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Previously on Lecture 1

vvvy Vv

Defined normal-form games, best response, dominance, and iterated
elimination.

Explored classic 2x2 games and their strategic structure.

Introduced repeated games and the role of history in strategies.

Discussed the importance of best response correspondences for equilibrium
concepts.
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Lecture Overview
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Mixed Strategies and the Indifference Principle

Fixed Point Theorems and Nash's Existence Result

Epsilon-Nash Equilibria

Computational tools (NashPy)

Fixed point theorems: Banach, Brouwer, Kakutani, and their connection to
Nash
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Short Recap

Short Recap




Normal-Form Game and Payoffs
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Short Recap

P Players: i € {1,..., N}

P Actions: A, finite, strategy 7, € A(A4,)

P Payoff: R,(a;,a_;) for pure, extended linearly to mixed
P Joint strategy ™ = (my, ..., Ty)




[terated Games
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Short Recap

P A single-shot normal-form game captures one simultaneous move
P> But many situations are repeated over time (e.g. pricing, traffic,
negotiations)
P> Iterated game = repeated play of the same stage game
P Payoffs may be summed, averaged, or discounted
P Allows strategies that condition on history (e.g. “tit-for-tat”)
P> Repetition introduces new equilibria beyond the one-shot case (Folk
Theorems)




Axelrod’s Tournament (Iterated Prisoner’s Dilemma)

Organized by Robert Axelrod in the 1980s
Participants submitted computer programs to play repeated Prisoner’s
Dilemma
P Famous strategies:
P Always Defect (greedy)
P Always Cooperate (naive)
P Tit-for-Tat (cooperate first, then copy opponent’s last move)
P Results: Tit-for-Tat won, showing that cooperation can emerge among
self-interested agents
In iterated settings, history-dependent strategies matter

\ A 4
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Short Recap




Tournament Scores in Axelrod’'s Tournament
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Short Recap

Prog. TFT T& NY GR SH S&R FR DA GR DO FE JO TU NA RAN Mean Rank No. of Rank
PPoint Wins Wins

TFT 600 595 600 600 600 595 600 600 597 597 280 225 279 359 441 504 1 0 15

T&C 600 596 600 601 600 596 600 600 310 601 271 213 291 455 573 500 2 1 2

NY 600 595 600 600 600 595 600 600 433 158 354 374 347 368 464 486 3 1 13.5

GR 600 595 600 600 600 594 600 BO0 376 309 289 236 305 426 507 482 4 4 6

SH B00 595 600 600 600 595 600 600 348 271 274 272 265 448 543 481 5 3 115

S&R 600 596 600 602 600 596 600 600 319 200 252 249 280 480 592 478 6 10 35

FR 600 595 600 600 600 595 600 600 307 207 235 213 263 489 598 473 7 6 8

DA B00 595 600 600 600 595 600 600 307 194 238 247 253 450 598 472 8 4 9.5

GR 597 305 462 375 348 314 302 302 588 625 268 238 274 466 548 401 9 5 9.5

DO 597 591 398 289 261 215 202 239 555 202 436 540 243 487 604 391 10 6 6

FE 285 271 426 286 207 255 235 239 274 704 246 236 272 420 467 328 1 12 a5

Jo 230 214 409 237 286 254 213 252 244 634 236 224 273 390 469 304 12 10 1

TU 284 287 415 203 318 271 243 220 278 193 271 260 273 426 478 301 13 6 6

NA 362 231 397 273 230 149 133 173 187 133 317 366 345 413 526 282 14 2 1.8

RAN 442 142 407 313 218 141 108 137 189 102 360 416 419 300 450 276 15 1 13.5

doi:10.1371journal. pone.0134126.1002




Solutions and Solution Concepts
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Short Recap

P Solution: Prediction of (equilibrium) outcome
P A solution concept = a rule to predict how rational players will play

P Desiderata:

P> Consistency across players
P Robustness to deviations
P Predictive power in real-world applications

P Examples:

P Dominant strategies: strictly best regardless of others
P Best response: optimal given beliefs about opponents
P Nash equilibrium: mutual best responses

P Solution concepts differ in strength and applicability
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Mixed Strategies
and the
Indifference
Principle

Mixed Strategies and the Indifference Principle




Pure and Mixed Strategies

P Pure strategy: Choose a single action deterministically.

