

Game Theory

Lecture 0: Logistics and Motivation

László Gulyás

Eötvös Loránd University, Faculty of Informatics, Department of Artificial Intelligence

2025/26/1

Logistics

Motivation

What is Game
Theory?

Course textbooks

- ▶ Bonanno, G. (2024). *Game Theory (3rd ed.)*. University of California, Davis. Received from: [GT Book](#)
- ▶ Axelrod, R. (1984). *The Evolution of Cooperation*. Basic Books. Received from: [Axelrod Article](#)
- ▶ Nisan, N., Roughgarden, T., Tardos, É., & Vazirani, V. V. (2007). *Algorithmic Game Theory*. Cambridge University Press. Received from: [AGT Book](#)
- ▶ Myerson, R. B. (1991). *Game Theory: Analysis of Conflict*. Harvard University Press. Received from: [GT Book 2](#)
- ▶ F. Christianos et al., *Multi-Agent Reinforcement Learning: Foundations and Modern Approaches*, 2023. Received from: [MARL Book.pdf](#)
- ▶ Shoham, Y., & Leyton-Brown, K. (2008). *Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations*. Cambridge University Press Received from: [MARL Book.pdf](#)
- ▶ nashpy documentation (readthedocs) Link: [NashPy Docs](#)

Logistics

Motivation

What is Game
Theory?

Logistics

Motivation

What is Game Theory?

Outline

Logistics

Motivation

What is Game Theory?

- ▶ **Lecture:** Wednesdays, 10:00 AM - 11:30 PM
- ▶ **Location:** South Building, Room 2-712

Lecture:

- ▶ László Gulyás (lgulyas@inf.elte.hu)

Practice:

- ▶ Tamás Takács (tamastheactual@inf.elte.hu)

Grading

Grading

- ▶ Final Lecture Score (LS) = Midterm 1 (50 points) + Midterm 2 (50 points)
- ▶ Final Practice Score (PS) = Assignment 1 (50 points) + Assignment 2 (50 points)
- ▶ Final Score (FS) = $(LS + PS) / 2$
- ▶ Final Exam (written):
 - ▶ Pass required on both LS and PS (individually) to attend the final exam
 - ▶ Pass/Fail exam to get the FS
 - ▶ Written exam from the lecture material

Grade Conversion

Final Score Range	Grade
> 85	5
75 - 85	4
65 - 74	3
40 - 64	2
< 40	Fail

Logistics

Motivation

What is Game
Theory?

Logistics

Motivation

What is Game Theory?

Logistics

Motivation

What is Game Theory?

Logistics

Motivation

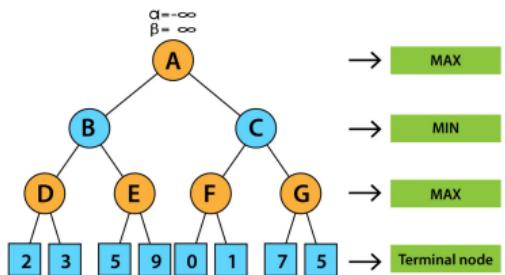
What is Game
Theory?

What is a Game?

Logistics

Motivation

What is Game
Theory?


- ▶ A Boardgame?
- ▶ Chess?
- ▶ Video games? Sports?

What is a Game? - Alpha-Beta-Pruning

- ▶ A Boardgame?
- ▶ Chess?

Sure...

- ▶ Minimax algorithm
- ▶ Alpha-Beta cut

Familiar?

What is a Game? - Examples

Anything else?

Perhaps more general?

For example:

- ▶ Negotiating the price of a car
- ▶ Deciding where to sit in an empty classroom
- ▶ Online auctions

Can a traffic jam be a game? What about standing in line for coffee?

Logistics

Motivation

What is Game Theory?

What is a Game? - Competition

- ▶ Competition? → How?
- ▶ Is every competition a game?
- ▶ When would competing not involve a “game”?

- ▶ Collecting
 - ▶ Money?
 - ▶ Points? Scores? → Artificial...
 - ▶ Value → Valuation
- ▶ Numerical (quantitative), or
- ▶ (Partial) ordering

Logistics

Motivation

What is Game Theory?

What is a Game? - Outcomes

DECISION(s)

- ▶ Resulting in certain outcomes (numerical / ordered)

Can you think of situations with no clear “winner” or “loser”?

An interesting problem (Hotelling, 1929)

Two competing shops

- ▶ located along the length of a street
- ▶ selling the same good at the same price
- ▶ with customers spread equally along the street

Both shop owners want

- ▶ to position their shops to be where they will get most customers

Customers

- ▶ are indifferent between the shops,
- ▶ go to what is closest

Hotelling, 1929

Two competing shops

- ▶ located along the length of a street
- ▶ selling the same good at the same price
- ▶ with customers spread equally along the street

Both shop owners want

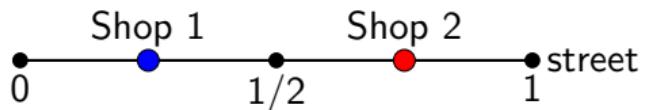
- ▶ to position their shops to be where they will get most customers

Customers

- ▶ are indifferent between the shops,
- ▶ go to what is closest

WHERE THE SHOPS WILL BE LOCATED?

