Stage Detectors1 Object Detection Metrics3One Stage Detectors2

3. Object Detection Metrics

Comparing predictions: Accuracy

1/14/2026 Deep Network Development 751/14/2026 Deep Network Development 75

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

In case of binary classification, the binary accuracy is:

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

where:

• 𝑇𝑃 = True positive,
• 𝐹𝑃 = False Positive,
• 𝑇𝑁 = True negative
• 𝐹𝑁 = False negative

False positive False negative

3. Object Detection Metrics

Comparing predictions: Accuracy

1/14/2026 Deep Network Development 761/14/2026 Deep Network Development 76

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

In case of multi class classification, the accuracy is:

Accuracy =
correct classifications

all classifications

• This is usually expressed as a percentage, i.e. 90%
• To get a better insight we usually visualize it in a

confusion matrix Confusion matrix

3. Object Detection Metrics

Comparing predictions: Accuracy

1/14/2026 Deep Network Development 771/14/2026 Deep Network Development 77

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

Would you consider this model good?

Accuracy: 88%

3. Object Detection Metrics

Comparing boxes: Intersection over Union (IoU)

1/14/2026 Deep Network Development 781/14/2026 Deep Network Development 78

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

3. Object Detection Metrics

Comparing boxes: Intersection over Union (IoU)

1/14/2026 Deep Network Development 791/14/2026 Deep Network Development 79

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

3. Object Detection Metrics

Comparing boxes: Intersection over Union (IoU)

1/14/2026 Deep Network Development 801/14/2026 Deep Network Development 80

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

3. Object Detection Metrics

Comparing boxes: Intersection over Union (IoU)

1/14/2026 Deep Network Development 811/14/2026 Deep Network Development 81

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

3. Object Detection Metrics

Overlapping boxes

1/14/2026 Deep Network Development 821/14/2026 Deep Network Development 82

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

3. Object Detection Metrics

Overlapping boxes

1/14/2026 Deep Network Development 831/14/2026 Deep Network Development 83

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

3. Object Detection Metrics

Overlapping boxes

1/14/2026 Deep Network Development 841/14/2026 Deep Network Development 84

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

3. Object Detection Metrics

Overlapping boxes

1/14/2026 Deep Network Development 851/14/2026 Deep Network Development 85

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

3. Object Detection Metrics

NMS Limitations

1/14/2026 Deep Network Development 861/14/2026 Deep Network Development 86

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

3. Object Detection Metrics

NMS Limitations

1/14/2026 Deep Network Development 871/14/2026 Deep Network Development 87

There are a few other methods that try to improve
detections:

• Soft-NMS: Traditional NMS is a binary
operation that discards all but the highest-
scoring bounding box. Soft-NMS, on the other
hand, assigns lower scores to overlapping boxes
rather than completely removing them. This
results in smoother score degradation for close-
by objects, reducing the chance of removing
valid detections.

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

3. Object Detection Metrics

NMS Limitations

1/14/2026 Deep Network Development 881/14/2026 Deep Network Development 88

There are a few other methods that try to improve
detections:

• IoU Threshold Adaptation: Instead of using a
fixed IoU (Intersection over Union) threshold for
NMS, you can dynamically adjust the threshold
based on the object's characteristics. For
instance, you might use a higher IoU threshold
for large objects and a lower IoU threshold for
smaller objects.

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

3. Object Detection Metrics

NMS Limitations

1/14/2026 Deep Network Development 891/14/2026 Deep Network Development 89

More methods:
• Selection of object detections using overlap map

predictions
(https://link.springer.com/article/10.1007/s005
21-022-07469-x)

• https://www.sciencedirect.com/science/article/
pii/S2214914721001914

• https://arxiv.org/pdf/2207.00865.pdf

• And more…

• Open research field (make your contribution)

https://link.springer.com/article/10.1007/s00521-022-07469-x
https://link.springer.com/article/10.1007/s00521-022-07469-x
https://link.springer.com/article/10.1007/s00521-022-07469-x
https://link.springer.com/article/10.1007/s00521-022-07469-x
https://link.springer.com/article/10.1007/s00521-022-07469-x
https://link.springer.com/article/10.1007/s00521-022-07469-x
https://link.springer.com/article/10.1007/s00521-022-07469-x
https://link.springer.com/article/10.1007/s00521-022-07469-x
https://www.sciencedirect.com/science/article/pii/S2214914721001914
https://www.sciencedirect.com/science/article/pii/S2214914721001914
https://www.sciencedirect.com/science/article/pii/S2214914721001914
https://arxiv.org/pdf/2207.00865.pdf
https://arxiv.org/pdf/2207.00865.pdf

3. Object Detection Metrics

Evaluating Object Detectors: Mean Average Precision (mAP)

1/14/2026 Deep Network Development 901/14/2026 Deep Network Development 90

Example with detecting Traffic lights
Positive: Traffic light
Negative: Background (non traffic light)

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

3. Object Detection Metrics

Evaluating Object Detectors: Mean Average Precision (mAP)

1/14/2026 Deep Network Development 911/14/2026 Deep Network Development 91

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

3. Object Detection Metrics

Evaluating Object Detectors: Mean Average Precision (mAP)

1/14/2026 Deep Network Development 921/14/2026 Deep Network Development 92

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

3. Object Detection Metrics

Evaluating Object Detectors: Mean Average Precision (mAP)

1/14/2026 Deep Network Development 931/14/2026 Deep Network Development 93

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

3. Object Detection Metrics

Evaluating Object Detectors: Mean Average Precision (mAP)

1/14/2026 Deep Network Development 941/14/2026 Deep Network Development 94

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

3. Object Detection Metrics

Evaluating Object Detectors: Mean Average Precision (mAP)

1/14/2026 Deep Network Development 951/14/2026 Deep Network Development 95

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

3. Object Detection Metrics

Evaluating Object Detectors: Mean Average Precision (mAP)

1/14/2026 Deep Network Development 961/14/2026 Deep Network Development 96

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

3. Object Detection Metrics

Evaluating Object Detectors: Mean Average Precision (mAP)