P Mixed strategy: Probability distribution over available actions.

P> Mixed strategies expand the strategy space to convex sets (simplices).
P Many games (e.g. Matching Pennies) have no pure NE.

P> Mixed strategies guarantee existence of equilibrium [Nash 1950].

Why might randomization be rational in some games?
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Mixed Strategies
and the
Indifference
Principle




Example: Pure vs Mixed Strategies

H T

H (1-1) (-1,1)
T (-1,1) (1,-1)

P No pair of pure strategies is stable (one player always wants to deviate).
P Mixed strategy solution: Each player randomizes: H with 0.5, T with 0.5.

What happens if you try to “outguess” your opponent in this game?
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Mixed Strategies
and the
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Principle




Best Response: Definition
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Mixed Strategies
and the
Indifference
Principle

For player ¢ and opponents’ mixed strategy 7_,

vl

BR.(r_,) = R;(m;,7_,).
() arg max | (T y)

» May be multi-valued
P Always nonempty for finite games

P Contains all optimal mixtures against 7_,




Best Response in Pure Strategies

With opponents fixed at a pure action a_;

BR,(a_;) = arg max R,(a;,a_;).

a;€EA;

P Quick to read off in a payoff matrix
P> Underline the highest entry in each row or column as
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Mixed Strategies
and the
Indifference
Principle

appropriate




Best Response as a Correspondence

» Domain: A(A_;)

P Range: subsets of A(A,)

P For finite games: nonempty, convex-valued, upper hemicontinuous
P> These properties are key to existence ideas later
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Mixed Strategies
and the
Indifference
Principle




Upper Hemicontinuity: Intuition

If 78, — 7, and ¥ € BR,;(7*,) with 7% — 7, then 7, € BR,(7_,).

Small changes in beliefs do not create discontinuous jumps in optimal responses.
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Mixed Strategies
and the
Indifference
Principle




Visualizing BR: Probability Simplex
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Mixed Strategies
and the
Indifference
Principle

P Opponents’ mixture on the horizontal axis
P Your BR as regions or line segments




Dominance and BR

P Strictly dominated actions are never best responses.
P> Iterated elimination of strictly dominated strategies simplifies BR maps.
P Order independence holds for strict dominance.
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Mixed Strategies
and the
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Principle




Example 1: Coordination BRs

L R
U (32) (00)
D (0,0) (23)

» Mutual BR at (U,L) and at (D,R).
» Two pure NE arise.
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Mixed Strategies
and the
Indifference
Principle




Example 2: Prisoner’'s Dilemma BRs

P D strictly dominates C for both.
» Unique mutual BR at (D,D).
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Mixed Strategies
and the
Indifference
Principle




Example 3: Chicken BRs

Swerve Straight

Swerve  (0,0) (-1,1)
Straight (1,-1) (-M,-M)

P Two off-diagonal pure NE when M is large.
P No dominant strategies.
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Mixed Strategies
and the
Indifference
Principle




Example 4: Matching Pennies BRs

H T
H (1-1) (-1,1)
T (-1,1) (1,-1)
P BRs cycle.
» No pure NE.

P Mixed NE required.
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Mixed Strategies
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Principle




From BR to NE: Core Idea

A strategy profile 7 is a Nash equilibrium if for all ¢,

i € BR,(7%;).

