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Semantic Classification Object Instance
Segmentation + Localization Detection Segmentation

Classification

GRASS I I
CAT PR CAT DOG, DOG, CAT DOG, DOG, CAT
N J A\ JREESKY J U J o\ y
Y Y Y Y Y
Single Object No objects, just pixels Single Object Multiple Objects Multiple Objects

9 o9 9 o O

1/14/2026 Deep Network Development 2



oo
()

Big Assignment
4 Y
14x14 Feature Map A
bird

1. Input

Image  Feature Extraction over the image word

generation
\. J

1/14/2026 Deep Network Development 3



Deep Network Development ELTE m

Lecture /.

Natural Language Processing Basics
and Recurrent Neural Networks

Budapest, 4t" November 2025

[1]NLP Basics 2 | RNN, LSTM, GRU & Seq2Seq 3 | Attention Mechanism




1. Natural Language Processing Basics

Sequential Data Processing

Sequential data

Text — sequence of words
/ characters

Speech — sequence of signals /
acoustic features

Video — sequence of images (frames)

EITE
@ EGTVOS LORAND ‘-‘""‘l‘.ﬁ
UNIVERSITY &

DNA - sequence of symbols

(nucleotides)

Sugar phosphate
backbone

-+ GTGCATCTGACTCCTGAGGAGAAG - -

Adenine Thymine

— )

Guanine Cytosine

DNA

.-+ CACGTAGACTGAGGACTCCTCTTC - - -
@ Transcription

-+ + GUGCAUCUGACUCCUGAGGAGAAG --- RNA

[EVE R e L=V LR S R R

N N R N N
Translation
¥ H LT P B K ... Protein
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1. Natural Language Processing Basics @\ FILTE

% EOTVOS LORAND /A
4 \

Sequential Data Processing

Sequential data carry temporal information - Is this car parking or leaving?
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1. Natural Language Processing Basics FITE

EQOTVOS LORAND .
UNIVERSITY &

Sequential Data Processing

Sequential data carry context

BANK

“The bank will lend us money.” "Let's swim to the opposite bank."

1/14/2026 Deep Network Development 1



1. Natural Language Processing Basics ELTE

EGTVOS LOR
UI\]\LR@I]Y

Natural Language Processing Tasks

Name Entity Recognition

«  Atext corpus tagged with 4 different entity types
«  PER (persons), LOC (locations), ORG (organization), MISC (miscellaneous)

ndex 012 3 la |5 607 |8

Input X: Harry Potter and Hermione Granger invented a new spell
Tags: B-PER I-PER O B-PER I-PER O O O O
OutputY: 1 2 0 1 2 0 0O O 0

ngec o 1 |2 |3 Jlals _ lel7 s |o [0
Input X: The European Commission said on Thursday it disagreed with German advice
Tags: O B-ORG I-ORG O O O O O O B-MISC O

OutputyY: O 3 4 0 0O O 0 O 0 7 0




1. Natural Language Processing Basics @\ EITE

) EGTVOS LORAND /;
UNIVERSITY &

Natural Language Processing Tasks
In meteorology, precipitation is any product

QuGStion A“swering of the condensation of atmospheric water vapor

_ _ that falls under gravity. The main forms of pre-
Stanford Question Answering Dataset (SQuAD)

cipitation include drizzle, rain, sleet, snow, grau-

Context pel and hail... Precipitation forms as smaller
* Context droplets coalesce via collision with other rain
o Question — Answer pairs drops or ice crystals within a cloud. Short, in-
tense periods of rain in scattered locations are

«  The answer is a span in a given Wikipedia paragraph called “showers”.

Question 1 What causes precipitation to fall?
Answer 1  gravity

What is another main form of precipitation be-
Question 2 sides drizzle, rain, snow, sleet and hail?

Answer 2  graupel

] Where do water droplets collide with ice crystals
Question 3 6 form precipitation?
Answer 3 within a cloud

1/14/2026 Deep Network Development 9



1. Natural Language Processing Basics ELTE

EGTVOS LORAND
UNIVERSITY

Natural Language Processing Tasks
Textual Entailment

Stanford Natural Language Inference (SNLI) A man inspects the contradiction The man is sleeping
uniform of a figure in CCCcCC

some East Asian country.
An older and younger  neutral Two men are smiling

Five different annotator — Gold label man smiling. NNENN  andlaughing at the cats
playing on the floor.

A black race car starts up contradiction A man is driving down a

Determining whether a “hypothesis” is true, given a “premise”.

Contradiction - the hypothesis cannot be true given the e el e gend el ICCCEE lonely road.

premise. el

Neutral - the hypothesis might be true or false; it’s not entailed A soccer game with entailment  Some men are playing a

or contradicted. multiple males playing. EEEEE sport.