1/14/2026 Deep Network Development 971/14/2026 Deep Network Development 97

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

3. Object Detection Metrics

Evaluating Object Detectors: Mean Average Precision (mAP)

1/14/2026 Deep Network Development 981/14/2026 Deep Network Development 98

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

3. Object Detection Metrics

Evaluating Object Detectors: Mean Average Precision (mAP)

1/14/2026 Deep Network Development 991/14/2026 Deep Network Development 99

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

3. Object Detection Metrics

Evaluating Object Detectors: Mean Average Precision (mAP)

1/14/2026 Deep Network Development 1001/14/2026 Deep Network Development 100

Example: Justin, J. (2022). EECS 498: Deep Learning for Computer Vision (Fall 2019). University of Michigan. https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

3. Object Detection Metrics

Understanding object detection paper results

1/14/2026 Deep Network Development 1011/14/2026 Deep Network Development 101

Hardware independent metrics:
• mAP (Mean Average Precision): Overall average

precision across classes and IoU thresholds, indicating
detection quality.

• AP50: Average precision at an IoU threshold of 0.50, a
lenient measure of detection accuracy.

• AP75: Average precision at an IoU threshold of 0.75, a
stricter measure of accuracy.

• APS/APM/APL: Average precision for small, medium, and
large objects, assessing model performance across object
sizes.

• Params (M): Number of model parameters, in millions,
indicating model size.

• GFLOPs: Computational complexity, showing the number of
floating-point operations needed for a forward pass.

Hardware dependent metrics:
• Latency, Inference speed

COCO test-dev Benchmark (Object Detection) | Papers With Code

https://paperswithcode.com/sota/object-detection-on-coco
https://paperswithcode.com/sota/object-detection-on-coco
https://paperswithcode.com/sota/object-detection-on-coco

3. Object Detection Metrics

Understanding object detection paper results

1/14/2026 Deep Network Development 1021/14/2026 Deep Network Development 102

• mAP (Mean Average Precision): This is the average precision across different classes and IoU (Intersection over Union) thresholds. It’s a
comprehensive metric for measuring the performance of object detection models. The higher the mAP, the better the model's precision and recall
performance over all categories and thresholds.

• AP50 (Average Precision at IoU=0.50): This metric evaluates the average precision when the IoU threshold is set to 0.50. This means that, for a
detection to be considered correct, the predicted bounding box must overlap the ground truth by at least 50%. It is often considered a relatively
lenient metric.

• AP75 (Average Precision at IoU=0.75): Like AP50.
• APS (Average Precision for Small Objects): This metric calculates the average precision for detecting small objects. Smaller objects can be more

difficult to detect accurately, so this metric specifically tracks how well the model handles smaller object sizes.
• APM/APL: Average precision for medium and large objects, assessing model performance across object sizes.
• Params (M) (Model Parameters in Millions): This metric shows the number of parameters in the model, typically in millions (M). More parameters

often mean a larger, more complex model, but not necessarily better performance.
• GFLOPs (Giga Floating Point Operations): This refers to the number of floating-point operations required to make a single forward pass through

the model, usually measured in gigaflops (GFLOPs). It is an indicator of the model's computational complexity and can be used to gauge the efficiency
of the model.

Applications

Autonomous Driving

1/14/2026 Deep Network Development 1031/14/2026 Deep Network Development 103

Applications

Inventory Scan

1/14/2026 Deep Network Development 1041/14/2026 Deep Network Development 104

Applications

Face Detection

1/14/2026 Deep Network Development 1051/14/2026 Deep Network Development 105

+ Face Recognition (endless applications)
Attendance check
Entry access to specific place
Security
…

Deep Network Development

Lecture 8.

Upsampling1 Semantic Segmentation2

Image Segmentat ion
Budapest , 14th October 2025

Instance Segmentation3

Recap

Previously on Lecture 5
• Single-Shot Detectors: Naïve SSD, YOLO
• Multi-box Detection
• Non-Max Suppression (NMS)

1/14/2026 Deep Network Development 107

Recap

Previously on Lecture 5
• Object Detection Metrics: IoU, mAP, etc.
• Applications of Object Detection

How can we compare our prediction
to the ground-truth box?

Intersection over Union (IoU)
(Also called “Jaccard similarity” or
“Jaccard index”):

𝑨𝒓𝒆𝒂 𝒐𝒇 𝑰𝒏𝒕𝒆𝒓𝒔𝒆𝒄𝒕𝒊𝒐𝒏

𝑨𝒓𝒆𝒂 𝒐𝒇 𝑼𝒏𝒊𝒐𝒏

1/14/2026 Deep Network Development 108

Recap

Supervised Learning tasks

Classification Semantic
Segmentation

Classification
+ Localization

Object
Detection

Instance
Segmentation

CAT GRASS, CAT,
TREE, SKY

Single Object Multiple Objects

CAT DOG, DOG, CAT DOG, DOG, CAT

Single Object No objects, just pixels Multiple Objects

1/14/2026 Deep Network Development 109

Instance SegmentationSemantic Segmentation

Applications of Image Segmentation

Image Segmentation

1/14/2026 Deep Network Development 110

1/14/2026 Deep Network Development 111

Autonomous Driving example - NVIDIA DRIVE (2024)
Video Segmentation

Applications of Image Segmentation

1/14/2026 Deep Network Development 112

• Medical image diagnosis
https://github.com/mateuszbuda/brain-segmentation-pytorch
https://github.com/Saswatm123/3D-Brain-Tumor-Segmentation-PyTorch
https://github.com/hahnicity/pytorch-lung-segmentation