Hotelling, 1929 - Visualization


Game Theory

László Gulyás

Logistics

Motivation

What is Game Theory?

- ▶ Where to put the shops?
- ▶ What if you could revise your decision?

- ▶ What if the shops are located at the $\frac{1}{4}$ and $\frac{3}{4}$ of the street?

Hotelling - Iteration (Cont.)

- ▶ What if the shops are located at the $\frac{1}{4}$ and $\frac{3}{4}$ of the street?
- ▶ What if life goes on? Can shop owners revise their decisions?
- ▶ Over time, both move toward the center.

In your city, why are gas stations or coffee shops often clustered together?

Hotelling: Equilibrium

- ▶ When both shops are at $\frac{1}{2}$, neither can improve by moving alone
- ▶ **This is a Nash Equilibrium:** no one can do better by changing position, if the other stays put

- ▶ Tipping at the office canteen...
- ▶ Choosing when to post on social media for maximum likes
- ▶ Strategic pricing in supermarkets

What is common about these situations?

- ▶ Decisions
- ▶ Different values (valuations) of the outcomes

Anything else?

Logistics

Motivation

What is Game Theory?

Outcome depends on others

- ▶ Decisions
- ▶ Different values (valuations) of outcomes
- ▶ **Outcome / Value of outcome depends on others**

Logistics

Motivation

What is Game Theory?

(Value of) Outcome depends on others

Modeling others' behavior

I know that you know that I know that you know that...

Have you ever tried to guess someone else's move in a game or negotiation?

(Value of) Outcome depends on others - Behavioral assumptions

- ▶ Rational (maximizing / optimal) behavior
- ▶ What else?
 - ▶ Random?
 - ▶ “The wilderness of irrationality”
 - ▶ Learning or experience

(Value of) Outcome depends on others - Learning

- ▶ Behavioral assumptions
 - ▶ Rational (maximizing / optimal) behavior
 - ▶ Random?
 - ▶ “The wilderness of irrationality”
 - ▶ **Learning (approximating rationality)**
- ▶ Many real-life games involve repeated interaction and adaptation

Logistics

Motivation

What is Game
Theory?

Logistics

Motivation

What is Game Theory?

Logistics

Motivation

What is Game Theory?

Decision Making - Three major elements

1. Who is in charge to make the decision? The decision maker (DM):
 - ▶ one or
 - ▶ more
2. What choices the DM has? Alternatives:
 - ▶ Finitely many (discrete problem), A_1, A_2, \dots, A_m
 - ▶ Described by continuous variables (continuous problem), like
$$X = \{x|x \in \mathbb{R}^m, g(x) \leq 0\}$$
3. What are the consequences of the decision?
 - ▶ Objective functions, $\phi_1, \phi_2, \dots, \phi_n$.

Logistics

Motivation

What is Game Theory?

Many cases - Decision scenarios

Number of DMs and number of objectives

	1 DM	Multiple DMs
1 objective (each)	single objective optimization	game
Multiple objectives	multiobjective optimization	Pareto game

One-off or repeated (iterated) games, etc.

Logistics

Motivation

What is Game Theory?

Further examples

- ▶ Elections (voting strategies, alliances)
- ▶ Allocation problems (who gets what and why)
- ▶ Art Auctions (highest bid wins, second-price nuances)
- ▶ Public tenders (bidding for contracts, strategic pricing)
- ▶ Spectrum auctions (telecom companies, massive stakes)

Further examples (Cont.)

- ▶ Elections (voting strategies, alliances)
- ▶ Allocation problems (who gets what and why)
- ▶ Art Auctions (highest bid wins, second-price nuances)
- ▶ Public tenders (bidding for contracts, strategic pricing)
- ▶ Spectrum auctions (telecom companies, massive stakes)

Are these games? Can you find the “players” and “payoffs” in these situations?

Logistics

Motivation

What is Game Theory?

Two Approaches to Game Theory

Bottom-Up

- ▶ Game → (Equilibrium) Outcome

Top-Down

- ▶ Problem & (rational) DMs → Game
 - ▶ *Implementation Theory* - design the game to get desired outcomes

Which approach seems more useful to you as a student or researcher?

- ▶ John von Neumann (1928): Early math foundations, minimax
- ▶ John Nash (1950-53): Equilibrium in games
- ▶ Nobel laureates Nash, Selten, Harsanyi (1996), Vickrey (auctions)
- ▶ Game theory now used in economics, computer science, biology, politics, and more

Terminology - Watch out

WARNING: Conflicting terminology

- ▶ Game Theory vs Reinforcement Learning
- ▶ The two textbooks used use different words for the same concepts!

Key concepts:

- ▶ DMs: players (agents)
- ▶ Decision alternatives: strategies (actions)
 - ▶ Probability distributions on alternatives: *mixed strategies*
- ▶ Objective functions: payoff functions (to be formally defined soon)

Small groups:

Identify a real-life situation where “what you do” depends on “what others do”, and sketch (in words) who are the players, what are their possible actions, and what might be the outcomes/payoffs.

Recap and What's Next

- ▶ Game theory investigates situations where the optimal choice depends on others' choices
- ▶ We've seen examples from games, economics, politics, daily life
- ▶ Next lecture: Formal framework for "Normal-Form Games," concrete examples, foundations for strategic thinking

Logistics

Motivation

What is Game
Theory?