P No unilateral profitable deviation
P Mutual best response characterization

Laszlé Gulyas

Mixed Strategies
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Indifference
Principle




Nash Equilibrium: Formal Definition

In finite (N, {A4,},{R;}), 7 is a Nash equilibrium if for all i and all 7,

Ri(ﬂ;kﬂrii) > Ri(”iaﬁiz‘)-

P Pure NE if each 7} is a point mass
P Mixed NE if some 7} is a distribution
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Mixed Strategies
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NE as Fixed Point of BR
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Mixed Strategies
and the
Indifference
Principle

Define BR(m) = x;BR,(m_,) across players.
Nash equilibria are fixed points of BR:

™ € BR(m*).




Invariance and Normalization

P> Positive affine transformations of a player's payoff preserve BR and NE.
P> Normalize scales for convenience.
P> Cross-player mixing of scales does not matter for equilibrium structure.
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Mixed Strategies
and the
Indifference
Principle




Mixed Strategies: Expected Utility

P Extend payoffs linearly in mixed strategies.
P For 2 x 2, let row play U with probability p and column play L with q.
P Compute expected payoffs for each pure action, then use indifference.

L R

U (32) (00)
D (0,0) (23)
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Mixed Strategies
and the
Indifference
Principle




Indifference Principle

At a mixed NE, each action in the support yields the same expected payoff.

P Equalize payoffs of supported actions.
P Out-of-support actions do not exceed that payoff.

Laszlé Gulyas

Mixed Strategies
and the
Indifference
Principle




Mixed NE: Matching Pennies
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Mixed Strategies
and the
Indifference
Principle

Row plays H with p, column plays H with ¢:

up(H)=2q—1, ugp(l)=1-2¢ = q=3.
By symmetry, p = %

P Value: 0 for both players




Mixed NE: Battle of the Sexes

Payoffs:

P Ballet together: (2,1)
P Football together: (1,2)

Let row pick Ballet with p, column pick Ballet with g:

uc(B)=1"p,

Mixed NE is (p*, ¢*) = (%, %)

upr(F)=11—-¢q) = q=
uc(F)=2(1-p) = p=

1
3

2
3
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Mixed Strategies
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2x2 Mixed NE: Template

For

_f(a b (e f
=) e ()

let the row player play U with probability p, and the column player play L with
probability q.

P Row indifference: aq+ b(1 —¢q) = cq+d(1 —q) = solve for ¢
P Column indifference: ep + g(1 —p) = fp+ h(1 —p) = solve for p
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Mixed Strategies
and the
Indifference
Principle




Mutual BR Characterization

P In pure strategies: a cell is an NE if it is a best response for both players
P In mixed strategies: supports produce equal expected payoffs
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Mixed Strategies
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Degeneracy and Tie Breaking

P> Degenerate equilibria have multiple BR at the boundary
P Small perturbations can select a unique equilibrium
P Good practice for robustness checks
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Equilibrium Selection

Description

Example

Risk dominance

Payoff dominance

Largest “basin of
attraction"”. Risk of
others’ mistakes —
risk-dominant strategy
Payoffs are as good as in
other NEs, but someone
is strictly better off

Hare in Stag Hunt:
lower, but guaranteed
payoff

Stag in Stag Hunt:
significantly higher
reward, if successful
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Mixed Strategies
and the
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Zero-Sum Preview: Minimax

P In 2-player zero-sum, NE equals minimax solution.

P> Value of the game is the row player's equilibrium payoff.
P Solvable by linear programming.

P Details in a later week.
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Mixed Strategies
and the
Indifference
Principle




Linear Programming Formulation (Row Player)

Let A be the row player's payoff matrix. Solve

max v st. ATz >wvl, >0, 1Tz =1.