Applications of Image Segmentation

Applications

Input Image Segmented Image

https://github.com/mateuszbuda/brain-segmentation-pytorch
https://github.com/mateuszbuda/brain-segmentation-pytorch
https://github.com/mateuszbuda/brain-segmentation-pytorch
https://github.com/mateuszbuda/brain-segmentation-pytorch
https://github.com/mateuszbuda/brain-segmentation-pytorch
https://github.com/Saswatm123/3D-Brain-Tumor-Segmentation-PyTorch
https://github.com/Saswatm123/3D-Brain-Tumor-Segmentation-PyTorch
https://github.com/Saswatm123/3D-Brain-Tumor-Segmentation-PyTorch
https://github.com/Saswatm123/3D-Brain-Tumor-Segmentation-PyTorch
https://github.com/Saswatm123/3D-Brain-Tumor-Segmentation-PyTorch
https://github.com/Saswatm123/3D-Brain-Tumor-Segmentation-PyTorch
https://github.com/Saswatm123/3D-Brain-Tumor-Segmentation-PyTorch
https://github.com/Saswatm123/3D-Brain-Tumor-Segmentation-PyTorch
https://github.com/Saswatm123/3D-Brain-Tumor-Segmentation-PyTorch
https://github.com/hahnicity/pytorch-lung-segmentation
https://github.com/hahnicity/pytorch-lung-segmentation
https://github.com/hahnicity/pytorch-lung-segmentation
https://github.com/hahnicity/pytorch-lung-segmentation
https://github.com/hahnicity/pytorch-lung-segmentation

Applications
Applications of Image Segmentation

1/14/2026 Deep Network Development 113

• Medical image diagnosis

1/14/2026 Deep Network Development 114

• Entertainment
• Photo effect
• Virtual try on

https://towardsdatascience.com/semantic-image-segmentation-with-deeplabv3-pytorch-989319a9a4fb
https://github.com/thuyngch/Human-Segmentation-PyTorch
https://github.com/kishorkuttan/Deep-Virtual-Try-On
https://github.com/shadow2496/VITON-HD
https://github.com/JDAI-CV/Down-to-the-Last-Detail-Virtual-Try-on-with-Detail-Carving

Applications
Applications of Image Segmentation

https://towardsdatascience.com/semantic-image-segmentation-with-deeplabv3-pytorch-989319a9a4fb
https://towardsdatascience.com/semantic-image-segmentation-with-deeplabv3-pytorch-989319a9a4fb
https://towardsdatascience.com/semantic-image-segmentation-with-deeplabv3-pytorch-989319a9a4fb
https://towardsdatascience.com/semantic-image-segmentation-with-deeplabv3-pytorch-989319a9a4fb
https://towardsdatascience.com/semantic-image-segmentation-with-deeplabv3-pytorch-989319a9a4fb
https://towardsdatascience.com/semantic-image-segmentation-with-deeplabv3-pytorch-989319a9a4fb
https://towardsdatascience.com/semantic-image-segmentation-with-deeplabv3-pytorch-989319a9a4fb
https://towardsdatascience.com/semantic-image-segmentation-with-deeplabv3-pytorch-989319a9a4fb
https://towardsdatascience.com/semantic-image-segmentation-with-deeplabv3-pytorch-989319a9a4fb
https://towardsdatascience.com/semantic-image-segmentation-with-deeplabv3-pytorch-989319a9a4fb
https://towardsdatascience.com/semantic-image-segmentation-with-deeplabv3-pytorch-989319a9a4fb
https://towardsdatascience.com/semantic-image-segmentation-with-deeplabv3-pytorch-989319a9a4fb
https://towardsdatascience.com/semantic-image-segmentation-with-deeplabv3-pytorch-989319a9a4fb
https://github.com/thuyngch/Human-Segmentation-PyTorch
https://github.com/thuyngch/Human-Segmentation-PyTorch
https://github.com/thuyngch/Human-Segmentation-PyTorch
https://github.com/thuyngch/Human-Segmentation-PyTorch
https://github.com/thuyngch/Human-Segmentation-PyTorch
https://github.com/kishorkuttan/Deep-Virtual-Try-On
https://github.com/kishorkuttan/Deep-Virtual-Try-On
https://github.com/kishorkuttan/Deep-Virtual-Try-On
https://github.com/kishorkuttan/Deep-Virtual-Try-On
https://github.com/kishorkuttan/Deep-Virtual-Try-On
https://github.com/kishorkuttan/Deep-Virtual-Try-On
https://github.com/kishorkuttan/Deep-Virtual-Try-On
https://github.com/shadow2496/VITON-HD
https://github.com/shadow2496/VITON-HD
https://github.com/shadow2496/VITON-HD
https://github.com/JDAI-CV/Down-to-the-Last-Detail-Virtual-Try-on-with-Detail-Carving
https://github.com/JDAI-CV/Down-to-the-Last-Detail-Virtual-Try-on-with-Detail-Carving
https://github.com/JDAI-CV/Down-to-the-Last-Detail-Virtual-Try-on-with-Detail-Carving
https://github.com/JDAI-CV/Down-to-the-Last-Detail-Virtual-Try-on-with-Detail-Carving
https://github.com/JDAI-CV/Down-to-the-Last-Detail-Virtual-Try-on-with-Detail-Carving
https://github.com/JDAI-CV/Down-to-the-Last-Detail-Virtual-Try-on-with-Detail-Carving
https://github.com/JDAI-CV/Down-to-the-Last-Detail-Virtual-Try-on-with-Detail-Carving
https://github.com/JDAI-CV/Down-to-the-Last-Detail-Virtual-Try-on-with-Detail-Carving
https://github.com/JDAI-CV/Down-to-the-Last-Detail-Virtual-Try-on-with-Detail-Carving
https://github.com/JDAI-CV/Down-to-the-Last-Detail-Virtual-Try-on-with-Detail-Carving
https://github.com/JDAI-CV/Down-to-the-Last-Detail-Virtual-Try-on-with-Detail-Carving
https://github.com/JDAI-CV/Down-to-the-Last-Detail-Virtual-Try-on-with-Detail-Carving
https://github.com/JDAI-CV/Down-to-the-Last-Detail-Virtual-Try-on-with-Detail-Carving
https://github.com/JDAI-CV/Down-to-the-Last-Detail-Virtual-Try-on-with-Detail-Carving
https://github.com/JDAI-CV/Down-to-the-Last-Detail-Virtual-Try-on-with-Detail-Carving
https://github.com/JDAI-CV/Down-to-the-Last-Detail-Virtual-Try-on-with-Detail-Carving
https://github.com/JDAI-CV/Down-to-the-Last-Detail-Virtual-Try-on-with-Detail-Carving
https://github.com/JDAI-CV/Down-to-the-Last-Detail-Virtual-Try-on-with-Detail-Carving
https://github.com/JDAI-CV/Down-to-the-Last-Detail-Virtual-Try-on-with-Detail-Carving
https://github.com/JDAI-CV/Down-to-the-Last-Detail-Virtual-Try-on-with-Detail-Carving
https://github.com/JDAI-CV/Down-to-the-Last-Detail-Virtual-Try-on-with-Detail-Carving
https://github.com/JDAI-CV/Down-to-the-Last-Detail-Virtual-Try-on-with-Detail-Carving
https://github.com/JDAI-CV/Down-to-the-Last-Detail-Virtual-Try-on-with-Detail-Carving