Entailment - the hypothesis must be true given the premise. A smiling costumed neutral A happy woman in a
woman is holding an NNECN fairy costume holds an

umbrella. umbrella.




1. Natural Language Processing Basics

Natural Language Processing Tasks

Machine Translation

« BUT, input - output pairs in source — target language.

The name speaks for itself

For one input there might be multiple candidate
translations

}OI'\OIS_IOI\\ED
UNIVERSITY

It's cold. C'est froid.

Stay calm. Reste tranquille.

Stop that. Arrétez ca !

| will submit the Je rendrai le devoir ce

assignment tonight Soir.




1. Natural Language Processing Basics @ \ELTE /A

Other Sequence Processing Tasks

.. “The quick brown fox jumped
( — B
Speech recognition W et sl azstion

e DNA sequence analysis  AGCCCCTGTGAGGAACTAG ——  AGCCCCTGTGAGGAACTAG

e Name entity recognition Yesterday, Harry Potter —» Yesterday, Harry Potter
met Hermione Granger. met Hermione Granger.

« Sentiment Analysis
Semantic role labelling
 Conference resolution
 Ftc.

1/14/2026 Deep Network Development 12



1. Natural Language Processing Basics
= : 2T A
UNIVERSITY

Sequential Data Processing

Representing words as One hot vectors
Dataset: (X,Y)
Vocabulary: [a aron,. ., harry, ..., potter, ..., zulu]

Position: ., 4075, ..., 6883, ...,10000
Input X: Harry Potter and Hermione Granger invented a spell
Position: 4075 6883 2 1
Representation L 07 0 17
0 0 1 0
0 0 0 O
1 0 0
0 1 0
0 0 0 0




1. RNNs and Embeddings @ .
UNIVERSITY A
Embeddings

Representing words as One hot vectors

Input X: My favorite sport is football.

X X2 XS XA X Problems
Vocabulary: [favorite, football, is, my, sport] + Scalability - huge vector for each word
Position: 1 92 3 4 § - If we have a dataset of several sentences, from which we
' form a vocabulary of 10 000 words.
« Each word would be represented as a 10 000 long
Representation: vector, having a single element set to 1. X<>=[0, 0, ... 1,
_ ., 0,0
coothall = [0,1, 0, 0, 0] !
Position: 123 45 « There is no relationship between words. Each word is
treated as an independent entity with no similarity to other
Sport = [0,0,0,0,1] words.
Position:1 2 3 4 5




1. RNNs and Embeddings @ EITE
S A
Embeddings: Word representation

Featurized representation: Word Embedding
Vocabulary size: 10 000

Vocabulary: [a,. , apple, ..., football, ..., man, ..., orange, ..., sport, ..., woman, ..., zulu]
Position: 456 2078 5391 625] 1301 9853 10 000
-m
(9853) (4914) (7151) (456) (6257)
Gender
Royal 0.01 0.02 0.93 0.95 -0.01 0.00
Age 0.03 0.02 0.7 0.68 0.03 -0.02

Food 0.04 0.01 0.02 0.01 0.95 0.97




1. RNNs and Embeddings

FLTE A
Embeddings: Word representation

Featurized representation: Word Embedding

Man (5391) instead of being represented a one hot encoded vector [0,0.,...,1....,0,0] would be represented as:

es30:=[-1, 0.01, 0.03, 0.04, .. ] Embedding Matrix X one hot man = embedding man
(# features , vocab size) (vocab size, 1) (# features, 1)

W ET] Woman King Queen Apple Orange
(5391) (9853) (4914) (7151) (456) (6257)
-1 1 -0.95 0.97 0.00 0.01

Gender
Royal 0.01 0.02 0.93 0.95 -0.01 0.00
Age 0.03 0.02 0.7 0.68 0.03 -0.02

Food 0.04 0.01 0.02 0.01 0.95 0.97




1. RNNs and Embeddings

Embeddings: Word representation

Featurized representation: Word Embedding
If we subtract man and woman, main difference is gender

We can compute word similarities

We can compute word analogies: man is to woman as king is to
https://vectors.nlpl.eu/explore/embeddings/en/calculator/

king

B
. ~~*
.
-
~
~
=

Queen | Apple | Orange ®
(7151) | (456) | (6257) / T ey

Gender -1 1 -0.95 0.97 0.00
Royal 0.01 0.02 0.93 0.95 -0.01
Age 0.03 0.02 0.7 0.68 0.03
Food 0.04 0.01 0.02 0.01 0.95