T,v

P The dual problem gives the column player's formulation
P The solution returns both the equilibrium strategy and the game value
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Mixed Strategies
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Mixed Strategy
Examples NashPy
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Battle of the Sexes (2x2, mixed + 2 pure)
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import numpy as np, nashpy as nash

A = np.array([[2,0],[0,111)
np.array([[1,0],[0,211) Mixed Strategy
G - nash . Game (A , B) Examples NashPy

(os]
I

def show(egs):
for sa, sb in egs:
payA, payB = G[sa, sb]
print (f"Row: {np.round(sa,3)}, Col: {np.round(sb,3)} -> "
f'payoffs ({payA:.3f}, {payB:.3f})")

eqs = list(G.support_enumeration())
show(egs)
# Mized NE should be (p,q) = (2/3, 1/3)

P Enumerates supports and checks indifference
P Returns pure and mixed equilibria where they exist




Chicken / Hawk—Dove (2x2, mixed + 2 pure)
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import numpy as np, nashpy as nash

Mixed Strategy
Examples NashPy

A = np.array([[ 0,-1],[ 1,-1011)
B = np.array([[ 0, 1],[-1,-10]11)
G = nash.Game(A,B)

for sa, sb in G.support_enumeration():
payA, payB = G[sa, sb]
print(f"Row: {np.round(sa,3)}, Col: {np.round(sb,3)} -> \\
({payA:.3f}, {payB:.3f})")
# Expect two pure off-diagonal + one interior mixed.




Matching Pennies (2x2 zero-sum, unique mixed only)
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import numpy as np, nashpy as nash

Mixed Strategy
Examples NashPy

A = np.array([[ 1,-11,[-1, 11D
G = nash.Game(A, -A)

for sa, sb in G.support_enumeration():
payA, payB = G[sa, sb]
print (£f" (Row,Col) = ({np.round(sa,3)}, {np.round(sb,3)}) -> \\
{payA:.3f}, {payB:.3f}")
# Unique mized: ([0.5, 0.5], [0.5, 0.5])




Rock—Paper—Scissors (3x3 zero-sum, unique mixed only)
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import numpy as np, nashpy as nash

Mixed Strategy

A = np.array([[ 0,-1, 1], Examples NashPy
[ 1, 0,-1],
(-1, 1, 011)

G = nash.Game(A, -A)

for sa, sb in G.vertex_enumeration():
payA, payB = G[sa, sb]
print (f"Row: {np.round(sa,3)}, Col: {np.round(sb,3)} -> \\
({payA:.3f}, {payB:.3f})")
# Unique mixed: each player (1/3, 1/3, 1/3)




Non-uniform mixed in 3x3 zero-sum
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import numpy as np, nashpy as nash

# Slightly biased RPS; equilibrium stays interior but not uniform. [t
Examples NashPy

A = np.array([[ 0, -1, 1.2],
[ 1.0, O, -1],
[-1.2, 1, 01D
G = nash.Game(A, -A)

for sa, sb in G.vertex_enumeration():
payA, payB = G[sa, sb]
print (f"Row: {np.round(sa,3)}, Col: {np.round(sb,3)} -> \\
({payA: .3f}, {payB:.3f})")
# Expect mixed with probabilities != 1/3




General-sum 3x3 with a support-size-2 mixed NE
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import numpy as np, nashpy as nash

=
]

np.array([[3, 0, 2],[0, 2, 3],[2, 3, 0]], dtype=float) T T—
B = np.array([[2, 3, 0],[3, 0, 2]1,[0, 2, 3]], dtype=float) SR S Wy
G = nash.Game(A,B)

for sa, sb in G.support_enumeration():
payA, payB = G[sa, sb]
support_row = np.flatnonzero(sa > 1e-9)
support_col = np.flatnonzero(sb > 1e-9)
print (f"Row: {np.round(sa,3)} (supp {support_rowl}),
f"Col: {np.round(sb,3)} (supp {support_col}) "
f'-> ({payA:.3f}, {payB:.3f})")
# Typically finds a mized with support size 2 for each.