1/14/2026 Deep Network Development 115

• Microsoft Teams segmentation
Video Segmentation

Applications of Image Segmentation

Classification Task

0.01 Dog

0.01 Cat

0.91 Racoon*

… …

0.01 Flower

We map images (x) to labels (y)

The Reconstruction Task

1/14/2026 Deep Network Development 116

Reconstruction task

We try to get back the original image while constraining the network to only learn meaningful information
- Can be used for denoising images
- We lose information during the constraining
- How can we upsample from the latent representation?

Latent space
representation

BottleneckEncoder Decoder

The Reconstruction Task

1/14/2026 Deep Network Development 117

Deep Network Development

Lecture 8.

Upsampling1 Semantic Segmentation2

Upsampl ing
Budapest , 14th October 2025

Instance Segmentation3

1/14/2026 Deep Network Development 119

How to upsample?
1. Unpooling
2. Transposed Convolution

1. Upsampling

Upsampling

1/14/2026 Deep Network Development 120

• Whereas pooling operations downsample the resolution by summarizing a local area with a single value (ie. average or max pooling),
"unpooling" operations upsample the resolution by distributing a single value into a higher resolution.

Pooling Unpooling

Bilinear
Linear Shifted

1. Upsampling

Unpooling

1/14/2026 Deep Network Development 121

• Whereas pooling operations downsample the resolution by summarizing a local area with a single value (I.e. average or max pooling),
"unpooling" operations upsample the resolution by distributing a single value into a higher resolution.

• No weights, nothing to learn here!

Unpooling

1. Upsampling

In-Network upsampling: “Max Unpooling”

1/14/2026 Deep Network Development 122

• Most popular approach
• Whereas a typical convolution operation will take the dot product of the values currently in the filter's view and produce a single value

for the corresponding output position, a transpose convolution essentially does the opposite. For a transpose convolution, we take a
single value from the low-resolution feature map and multiply all the weights in our filter by this value, projecting those weighted
values into the output feature map.

1. Upsampling

Transposed Convolution

1/14/2026 Deep Network Development 123

• 1D example

a

b

c

d

e

x

y

z

Good explanation: https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0

Input size: 5 Filter size: 3
Stride: 2

*

1. Upsampling

Normal Convolution

https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0

1/14/2026 Deep Network Development 124

a

b

c

d

e

x

y

z

Input size: 5 Filter size: 3
Stride: 2

*

1. Upsampling

Normal Convolution

Output size: 2

ax + by + cz=

Good explanation: https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0

• 1D example

https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0

1/14/2026 Deep Network Development 125

x

y

z

Input size: 5 Filter size: 3
Stride: 2

*

1. Upsampling

Normal Convolution

Output size: 2

= ax + by + cz

cx + dy + ez

a

b

c

d

e

Good explanation: https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0

𝑛 × 𝑛 𝑖𝑚𝑎𝑔𝑒 𝑓 × 𝑓 𝑓𝑖𝑙𝑡𝑒𝑟

𝑝𝑎𝑑𝑑𝑖𝑛𝑔 𝑝 𝑠𝑡𝑟𝑖𝑑𝑒 𝑠

𝑛 + 2𝑝 − 𝑓

𝑠
+ 1

• 1D example

https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0

1/14/2026 Deep Network Development 126

x

y

z

Input size: 2 Filter size: 3
Stride: 2

a

b *

1. Upsampling

Transposed Convolution

Good explanation: https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0

• 1D example

https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0

1/14/2026 Deep Network Development 127

x

y

z

Input size: 2 Filter size: 3
Stride: 2

a

b
*

1. Upsampling

Transposed Convolution

ax

ay

az

Output size: 5

=

Good explanation: https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0

• 1D example

https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0

1/14/2026 Deep Network Development 128

x

y

z

Input size: 2 Filter size: 3
Stride: 2

*

1. Upsampling

Transposed Convolution

ax

ay

az

Output size: 5

ax

ay

az + bx

by

bz

𝒐𝒖𝒕𝒑𝒖𝒕 𝒔𝒊𝒛𝒆 = (𝑖𝑛𝑝𝑢𝑡 𝑠𝑖𝑧𝑒 − 1) ∗ 𝑠𝑡𝑟𝑖𝑑𝑒 − 2 ∗ 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 + (𝑘𝑒𝑟𝑛𝑒𝑙 𝑠𝑖𝑧𝑒 − 1) + 1
a

b

Good explanation: https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0

• 1D example

https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0

1/14/2026 Deep Network Development 129

• 1D example
• For filter sizes which produce an overlap in the output feature map, the overlapping values are simply added

together.
• Less common names: Deconvolution, Fractionally strided convolution, Up convolution, …