0.01

0.00

-0.02

0.97

Male-Female

O

ELTE

EQTVOS LORAND

UNIVERSITY

walked
@)

swam

walking

—

—_____—‘__“‘————+
O

swimming

Verb tense



https://vectors.nlpl.eu/explore/embeddings/en/calculator/

1. RNNs and Embeddings -
/) URversity ﬁk

Embeddings
How to create better embeddings? Skip-grams
- We learn the cooccurrences of the words (they appear
in similar contexts) Input | Output
y . . Cat On
» Let’s create input — output pairs as follows : —
. at e
» Given an example sentence
B ) ) ) y Cat Couch
A person is playing with a cat on the couch, R E—
Cat Playing

- We create a list of words that occurs around the cat
« Then we use the one-hot encoding of the words




1. RNNs and Embeddings

Embeddings

Compare output with the Outputs

How to create hetter embeddings? (Person) one-hot encoded vector
I Cat On
(->é Cat The
Cat one-hot E
o)
encoded vector - Cat Couch
@)
¥p) Cat Person
Cat Playing

First layer, Hidden
without layers with
activation  activation

1/14/2026 Deep Network Development 19



1. RNNs and Embeddings

Embeddings

How to create better embeddings?

- Keep only the first layer (thus
creating a linear projection of
the input vector)

1/14/2026

eeeeeeeeeeeeeeeeeeeeee




1. RNNs and Embeddings ELTE Jo

Embeddings: Word representation

Featurized representation: Word Embedding

The word embeddings are learned with training.

Therefore, in practice, the features aren’t that understandable.

We can visualize lower representations of the embeddings with techniques such as T-SNE

e dey pEﬁrt pitch

meat
balls
1row kb&i‘l
- ;{ 00 >
C|ty o food il
‘e o 8 travel LR of f suppli °
° 2 é EBr()du(: ts
s 9 e S a2
L 4 ! supply ° school
b @ ball
¢ food
00 § input words
scho
_1000 cStpdents
school
student .elementary
500
< W‘a\&%
S’()O
& i 500 <0,
e relative s, 0 Y
7 )
1000 %,
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1. RNNs and Embeddings

E h dd ‘M 2 unnersiry

Embeddings can bhe used to represent other types of data:

Speech: speaker embeddings

Image: image embeddings

B & Rl __ s
‘g ‘.' -' 3 s
& aa » I W
¥, § A y T
a »
. L TR

truck, engine, rescure, . deer, park, leaves,
fire, department - " A denmark, forest

boat, ship, ‘.
art, painting

1/14/2026
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2. RNNs, LSTM, GRU & Seq2Seq

Introduction to Recurrent Neural Network

Why not a standard network?

<1>

L2

x<1> Q ~— O
O

X<2> O —_

00000000
0000
= =

COO000000DO
00000
(OLO(O(0]0] 0] 0) ) O)

|

|
O O O O

<Ty>

x<§\x> O O O —

Problems:
- Inputs, outputs can be different lengths in different examples
- Doesn’t share features learned across different positions of text

1/14/2026 Deep Network Development 24



2. RNNs, LSTM, GRU & Seq2Seq

Introduction to Recurrent Neural Network

What should we consider?

The model needs to:

« Handle variable length sequences

- Track long term dependencies

- Maintain the order of the input

- Share parameters across sequences

1/14/2026 Deep Network Development 25



2. RNNs, LSTM, GRU & Seq2Seq

iy
58
@
Introduction to Recurrent Neural Network
What about Recurrent Neural Networks (RNNs)?
output vector ), Do you want to sing with
t me?

| —L

|
ow ) Sy Ly
| Y !

input vector Xy Voulez-vous chanter avec
moi?

1/14/2026 Deep Network Development 26



2. RNNs, LSTM, GRU & Seq2Seq

Introduction to Recurrent Neural Network

RNN (unrolled version)

} W Hidden state:
L SISLETEET N P ht=tanh(Whhht_1+thxt+bh)
 RNN —= ::
T [ ;
' Vi = tanh(Wy,h; + b,)
XT IT—I

1/14/2026 Deep Network Development 21



2. RNNs, LSTM, GRU & Seq2Seq

Introduction to Recurrent Neural Network
RECAP: ACTIVATION FUNCTION — TANGENT

Hyperbolic tangent 1,
e*r —e™*
tanh(x) =
(%) g g
~10 10

tanh’(x) = 1 — tanh?(x)

[LeCun et al., 1991]

Pros:

* Zero centered.

* Activations are bounded in range

LT

* The gradient is stronger for tanh than

sigmoid.
Derivatives are steeper.

Cons:

* Y values tend to respond very less to

changes in X towards either end of the
function.

* Vanishing gradients.