Validating Returned Equilibria
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Mixed Strategy
Examples NashPy

Given (71, 75):
1. Compute u; = R;(m, 7).
2. Compute uP® = max_, R,(7},7_,).
3. Check that uB® —u, = 0 up to tolerance.
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1. Banach Fixed Point Theorem (Contraction Mapping
Theorem)
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Statement: .
xistence of

Equilibrium Points

Let (X, d) be a nonempty complete metric space and f : X — X a contraction
(i.e., there exists 0 < ¢ < 1 such that d(f(z), f(y)) < c¢-d(z,y) for all z,y).
Then there exists a unique fixed point 2* in X such that f(z*) = z*.

P Fundamental for proving convergence, but not generally used for Nash
equilibrium existence, because game-theoretic best response
correspondences are not contractions or even single-valued.




1. Banach Fixed Point Theorem

Tkl = f

Attracting fixed point: |f'(z*)| < 1.
Repulsive fixed point: |f'(z*)| > 1.

Theorem: If (X, d) is a complete metric space,
f: X X with d(f(x), f(y)) < rd(z,y) and k < 1
then 3!z* such that f(z*) = z*.

Thil et f(zx) k4o o d(zg,x*) < nkd(a:o,x*)
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Existence of
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2. Brouwer Fixed Point Theorem
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Statement:
Let S C R™ be nonempty, compact, and convex.
If f:S — S is continuous, then there exists x* € S such that f(z*) = x*. B o ints

P Applies to single-valued, continuous functions.

P Nash's early proofs for continuous strategies (but not for general, set-valued
best responses) used Brouwer.

Most best response functions in games are not continuous or are set-valued, so
Brouwer does not directly apply in general.




2. Brouwer Fixed Point Theorem Plot
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Existence of
Equilibrium Points
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3. Kakutani Fixed Point Theorem
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Statement:

Let S C R™ be nonempty, compact, and convex.
Let ® : S — 2° be an upper hemicontinuous set-valued function (i.e., a
correspondence) such that Existence of

Equilibrium Points

1. Forall z € S : ®(x) is nonempty, convex, and closed.

2. The graph of ® is closed: If 2% — 2, y* — y, and y* € ®(2*), then
y € O(x).
Then: There exists * € S such that 2* € ®(z*).

P This is the key fixed point theorem for proving Nash equilibrium in games
with mixed strategies, because the best response correspondence may be
set-valued and upper hemicontinuous.




3. Kakutani Fixed Point Theorem Plot
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(F(X.-p) Existence of
Equilibrium Points

457
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Relationship & Hierarchy
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P Brouwer is a special case of Kakutani (when the correspondence is ence of
single-valued, i.e., a function). Equilibrium Points

P Banach is fundamentally different, deals with iterative contractions. Not
generally present in game theoretic contexts.

P In Nash's context, Kakutani is needed due to set-valuedness of the best
response correspondence.




Nash Equilibrium Existence: Proof Sketch
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Let G = (N, (4,), (R;)) be a finite normal-form game.

Strategy space:

P> For each player i, the set of mixed strategies is the probability simplex over
A‘, nOted A<AZ> Existence of

Equilibrium Points

(2

P Joint strategy space is the product S = [T, AC4;).
P S is compact and convex.

Best Response Correspondence:

P Define BR, : S_;, — 2% by
BR,(0_;) = argmax, .g R;(0;,0_;), where R, is extended by linearity to
mixed profiles. o

P The best response correspondence for all players is BR : S — 2°, mapping
o to the product set [[. BR,(0_;).




Nash Equilibrium Existence: Proof Sketch (Cont.)
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Verification of Kakutani’s Conditions:

P> For each player, BR;(c_;) is nonempty (maximum of a continuous function
over a compact simplex exists).
. .. . . . . Exist: f
P Convexity: The set of maximizers of a linear function over a simplex is Equilibrium Points

convex.
P Upper hemicontinuity (Closed Graph): Follows from Berge's Maximum
Theorem because the payoff functions are continuous.
P> Strategy space is a nonempty, compact, convex subset of R¥.