1. Upsampling

Transposed Convolution

Good explanation: https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0

https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0

1. Upsampling

Normal Convolution

0

a

b

c

d

e

0

x

y

z

Padding = 1

Padding = 1

*

0

a

b

c

d

e

0

x

y

z

Padding = 1

Padding = 1

* =

𝑛 × 𝑛 𝑖𝑚𝑎𝑔𝑒 𝑓 × 𝑓 𝑓𝑖𝑙𝑡𝑒𝑟

𝑝𝑎𝑑𝑑𝑖𝑛𝑔 𝑝 𝑠𝑡𝑟𝑖𝑑𝑒 𝑠

𝑛 + 2𝑝 − 𝑓

𝑠
+ 1

1/14/2026 Deep Network Development 130

1. Upsampling

Normal Convolution

0

a

b

c

d

e

0

Padding = 1

* =

Padding = 1

x

y

z

0

a

b

c

d

e

0

Padding = 1

* =

Padding = 1

x

y

z

0x + ay + bz

bx + cy + dz

0

a

b

c

d

e

0

Padding = 1

* =

Padding = 1

x

y

z

0x + ay + bz

bx + cy + dz

dx + ey + 0z

Stride = 2

1/14/2026 Deep Network Development 131

1. Upsampling

𝒐𝒖𝒕𝒑𝒖𝒕 𝒔𝒊𝒛𝒆 = (𝑖𝑛𝑝𝑢𝑡 𝑠𝑖𝑧𝑒 − 1) ∗ 𝑠𝑡𝑟𝑖𝑑𝑒 − 2 ∗ 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 + (𝑘𝑒𝑟𝑛𝑒𝑙 𝑠𝑖𝑧𝑒 − 1) + 1
Transposed Convolution

a

b

c

x

y

z
* =

a

b

c

x

y

z
* =

Padding = 1

Padding = 1

1/14/2026 Deep Network Development 132

1. Upsampling

Transposed Convolution

a

b

c

Padding = 1

* =

Padding = 1

x

y

z

a

b

c

Padding = 1

* =

Padding = 1

x

y

z

ay

az +bx

by

bz

Stride = 2

a

b

c

Padding = 1

* =

Padding = 1

x

y

z

ay

az +bx

by

bz + cx

cy

Stride = 2

Stride = 2

1/14/2026 Deep Network Development 133

1. Upsampling

Transposed Convolution

a

b

c
* =

x

y

z

ay

az +bx

by

bz + cx

cy

Stride = 2

Stride = 2

1/14/2026 Deep Network Development 134

1

2

3
* =

2

2

2

2

2

2 + 4 = 6

4

4 + 6 = 10

6

6

Stride = 2

Stride = 2

Padding = 1

Padding = 1

1. Upsampling

Summary on 1D

1/14/2026 Deep Network Development 135

0

a

b

c

d

e

0

Padding = 1

* =

Padding = 1

x

y

z

0x + ay + bz

bx + cy + dz

dx + ey + 0z

Stride = 2

Stride = 2

VSConvolution Transposed Convolution

a

b

c

Padding = 1

* =

Padding = 1

x

y

z

ay

az +bx

by

bz + cx

cy

Stride = 2

Stride = 2

Filter size: 3
Stride: 2
Padding: 1

Output size: 3Input size: 5 Filter size: 3
Stride: 2
Padding: 1

Output size: 5Input size: 3

1. Upsampling

Convolution

1/14/2026 Deep Network Development 136

• 2D example

0 0 0 0 0 0 0

0 4 0 0 2 10 0

0 8 16 0 0 20 0

0 0 0 0 0 5 0

0 2 1 0 2 8 0

0 7 1 6 0 2 0

0 0 0 0 0 0 0

2 2 2

1 0 1

2 2 2

* =

Stride = 2

Stride = 2

Padding = 1

1. Upsampling

Transposed Convolution

1/14/2026 Deep Network Development 137

+ +

+ + + + +

+ +

+ + + + +

+ +

2 2 2

1 0 1

2 2 2

*

0 5 2

2 1 0

0 3 1

=

Stride = 2

Stride = 2

Padding = 1

• 2D example

1/14/2026 Deep Network Development 138

Interactive Jupyter Notebook available on Canvas

$jupyter nbconvert <notebook_name>.ipynb --to slides --post serve

Interactive Explanation on HuggingFace
https://huggingface.co/spaces/PercibalBuxus/TransposedConvolutions

1. Upsampling

https://huggingface.co/spaces/PercibalBuxus/TransposedConvolutions

Deep Network Development

Lecture 8.

Upsampling1 Semantic Segmentation2

Semant ic Segmentat ion
Budapest , 14th October 2025

Instance Segmentation3

1/14/2026 Deep Network Development 140

Semantic image segmentation is the task of labelling each pixel of an image with a corresponding
class of what is being represented.

Input: RGB image (height × width × 3) or a grayscale (height × width × 1)
Output: a segmentation map (height × width × 1), where each pixel contains a class label represented as an integer.

2. Semantic Segmentation

Semantic Segmentation

Input Semantic Labels

Person
Bicycle
Background

1/14/2026 Deep Network Development 141

Output of the neural network is a K long vector

How should we encode the ground-truth values?
One-hot encoding (K=3):

(cat) 1 -> [1, 0, 0]
(dog) 2 -> [0, 1, 0]
(horse) 3 -> [0, 0, 1,]

Just as h(x): values between 0 and 1, sum up to 1

2. Semantic Segmentation

Multiclass Classification (Recap)

1/14/2026 Deep Network Development 142

Similar to how we treat standard categorical values, we'll create our target by one-hot encoding the class
labels - essentially creating an output channel for each of the possible classes.

A prediction can be collapsed into a segmentation map by taking the argmax of each depth-wise pixel vector.

Depth-wise argmax

2. Semantic Segmentation

Semantic Segmentation

Semantic Labels

• Sliding Windows + Classification
• Computationally expensive
• Not reusing shared features

2. Semantic Segmentation

How to solve it? The naïve approach:

1/14/2026 Deep Network Development 143

Cow

Cow

Grass

Classify center
pixel with CNNExtract patch

Full Image

• Apply convolutions for all pixels at once, keeping original resolution
• Computationally expensive
• Does not enforce network to learn key features. It only learns a direct mapping from

input pixels to the segmentation pixels.