1/14/2026 Deep Network Development
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2. RNNs, LSTM, GRU & Seq2Seq e \ELTE /A

Introduction to Recurrent Neural Network

Backpropagation (%) §E I CARRR
1. Calculate the forward pass hy
2. Determine the loss |
3. Take the partial derivative (gradient) of the loss respect hs
to each parameter
4. Shift the parameters to minimize the loss HOHOBOP»
hy :

Xt
Backward pass

1/14/2026 Deep Network Development 29



2. RNNs, LSTM, GRU & Seq2Seq

@

Introduction to Recurrent Neural Network

__ BACKPROPAGATION THROUGH TIME
L~

Lg Ly L, L3
t t t t
Vt Yo 91 V2 Vt
A
w,,yI w,,yI w,,yI w,,yI
-
RNN —
L[ ]J [ Whn Whn J Whn { )
thI W xn I Wxn Wh
Xt X0 X1 X2 Xt

1/14/2026 Deep Network Development 30



2. RNNs, LSTM, GRU & Seq2Seq

Introduction to Recurrent Neural Network

~ BACKPROPAGATION THROUGH TIME

—— Forward pass
<+—— Backward pass 7 L

Ly L4 L, L3

t tl t] )
Ve Yo V1 V2 Vt
A

1/14/2026 Deep Network Development 31



2. RNNs, LSTM, GRU & Seq2Seq

@ VELTE oy
) Wvererry

' BACKPROPAGATION THROUGH TIME

= Forward pass

<+—— Backward pass

Hidden state:

ht = tanh(Whhht_l + thxt + bh)

Output vector:

&
Lo Ly L, L3 Vv, =
. a 4 N y; tanh(Whyht + by)
9, 9o 2 92 Vo Loss:
S | IS | IS | IR \a
RNN = Wil Wi Wi L(x1, e X1 Y10 0 Y1 Wxn, Whp, Why) = TZ: LYo Vi)
w hI thI thT Wxn t=1
= o @ = ' Gradients:
T ~
oL 1 0l(y,y.)
OWhh Tt—l OWhh
1/14/2026

Deep Network Development 32



2. RNNs, LSTM, GRU & Seq2Seq ELTE g

(@b

OTVOS LORAND 4 Y
UNIVERSITY & 3

Tasks using RNNs
RNNS COME IN MANY FORMS

one to one one to many many to one many to many many to many

1/14/2026 Deep Network Development 33



2. RNNs, LSTM, GRU & Seq2Seq ELTE

EQOTVOS LORAND
UNIVERSITY

Tasks using RNNs

RNN Many to One - Sentiment Analysis
sentiment
<positive> “There is nothing to like
in this movie.”

Customer reviews Customer images
. 7 4outof 5

2,208 customer ratings

5 star 49%
4 star 26%
3star [ 13%
2star 5%
1star [ 7%

See all customer images

~ How does Amazon calculate star ratings?

Read reviews that mention

apple cider cider vinegar weight loss empty stomach
By feature
. ) value for money mother vinegar warm water glass of water

Pain relief 8 8 & & &N
Style RARRLT 42 botanica natural natural apple salad dressing acetic acid
Packaging AR ARy 39
v See more ——

| Most recent v

Value for money

Review this product Reviewed in India on 17 July 2020
5 Flavour: 500ml  Verified Purchase
Share your thoughts with other customers
Used the apple cider vinegar for health and diet .

5 2 The product seems to be good value for mone!
Write a product review P g y

love this class!

1/14/2026 Deep Network Development 34



2. RNNs, LSTM, GRU & Seq2Seq o \EILTE ma&

oo
()

EOTVOS LORAND /4 Y
UNIVERSITY & . -

Tasks using RNNs

RNN Many to One - Video Activity Recognition

many to one

Running

1/14/2026 Deep Network Development 35



1. RNNs and Embeddings

Tasks using RNNs

RNN Many to Many — Machine Translation

-

. . .
le chien mange English & )

You are a moron.

French~ [_D ‘D
Q—D—-Q\ Vous étes un crétin.

the dog eats <start> le chien

Encoder (English) Decoder (French)

1/14/2026 Deep Network Development 36



2. RNNs, LSTM, GRU & Seq2Seq

Tasks using RNNs

RNN One to Many - Image Caption

one to many

A cat sitting on a

— Suitcase on the floor

“straw” “hat” END

START “straw” “hat”

EOTVOS LORAND ,‘
UNIVERSITY & .