Applying Kakutani:

P By Kakutani's Theorem, there exists o* € S with o* € BR(c*).
P> Therefore, every finite game has at least one mixed Nash equilibrium.




Why Is Proving Existence Hard?

vV v vvy V
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Best response maps are set-valued (correspondences), not single-valued
functions.

Continuity issues: Best response is not continuous as a function.
Compactness and convexity of the strategy space is essential;
non-convexity can lead to non-existence.

Upper hemicontinuity and nonempty convex values are subtle properties,
mathematically nontrivial to prove for arbitrary correspondences.

Early attempts (pure strategies only) often fail, since no NE need exist in
pure strategies.

Existence of
Equilibrium Points




Upper Hemicontinuity and Graph
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P The graph of a set-valued function ® : § — 2% is Existence of
{(:l?, y) ‘ rc S,y c (I)(Zl?)} Equilibrium Points
® is upper hemicontinuous at x if, whenever 2% — x and y* € ®(2*) with
y* — v, it follows that y € ®(x).

P> This ensures “no sudden jumps,” which is crucial for fixed point existence.




Intuition: Why Mixed Strategies?
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P> The set of pure strategies is not convex or compact, so fixed-point theorems E;‘j;?g,ﬁj,gfpoms
do not apply.

P Mixed strategies complete the set, ensuring compactness and convexity of
the feasible region.




Table: Summary of Theorems
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Theorem  Domain Type Map Type Existence  Uniqueness
Banach Complete metric space Contraction Yes Yes
Brouwer  Compact convex subset,  Continuous Yes No
R™ function
Kakutani  Compact convex subset,  Upper Yes No e Points
R™ hemicontinuous
correspondence

In what games is the best response function not single-valued? Give an example.

Why does convexity of the mixed strategy space matter for the application of
Kakutani’s theorem?

Can you give a simple set-valued function that violates upper hemicontinuity,
and show what goes wrong?
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Epsilon-Nash: Definition

A profile 7 is an e-Nash equilibrium if for all ¢,

R,(m) > maxR,;(m,,m_;) — €.

/

™

P ¢ = 0 gives an exact Nash equilibrium
P> Useful when using numerical solvers or rounding
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Why Epsilon-Nash Matters
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P Rounding effects in computation
P> Approximate rationality in practice
P Many algorithms converge to epsilon-NE rather than exact NE




Measuring Epsilon in Finite Games
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For each player i:

1. Compute u; at (7, 7,).
2. Compute the best pure-response payoff ufR.
3. Set g; = uPR —u,;.

Report max; ¢;.




Example: Epsilon for Rounded Matching Pennies

True NE: (p,q) = (0.5,0.5).
Use (p, q) = (0.55,0.45) for both players.

For the row player:

P If Row plays H:
up(H)=0.45-140.55-(—1) = —0.1.

P If Row plays T":
up(T)=0.55-14+0.45-(—1) =0.1.

P If Row mixes with p = 0.55:
up = 0.55-(—0.1) +0.45- (0.1) = —0.01.
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Example: Epsilon for Rounded Matching Pennies (Cont.)

Laszl6 Gulyas

Best-response payoff is 0.1 (by playing T').
Gap is 0.1 — (—0.01) = 0.11.

By symmetry, the same holds for the column player.




NashPy: Compute Epsilon
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import numpy as np

A = np.array([[1,-11,[-1,111)
pi_row = np.array([0.55, 0.45])
pi_col = np.array([0.45, 0.55])

row_pure_payoffs = A @ pi_col
col_pure_payoffs = (-A).T @ pi_row

row_gap = row_pure_payoffs.max() \\
- row_pure_payoffs @ pi_row
col_gap = col_pure_payoffs.max() \\
- col_pure_payoffs @ pi_col
print("eps_row=", row_gap, "eps_col=", col_gap)




Parametric Games
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P> Vary a parameter in payoffs and track how the NE moves
P> Useful for comparative statics
P> Example: scale a penalty in Chicken and observe the mixed NE threshold




Parametric Example: Battle of the Sexes
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Let Ballet payoffs be (2,1) and Football payoffs be («,2).