2. Semantic Segmentation

How to solve it? The naïve approach:

1/14/2026 Deep Network Development 144

Input:
3 × 𝐻 × 𝑊 Convolutions:

𝐷 × 𝐻 × 𝑊

Scores:
𝐶 × 𝐻 × 𝑊

Predictions:
𝐻 × 𝑊

Conv Conv Conv Conv argmax

Convolutional Autoencoders

1/14/2026 Deep Network Development 145

• Specifically designed for image data.
• They employ convolutional layers in both the encoder and decoder parts of the network.
• This architecture allows them to capture spatial dependencies and hierarchical features effectively.
• The reconstruction of the input image is often blurry and of lower quality due to compression during which

information is lost.

2. Semantic Segmentation

Convolutional Autoencoders

1/14/2026 Deep Network Development 146

Image Segmentation
• Image segmentation is the process of partitioning an image into multiple segments each belonging to a

class.
• The goal is to simplify and/or change the representation of an image by grouping pixel values according

to the class they belong to.

2 . Semantic Segmentation

1/14/2026 Deep Network Development 147

• One popular approach for image segmentation models is to follow an encoder/decoder structure where we downsample the
spatial resolution of the input, developing lower-resolution feature mappings which are learned to be highly efficient at discriminating
between classes, and then upsample the feature representations into a full-resolution segmentation map.

BottleneckEncoder Decoder

2. Semantic Segmentation

Encoder-Decoder Structure

Input:
3 × 𝐻 × 𝑊

High-res:
𝐷1 × 𝐻/2 × 𝑊/2

High-res:
𝐷1 × 𝐻/2 × 𝑊/2

Med-res:
𝐷1 × 𝐻/2 × 𝑊/2

Med-res:
𝐷1 × 𝐻/2 × 𝑊/2

Predictions:
𝐻 × 𝑊

Low-res:
𝐷1 × 𝐻/2 × 𝑊/2

1/14/2026 Deep Network Development 148

The approach of using a “Fully Convolutional" network trained end-to-end, pixels-to-pixels for the task of image segmentation was
introduced by Long et al. in late 2014. The paper's authors propose adapting existing, well-studied image classification networks (e.g.
AlexNet) to serve as the encoder module of the network, appending a decoder module with transpose convolutional layers to upsample
the coarse feature maps into a full-resolution segmentation map.

Fully Convolutional Network (FCN) [1]

[1] Long, Jonathan, Evan Shelhamer, and Trevor Darrell. "Fully convolutional networks for semantic segmentation." Proceedings of the IEEE conference on computer vision and pattern recognition. 2015.

2. Semantic Segmentation

Original AlexNet model

Repurposed AlexNet model

The encoder
produces a coarse
feature map which is
then refined by the
decoder module.

https://arxiv.org/abs/1411.4038

However, because the encoder module reduces the resolution of the input by a
factor of 32, the decoder module struggles to produce fine-grained
segmentations.

Fully Convolutional Network (FCN) [1]
2. Semantic Segmentation

1/14/2026 Deep Network Development 149

Ground truth target Predicted segmentation

[1] Long, Jonathan, Evan Shelhamer, and Trevor Darrell. "Fully convolutional networks for semantic segmentation." Proceedings of the IEEE conference on computer vision and pattern recognition. 2015.

1/14/2026 Deep Network Development 150

• Adding skip connections - The authors address this tension by slowly upsampling (in stages) the
encoded representation, adding "skip connections" from earlier layers, and summing these two
feature maps.

• These skip connections from earlier layers in the network (prior to a downsampling operation)
should provide the necessary detail to reconstruct accurate shapes for segmentation boundaries.
Indeed, we can recover more fine-grain detail with the addition of these skip connections.

Before

with skip connections

2. Semantic Segmentation

Fully Convolutional Network (FCN) [1]

Skip connections
[1] Long, Jonathan, Evan Shelhamer, and Trevor Darrell. "Fully convolutional networks for semantic segmentation." Proceedings of the IEEE conference on computer vision and pattern recognition. 2015.

Ground truth target Predicted segmentation

Ground truth target Predicted segmentation
Input

Upsampling

Encoder Module

Output

1/14/2026 Deep Network Development 151

• Ronneberger et al. improve upon the "fully
convolutional" architecture primarily through
expanding the capacity of the decoder
module of the network. More concretely, they
propose the U-Net architecture which "consists
of a contracting path to capture context and a
symmetric expanding path that enables precise
localization."

[2] Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-net: Convolutional networks for biomedical image segmentation." Medical image computing and computer-assisted intervention–MICCAI 2015: 18th international
conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18. Springer International Publishing, 2015.

U-Net: Convolutional Networks for Biomedical Image Segmentation
[2]

2. Semantic Segmentation

U-Net Encoder Decoder

2. Semantic Segmentation

1/14/2026 Deep Network Development 152

U-Net Encoder

2. Semantic Segmentation

Decoder

1/14/2026 Deep Network Development 153

U-Net
2. Semantic Segmentation

1/14/2026 Deep Network Development 154

How can we use it for images with arbitrary size?
- Do the segmentation for smaller regions of the image
- On the edges mirror the image

1/14/2026 Deep Network Development 155

Advanced U-Net variants
• The standard U-Net model consists of a series of convolution operations for each "block" in the architecture. These convolutional blocks

can be replaced for more advanced ones such as:
• ResNet blocks
• Inception modules
• Dense blocks
• Etc.