1/14/2026 Deep Network Development
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2. RNNs, LSTM, GRU & Seq2Seq

Embeddings: Word representation

1/14/2026 Deep Network Development 38



2. LSTM, GRU & Seq2Seq

Vanilla RNNs

A A

1/14/2026 Deep Network Development 39



2. LSTM, GRU & Seq2Seq

Vanilla RNNs

Problems with vanilla RNN
« Vanishing gradients
- Short term dependency

1/14/2026

Deep Network Development 40



2. LSTM, GRU & Seq2Seq

Vanilla RNNs

Problems with vanilla RNN
o |tis like a very deep neural network

- Vanishing gradients
« Short term dependency

— Forward pass
<+—— Backward pass

" BACKPROPAGATION THROUGH TIME .
L

@—>—®

W)
;
®

I grew up in France.. seonescsssmssossnssesssss

Q—»:D—»Q

‘//
Lo Ly L, Ls
t tl t t}
Ve Yo I V2 Ve
2 | | I |
N\ Fa =)\
RNN
) Whn| ) Whnl_ W
th I wxh I wxh I th
Xt Xo X1 X2 Xt
€ 3E,
90" ,:’Z}: 0 5
dE, IE, Ox, " x;
%=L (o) 9
Xy %, ;T
= 1l 5y = I1 Widiag
i>k t P
it
Win -
Wree ~small =» Vanishing
Time | Wre ~large = Exploding

41
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2. LSTM, GRU & Seq2Seq @\ ELTE

Long Short-Term Memory (LSTM)

Starting from a Vanilla RNN

g2 /
% EOTVOS LORAND /8 ;J
UNIVERSITY &

prediction
Hidden state: -
h; = tanh(Wy,hi_1 + W,px: + bp)
tanh
ht—l [— ht
A prediction

[z ) new information
N

Neural Network Pointwise Vector

Layer Operation Transfer Concatenate Copy

1/14/2026 Deep Network Development 42



2. LSTM, GRU & Seq2Seq
Long Short-Term Memory (LSTM)
Add cell state to remember what happened many timesteps
before prediction
hy

Hidden state: cell state

ht = tanh(Whhht_l + thxt + bh) Ce1 _)@
Cell state:

Ce: =Ci 1
tanh
hi1 hy
( r_\ prediction

"2 )| new information
\__“/

Neural Network Pointwise Vector

Layer Operation Transfer Concatenate Copy

1/14/2026 Deep Network Development 43



2. LSTM, GRU & Seq2Seq
o
Long Short-Term Memory (LSTM)
Update cell state based on the new timestep
. prediction
Hidden state: N
ht — tanh(Whhht_l + thxt + bh) Ce” state
Cell state: D >® —(c)
Ct — Ct—l ~+ h’t
tanh
ht—l [— ht
(\m:/\ new information prediction
0 =<
e ayer " Operation  Tansfer  Concatenate  Copy
1/14/2026 Deep Network Development 44



2. LSTM, GRU & Seq2Seq

Long Short-Term Memory (LSTM)
Memory: to remember what happened many timesteps before Elementwise Eldedm_entwise
Forgetting: Based on what we are seeing now, we decide what we multiplication addition -
wan%to forget/remem er d prediction
e
cell stat

A copy of the predictions is saved for the next timestep N\
Ci 1
« Some of them are forgotten, some of them are remembered G)—7—® > —@

« Then added back to the prediction

forgetting
Hidden state: o tanh
ht = tanh(Whhht_l + thxt + bh) hy | h,
Forget gate: p r_ dicti
fe = o(Wpphi_q + Wipx, + by) \& ) new information PrEcicon

Cell state:

0 > > <<
Neural Network Pointwise Vector
Layer Operation Transfer

Ce=f¢*Ciq+ hy

Concatenate Copy

1/14/2026 Deep Network Development 45




2. LSTM, GRU & Seq2Seq

Long Short-Term Memory (LSTM)

Memory: to remember what happened many timesteps before

Elementwise Elementwise

; _ _ multiplication addition o
Forgetting: Based on what we are seeing now, we decide what prediction
we want to forget/remember hy

cell stat
0.8] Cr1)—> %) > —>@
0.8
sl N\, [08" 1.01 [0.8]
X=108-05]1=1(0.4 :
A forgetting
1.0 0.8-0.0 0.0 o —
0.5
0.0 "YU h
i:.f”t___/_: new information prediction
O — > —<:
Neural Network Pointwise Vector Concatenate Copy
Layer Operation Transfer
1/14/2026 Deep Network Development 46



2. LSTM, GRU & Seq2Seq

70
[5es]
@
Long Short-Term Memory (LSTM)
 Now we have a new state based on the previous and current time step
. The.hldden sta.te is I.lot aff_ected hy the cl’f" state orediction
« We ignore what is not immediately relevant — ignore gate ",
« After addition we need to rescale the cell state - tanh cell state
Forget gate: ignoring é@
ft=0Wpshiq + Wypx, + by) _ ®
forgetting
Ignore gate: . . -
iy = o(Wpihe—q + Wyixe + by)
Cell state: et [' h
E; = tanh(Whhht_l + Wopx + bh) T , new information pI’EdiCﬁOn
Co=fe*Cq+ip+C
Hidden state: O — > _<
ht = tanh(Ct) Neural Network  Pointwise Vector Concatenate Copy

Layer Operation Transfer

1/14/2026 Deep Network Development 41



2. LSTM, GRU & Seq2Seq @\ ELTE

Long Short-Term Memory (LSTM) e

c; y
UNIVERSITY &

« We may not want to show everything after we combined our prediction with our memory
« Introduce a filter to keep our memories inside and let our prediction out - * gt
selection/output gatep P prediction
hy
cell state
Forget gate: @ ) >® _>@
fe =0Wpyshy 1 + Wypx, + by) ignoring
Ignore gate: X locti &
. 1on
iy = o(Wpihy—1 + Wyxe + by) forgetting selectio X
Output gate: o o tanh o
0 = O'(Whoht—l + W, + bo)
Cell state: ! r e
C, = tanh(Wph,_{ + W, ,x, + b ' . . icti
t an_( anfte—g +1 xhXe h) (Candidate cell state) .\_\mt‘/\, new information prediction
Ce=ft*Ceq+i*C -
Hidden state:
h, = tanh(C O : I q
t Ot - tan ( t) Neural Network Pointwise Vector Concatenate Copy
Layer Operation Transfer

1/14/2026 Deep Network Development 48



2. LSTM, GRU & Seq2Seq

Long Short-Term Memory (LSTM)

LSTM
 a more complex network
« No vanishing gradient

1/14/2026 Deep Network Development 49



2. LSTM, GRU & Seq2Seq

Long Short-Term Memory (LSTM)

LSTM - Gate

« Sigmoid puts output between 0 and 1
« QOutput of sigmoid controls which info goes through the gate

x
o

1/14/2026 Deep Network Development 50



2. LSTM, GRU & Seq2Seq

Long Short-Term Memory (LSTM)

LSTM - Forget Gate

@

1/14/2026 Deep Network Development o1



2. LSTM, GRU & Seq2Seq

Long Short-Term Memory (LSTM)

LSTM - Input / Ignore Gate

> Cf

Ct—1

h’t—l _itrl—l_l_' : _/a > hf

1/14/2026 Deep Network Development 52



2. LSTM, GRU & Seq2Seq

Long Short-Term Memory (LSTM)

LSTM - Output Gate

he
&
/’
Ct—1 X » Ct
a \ r,rH tanh | ﬂ
he_4q L1 > Nt
N
Xt

1/14/2026

Deep Network Development
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2. LSTM, GRU & Seq2Seq

Long Short-Term Memory (LSTM)

LSTM - a more complex network

&

- A R
“= [t

& ®
T

A

©
&
i f
LSTM: { A }:Etg BN 1A I
= ®
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2. LSTM, GRU & Seq2Seq

Long Short-Term Memory (LSTM) = © — > <

Neural Network Pointwise Vector
Layer Operation  Transfer Concatenate Copy

P Gates:

. c, ip = o(Whihe—q + Wyixe + b;)
t—1

ft = G(thht—l + foxt + bf)
0r = 0(Whohi—q + Wyox + by)

Ce = tanh(Wyche—q + Wy, + be)
Outputs:

C: = f;° Cp—q +i:° G
ht = O¢ °tanh((7t)

f — forget gate: Whether to erase cell
i = ignore gate: Whether to write to cell

¢ = “vanilla RNN": How much to write to cell Where ° is element-wise multiplication operation
o — output gate: How much to reveal cell
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2. LSTM, GRU & Seq2Seq ELTE s

Gated Recurrent Unit (GRU)

1 O — > <]

Neural Network Pointwise Vector C

Layer Operation Transf eeeeeeeeeeee Copy

it = 0 (Wz ' :ht—laxt:)
rc: =0 (W'r ' :ht—laxt:)
;lt — tanh (W . [’T‘t X ht_l,ﬂjt])

ht:(l—Zt)*ht_l ‘|‘Zt*?lt
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2. LSTM, GRU & Seq?2Seq @ .
G A
LSTM vs GRU

The main differences between GRU and LSTM are:

« Number of gates: GRU has two gates - an update gate and a reset gate, whereas LSTM has three gates - input, forget,
and output gates.

« Memory cell: Unlike LSTM, GRU doesn't have a separate memory cell. It combines the hidden state and memory cell into
a single hidden state, simplifying the structure.




2. LSTM, GRU & Seq2Seq @ \EL'TE M

Recurrent Layer

Have an internal hidden state
*Updated every time and fed back to the model, when a new input is read

*Used as a past contextual information.
Suitable for learning handling long-term dependencies

* E.g. time series and sequences @ @ @
A A A A

A recurrent layer: é é é
h(n) . (n) (n) )

at — 9d (Wc{l hd,t—l + Wyq hd—l,t + bg
*Where t = 1,... ,Ty; 84 = {W}L,WF, by}
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2. LSTM, GRU & Seq2Seq

Bidirectional RNN

|dea: use 2 independent recurrent models together.