DeepLab
• Deeplab from a group of researchers from Google have proposed a multitude of techniques to improve the existing results and get finer

output at lower computational costs. The 3 main improvements suggested as part of the research are:
• Atrous convolutions
• Atrous Spatial Pyramidal Pooling
• Conditional Random Fields usage for improving final output

DeepLab v3: https://arxiv.org/abs/1706.05587v3

Architectures
2. Semantic Segmentation

https://arxiv.org/abs/1706.05587v3

Segment Anything Model (SAM 2)
- Extending SAM with memory to keep the masks over the whole video
- Images are considered as a single frame video
- iVOS/VOS
• https://sam2.metademolab.com/demo

3. Instance Segmentation

[7] Ravi, N., Gabeur, V., Hu, Y.-T., Hu, R., Ryali, C., Ma, T., … Feichtenhofer, C. (2024). SAM 2: Segment Anything in Images and Videos. arXiv [Cs.CV]. Retrieved from http://arxiv.org/abs/2408.00714

1/14/2026 Deep Network Development 156

https://sam2.metademolab.com/demo
https://sam2.metademolab.com/demo

1/14/2026 Deep Network Development 157

How to train such networks?
• Have input X (images) and labels Y (masks).
• Define architecture
• Set hyperparameters
• Define loss function and metrics

Training
2. Semantic Segmentation

1/14/2026 Deep Network Development 158

Pixel-wise cross entropy loss
• This loss examines each pixel individually, comparing the class predictions (depth-wise pixel vector) to our

one-hot encoded target vector.
• Problematic for unbalanced classes

Losses
2. Semantic Segmentation

Prediction for a selected pixel Target for the corresponding pixel

Pixel-wise loss is calculated
as the log loss, summed over
all possible classes

− ෍
𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝑦𝑡𝑟𝑢𝑒 log 𝑦𝑝𝑟𝑒𝑑

The scoring is repeated over
all pixels and averaged

1/14/2026 Deep Network Development 159

Pixel-wise cross entropy loss
• This loss examines each pixel individually, comparing the class predictions (depth-wise pixel vector) to our one-hot encoded target

vector.
• Problematic for unbalanced classes

2. Semantic Segmentation

Losses

1/14/2026 Deep Network Development 160

Dice coefficient

Dice Loss
• Another popular loss function for image segmentation tasks is based on the Dice coefficient, which is essentially a measure of overlap

between two samples. This measure ranges from 0 to 1 where a Dice coefficient of 1 denotes perfect and complete overlap. The Dice
coefficient was originally developed for binary data, and can be calculated as:

𝐷𝑖𝑐𝑒 = 2 ×
|A∩B|

|A| + |B|
where:
• |A ∩B | represents the common elements between sets A and B, and
• |A | represents the number of elements in set A
• |B | represents the number of elements in set B

Losses
2. Semantic Segmentation

https://en.wikipedia.org/wiki/S%C3%B8rensen%E2%80%93Dice_coefficient

Deep Network Development

Lecture 8.

Upsampling1 Semantic Segmentation2

Instance Segmentat ion
Budapest , 21 st March 2025

Instance Segmentation3

What is Instance Segmentation?
• Instance Segmentation is identifying each object instance for every known object within an image. It

assigns a label to each pixel of the image.

3. Instance Segmentation

1/14/2026 Deep Network Development 162

What is Instance Segmentation?
Semantic Segmentation: gives per-pixel labels, but
merges instances.

Object Detection: detects individual object instances, but
only gives boxes.

Instance Segmentation

3. Instance Segmentation

1/14/2026 Deep Network Development 163

What is Instance Segmentation?
Things and Stuff

• Things: Object categories that can be separated
into object instances (e.g. cats, cars, person)

• Stuff: Object categories that cannot be separated
into instances (sky, grass, water, trees)

3. Instance Segmentation

1/14/2026 Deep Network Development 164

What is Instance Segmentation?
Semantic Segmentation: detects both objects and
regions but doesn't distinguish individual instances.

Instance Segmentation: distinguishes individual object
instances, but only for countable objects.

3. Instance Segmentation

1/14/2026 Deep Network Development 165

What is Instance Segmentation?
3. Instance Segmentation

Beyond Instance Segmentation: Panoptic Segmentation [3]

Label all pixels in the
image (both things
and stuff).

For “thing” categories
also separate into
instances.

[3] Kirillov, A., He, K., Girshick, R., Rother, C., & Dollár, P. (2019). Panoptic Segmentation. arXiv [Cs.CV]. Retrieved from http://arxiv.org/abs/1801.00868

1/14/2026 Deep Network Development 166

How does Instance Segmentation work?
Instance Segmentation:
• Detect all objects in the image and

identify the pixels that belong to
each object (Only things!)

Approach:
• Perform object detection, then

predict a segmentation mask for
each object!

3. Instance Segmentation

1/14/2026 Deep Network Development 167

How does Instance Segmentation work?
3. Instance Segmentation

[4] Ren, S., He, K., Girshick, R., & Sun, J. (2016). Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. arXiv [Cs.CV]. Retrieved from http://arxiv.org/abs/1506.01497

1/14/2026 Deep Network Development 168

Faster R-CNN: Learnable Region Proposals [4]

How does Instance Segmentation work?
3. Instance Segmentation

[4] Ren, S., He, K., Girshick, R., & Sun, J. (2016). Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. arXiv [Cs.CV]. Retrieved from http://arxiv.org/abs/1506.01497

1/14/2026 Deep Network Development 169

Object Detection: Faster R-CNN [4]

How does Instance Segmentation work?
3. Instance Segmentation

[5] He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2018). Mask R-CNN. arXiv [Cs.CV]. Retrieved from http://arxiv.org/abs/1703.06870

1/14/2026 Deep Network Development 170

Instance Segmentation: Mask R-CNN [5]

Mask R-CNN architecture (2017) [5]
3. Instance Segmentation

[5] He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2018). Mask R-CNN. arXiv [Cs.CV]. Retrieved from http://arxiv.org/abs/1703.06870

1/14/2026 Deep Network Development 171

Mask R-CNN

Segmentation labels (recap)
• Similar to how we treat standard categorical values, we'll create our target by one-hot encoding the class labels - essentially creating

an output channel for each of the possible classes.
• A prediction can be collapsed into a segmentation map by taking the argmax of each depth-wise pixel vector.