“Input is fed in the proper time order to the first one, and in reverse time order to
the second one.

* Outputs are combined at each time step using concatenation or summation.

/‘ /@ /@ /@
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2. LSTM, GRU & Seq2Seq - H
2/ Nvereny M

Bidirectional RNN
‘ BIDIRECTIONAL RNN (BRNN) @
/

A BRNN layer:

— —
f@ — 3 (V—VZh;’; L+ WERD, + b;) i e

—
h((fn,g) _ ﬁ (WhhgynHl + th 1t + E) e

h((ft) = Y9d (Wd’:ﬁ + (‘Vh'dr + bd) @
Where

**“—" means normal time order, while “«" is associated with reverse time order
.t = 1_’ Tn’

'Qfg: {‘7 “r ,,f Wﬁ Wd F{ (g W bd¥
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2. LSTM, GRU & Seq2Seq

Encoder — Decoder (Seq2Seq)

ENCODER DECODER
I am good
Question : Answer I | I
(sequence) : (sequence) [ j—[ j—[ ]—[ H ]
[ | I
( Embedding ) had
[ | I I
how are you ?

Er liebte zu essen

Machine Translation
English : German phyihybuhyhhybyh iphyhyiuhy ihyhyiohy yivhyhy phylghoy gt :
(sequence) : (sequence) ' Embed i

oo _ -_-+--_.+._--

He loved to eat .

NULL Er liebte zu essen
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2. LSTM, GRU & Seq2Seq

Encoder — Decoder (Seq2Seq)

« The encoder and decoder are nothing more than stacked RNN layers, such as LSTM’s. The encoder processes the input and
produces one compact representation, called z, from all the input timesteps. It can be regarded as a compressed format
of the input.

Encoder

Sequential data processing

h,

Encoded sequence
h; representation

h, h,

Z

*each RNN block
requires the output of
the previous

X1 X2 X3 X4

input tokens
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2. LSTM, GRU & Seq2Seq @ \ELTE /M

@

EOTVOS LORAND /8
UNIVERSITY &

Encoder — Decoder (Seq2Seq)

« On the other hand, the decoder receives the context vector z and generates the output sequence. The most common
application of Seq2seq is language translation. We can think of the input sequence as the representation of a sentence in
English and the output as the same sentence in French.

Decoder

output tokens

yl y2 y3 y4

Predictions must be
performed sequentially
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2. LSTM, GRU & Seq2Seq

Encoder — Decoder (Seq2Seq)

Problems with the Seq2Seq

- The intermediate representation z cannot encode information from all the input timesteps. This is commonly known as the bottleneck
problem. The vector z needs to capture all the information about the source sentence.

« In practice, how far we can see in the past (the so-called reference window) is finite. RNN’s tend to forget information from
timesteps that are far behind.

Softmax Layer
Recurrent Layer
Recurrent Layer

Input Layer

Vanishing Gradient: where the contribution from the earlier steps becomes insignificant in the
gradient for the vanilla RNN unit.
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Lecture /.

Attention Mechanism

Budapest, 4th November 2025

1] RNNs and Embeddings [2] LSTM, GRU & Seq2Seq [3] Attention Mechanism




3. Attention Mechanism

s VELTE
% EQTVOS LORAND

Introduction to Attention Mechanism

« All the information from the encoder is " Encoder
represented in the z vector (context) ) =m =m =m e
Encoder N
- However, as seen previously, Reccurent Layer
information from earlier timestamps is o7 L
notpreserved 0 R T
One-hot Vector .
- (Can we create a better context i=

vector?

fine-- <EOS> One-hot Vector
LI .
| ‘ | 0 Decoder
— o BE== J  Output Layer
| I T
] [ ] t
| -
E Decoder
L Reccurent Layer
o [ T ] "-; ----- [ T ] "; ------ [ T ] "E ------- ) T ] """{-!j.- Decoaé-r__"-
| ; | ; | : | J  Embedding Layer
___________________________________________________________
<BOS> r» | » am » fine  Yj-1
One-hot Vector
7= 1 2 3 4
Decoder

1/14/2026 Deep Network Development 66



3. Attention Mechanism @ \ELTE

g2 ' /1 1\ Y
% FOTVOS LORAND /S I
UNIVERSITY & 1L W

Introduction to Attention Mechanism

« Attention mechanism helps creating a ¥, ,,
better context vector '

« |t learns which information from the
encoder is relevant for the decoder 7

Y1 Qij
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3. Attention Mechanism

Introduction to Attention Mechanism

« Attention mechanism helps creating a
better context vector

« |t learns which information from the
encoder is relevant for the decoder

¥

EGTVOS LORAND

UNIVERSITY &

Y1 Qij
Important Attention neural net
. A A A A
Comment Se passe ta Journee
A A A
[ i‘ _ L L R R )
‘ T ‘ T ! ﬂ»’#
t ¢+ * 1 ” " b
How || was || your || day Lot
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3. Attention Mechanism @ ELTE

Introduction to Attention Mechanism

The context vector ¢ should have access to all parts of the input sequence instead of just the last one.
In other words, we need to form a direct connection with each timestamp. We can look at all the different words at
the same time and learn to “pay attention” to the correct ones depending on the task at hand.
In the encoder-decoder:

« Given the hidden states of the encoder at each time step h = h, h,, ..., h,

« Given the previous state in the decoder y;

« We define an attention network that gives the attention scores for the current state (s) of the decoder

e;; = attention_net(s;_4, h;)
We convert this scores into probabilities
exp(ey;)

Zile exp(ejx)

aij =

- Finally, we get our new context vector c:
Ty

Ci = z C(Uh]

j=1
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3. Attention Mechanism FELTE

EQOTVOS LORAND
UNIVERSITY &

Attention Mechanism

Y1 ?

Several ways to calculate the scores

Name Alignment score function Citation
Content-base score(s;, h;) = cosine|s;, h;] Graves2014
attention
Additive(*)  score(s;, h;) = v, tanh(W,[s;; h;]) Bahdanau2015
Location- a;; = softmax(W,s;) Luong2015
Base Note: This simplifies the softmax alignment to only depend on the target

position.
General score(s;, h;) = s; W h; Luong2015
where W, is a trainable weight matrix in the attention layer.
Dot-Product  score(s;, h;) = s, h; Luong2015
Th. i
Scaled Dot score(s,, h;) = -":/;' Vaswani2017
Product(/)

Note: very similar to the dot-product attention except for a scaling factor;
where n is the dimension of the source hidden state.
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3. Attention Mechanism @ \ELTE

% EOTVOS LORAND /A

UNIVERSITY & 7T

Attention Mechanism

Jane
N
Y<1>

Decoder

GN
Encoder

T T T

a<1,5>

o

»
»

T

X<1> X<2> X<3> X<4> X<5>

Jane visite L’Afrique en septembre
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3. Attention Mechanism @ \ELTE

ott> = amount of “attention” y* should pay to h> ) ononows
Attention Mechanism o) r
exple;;
Jane e;; = a(si-1, hy) Aij = T, - c; = z a;ijh;
Q<‘|> 2k=1 exp(eik) j=1

Decoder

C
\ (1<1’1>
Encoder

T

X<1> X<2> X<3> X<4> X<5>

Jane visite L’Afrique en septembre
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3. Attention Mechanism « \EILTE &

@

EOTVOS LORAND /I
UNIVERSITY & JL W&

Attention Mechanism

Jane isit
y<s - 9<\12|>s " SAME FOR THE OTHERS ...

visite L’Afrique septembre
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Next Lecture

Next Lecture

We will continue next lecture with Attention and Transformers...
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Summary ( ELTE A

Summary

- Sequential data is important because it carries temporal information and context

Recurrent Neural Networks:
 Sequence hased models
Handle variable length sequences
Track dependencies
Maintain the order of the input
Share parameters across sequences
RNNs have limitations: vanishing gradients and short memory

«  Other architectures like LSTM and GRU improve the limitations of RNNs
« Include gates to control the flow of information

« Seq2Seq models are encoder-decoder based architectures
« The context vector from the encoder is limited
 Attention mechanism provides a better context by allowing the network to pay attention to every part of the input /
have access to all hidden states
« |t computes a score / weight that tells the relevance of each part




Summary

@

Resources

Books:

« Gourville, Goodfellow, Bengio: Deep Learning
Freely available: https://www.deeplearningbook.org/

« [hang, Aston and Lipton, Zachary C. and Li, Mu and Smola, Alexander J.: Dive into Deep Learning
Freely available: https://d2.ai/

Courses:
« Deep Learning specialization by Andrew NG
- https://www.coursera.org/specializations/deep-learning

1/14/2026 Deep Network Development 16


https://www.deeplearningbook.org/
https://d2l.ai/
https://www.coursera.org/specializations/deep-learning
https://www.coursera.org/specializations/deep-learning
https://www.coursera.org/specializations/deep-learning
https://www.coursera.org/specializations/deep-learning

Summary ELTE g\

Further Links + Resources =

- Beam search: https://towardsdatascience.com/foundations-of-nlp-explained-visually-beam-search-how-it-works-
1586b9849a24

 BLEU score: https://cloud.google.com/translate/automl/docs/evaluate#bleu
o https://theaisummer.com/attention/
« Coursera Deep Learning Specialization

EOTVOS LORAND 4
UNIVERSITY & JL &
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That’s all for today!

%, {}r&
Iy
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