Depth-wise argmax

3. Instance Segmentation

1/14/2026 Deep Network Development 172

Semantic Labels

Instance Segmentation labels
3. Instance Segmentation

[5] He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2018). Mask R-CNN. arXiv [Cs.CV]. Retrieved from http://arxiv.org/abs/1703.06870

1/14/2026 Deep Network Development 173

Mask R-CNN: Example Training Targets [5]

Mask R-CNN architecture
• From [5] (More details on the paper)

3. Instance Segmentation

[5] He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2018). Mask R-CNN. arXiv [Cs.CV]. Retrieved from http://arxiv.org/abs/1703.06870

1/14/2026 Deep Network Development 174

Mask R-CNN results [5]
3. Instance Segmentation

[5] He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2018). Mask R-CNN. arXiv [Cs.CV]. Retrieved from http://arxiv.org/abs/1703.06870

1/14/2026 Deep Network Development 175

Mask R-CNN results [5]
3. Instance Segmentation

[5] He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2018). Mask R-CNN. arXiv [Cs.CV]. Retrieved from http://arxiv.org/abs/1703.06870

1/14/2026 Deep Network Development 176

Summary

Summary

1/14/2026 Deep Network Development 1771/14/2026 Deep Network Development 177

• Object Detection is a supervised learning task
• Goal is to predict what and where are the objects in an image

• (Core) Region proposal methods:
• R-CNN: uses selective search to find regions
• Fast R-CNN: first extracts features and then uses selective search
• Faster R-CNN: uses a learnable region proposal network

• One-stage methods like YOLO and SSD, remove the region proposal part used in two-stage methods like the R-CNN family

• Many useful applications

• Techniques like IoU and NMS improve the predictions of object detectors
• mAP is a metric to evaluate object detectors

• Upsampling is essential to reconstruct the original image from lower-resolution feature maps.
• By increasing the resolution, upsampling enlarges images with the following methods:

• Unpooling upsamples by distributing a single value over higher resolution.
• Transpose Convolution reverses the operation of convolution.

• Object masks are predicted within an image through Image Segmentation.
• Fully Convolutional Networks (FCNs) serve as encoders for coarse feature maps but struggle with detailed

segmentations.
• U-Net improves localization by expanding the decoder's capacity for segmentation tasks.
• With Mask R-CNN, adding a mask prediction head allows for extended segmentation capabilities.
• Semantic Segmentation: Treats all objects of the same class as one, using one-hot encoded class labels.
• Instance Segmentation: Identifies individual instances of the same object.

Summary
Image Segmentation

1/14/2026 Deep Network Development 178

Summary

Further Links + Resources

1/14/2026 Deep Network Development 1791/14/2026 Deep Network Development 179

• A survey of loss functions for semantic segmentation -
https://arxiv.org/pdf/2006.14822

• R-CNN - https://medium.com/@selfouly/r-cnn-3a9beddfd55a
• Review: Fully Convolutional Network (Semantic Segmentation) -

https://medium.com/towards-data-science/review-fcn-semantic-
segmentation-eb8c9b50d2d1

• https://www.youtube.com/watch?v=TB-fdISzpHQ
• https://www.youtube.com/watch?v=9AyMR4IhSWQ
• https://www.youtube.com/watch?v=ag3DLKsl2vk (for the explanation only)

https://arxiv.org/pdf/2006.14822
https://medium.com/@selfouly/r-cnn-3a9beddfd55a​
https://medium.com/@selfouly/r-cnn-3a9beddfd55a​
https://medium.com/@selfouly/r-cnn-3a9beddfd55a​
https://medium.com/@selfouly/r-cnn-3a9beddfd55a​
https://medium.com/@selfouly/r-cnn-3a9beddfd55a​
https://medium.com/towards-data-science/review-fcn-semantic-segmentation-eb8c9b50d2d1
https://medium.com/towards-data-science/review-fcn-semantic-segmentation-eb8c9b50d2d1
https://medium.com/towards-data-science/review-fcn-semantic-segmentation-eb8c9b50d2d1
https://medium.com/towards-data-science/review-fcn-semantic-segmentation-eb8c9b50d2d1
https://medium.com/towards-data-science/review-fcn-semantic-segmentation-eb8c9b50d2d1
https://medium.com/towards-data-science/review-fcn-semantic-segmentation-eb8c9b50d2d1
https://medium.com/towards-data-science/review-fcn-semantic-segmentation-eb8c9b50d2d1
https://medium.com/towards-data-science/review-fcn-semantic-segmentation-eb8c9b50d2d1
https://medium.com/towards-data-science/review-fcn-semantic-segmentation-eb8c9b50d2d1
https://medium.com/towards-data-science/review-fcn-semantic-segmentation-eb8c9b50d2d1
https://medium.com/towards-data-science/review-fcn-semantic-segmentation-eb8c9b50d2d1
https://medium.com/towards-data-science/review-fcn-semantic-segmentation-eb8c9b50d2d1
https://medium.com/towards-data-science/review-fcn-semantic-segmentation-eb8c9b50d2d1
https://www.youtube.com/watch?v=TB-fdISzpHQ
https://www.youtube.com/watch?v=TB-fdISzpHQ
https://www.youtube.com/watch?v=TB-fdISzpHQ
https://www.youtube.com/watch?v=TB-fdISzpHQ
https://www.youtube.com/watch?v=9AyMR4IhSWQ
https://www.youtube.com/watch?v=9AyMR4IhSWQ
https://www.youtube.com/watch?v=ag3DLKsl2vk
https://www.youtube.com/watch?v=ag3DLKsl2vk

Books:
• Courville, Goodfellow, Bengio: Deep Learning

Freely available: https://www.deeplearningbook.org/
• Zhang, Aston and Lipton, Zachary C. and Li, Mu and Smola, Alexander J.: Dive into Deep Learning
 Freely available: https://d2l.ai/

Courses:
• Deep Learning specialization by Andrew NG
• https://www.coursera.org/specializations/deep-learning

1/14/2026 Deep Network Development 180

Resources
Summary

https://www.deeplearningbook.org/
https://d2l.ai/
https://www.coursera.org/specializations/deep-learning
https://www.coursera.org/specializations/deep-learning
https://www.coursera.org/specializations/deep-learning
https://www.coursera.org/specializations/deep-learning

That’s all for today!

	Slide 1: DEEP NETWORK DEVELOPMENT
	Slide 2: Object Detection
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181