P Row indifference fixes g(«)
P Column indifference fixes p(«)
P Plot p(«) and ¢(«) to visualize shifts in mixing




Parametric Example: Solution
1. Row Indifference (g(«)):
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Set Row'’s expected payoff from Ballet and Football equal
2q =a(l—q)
29+ aqg =«

a2+a)=a
«Q
24+«

q(a) =

2. Column Indifference (p(«)):

Set Column’s expected payoff from Ballet and Football equal

p=2(1-p)
p+2p=2
3p=2
2
pla) = 5




Parametric Example: Solution (Cont.)

P Row's mixing probability: ¢(a) = 5%
P Column’s mixing probability: p(a) = %

As « increases, q(«) increases from 0 toward 1.

p(«) remains fixed at 2/3.

Laszlé Gulyas




Practice 1

Laszlé Gulyas

Identify all mutual BR cells in:

L R

U (32) (01)
D (2,00 (13)

1. Does a pure NE exist?
2. If not, solve for mixed NE.
3. Normalize payoffs and confirm NE unchanged.




Practice 2

Laszlé Gulyas

1. Construct a 2 x 2 general-sum game with exactly one mixed Nash
equilibrium.

2. For the zero-sum game with payoff matrix {_23 _4 ] compute the value

and the equilibrium mixing.
3. In Chicken, replace (—10,—10) with (—M,—M). Find the threshold M
that yields a mixed Nash equilibrium.




Practice 3

Laszlé Gulyas

1. Use NashPy to compute all equilibria for three random 2 x 2 general-sum

games.
2. For each equilibrium, round the probabilities to two decimals and compute €.

3. Create a PNG of best-response (BR) lines and mark the intersection for one

game.




True or False?

Laszlé Gulyas

1. Every 2 x 2 game has a pure NE.

2. A strictly dominated action can be part of a mixed NE support.
3. In zero-sum games, NE equals minimax.

4. Mixed NE always make players indifferent across all actions.




Answers

Laszlé Gulyas

1. False. Matching Pennies is a counterexample.

2. False. Dominated actions never belong to the support.
3. True. By minimax duality.

4. False. Only across supported actions.
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Potential and Supermodular Games




Proof: Best Response Upper Hemicontinuity

Laszlé Gulyas

P> The strategy space (product of mixed strategy simplices) is compact and
convex.

P> Each player’s payoff is continuous and linear in their own mixed strategy.

P> For any fixed profile of opponents’ strategies, the set of best responses is
the set of maximizers of a continuous linear function over a simplex, which
is a nonempty convex set.

P Berge's Maximum Theorem: If f(z,y) is continuous and the constraint Potential and
. . . . Supermodular
correspondence C'(x) is continuous (upper hemicontinuous, Games

compact-valued), then the value function M (z) = max,cc(,) f(,y) is
continuous, and the maximizer correspondence is upper hemicontinuous and
compact-valued.

P> Therefore, the best response correspondence in finite games is upper
hemicontinuous, convex-valued, and nonempty-valued, satisfying Kakutani's
conditions for a fixed point.




Existence in Concave Games

If u; is continuous in all arguments and concave in i's own strategy on a
compact convex set, then a Nash equilibrium exists.

P> The best response correspondence is upper hemicontinuous and
convex-valued.
P Kakutani's theorem applies, so an equilibrium exists.

Laszlé Gulyas

Potential and
Supermodular
Games




Potential Games: Existence and Structure

Laszlé Gulyas

A game is a potential game if there exists a function ® such that for any
unilateral deviation by player 4:
Ri(aj,a_;) — Ri(a;,a_;) = ®(aj,a_;) — P(a;,a_;)
Potential and

Supermodular
Games

P> Every finite potential game has at least one pure strategy Nash equilibrium
(since ® attains a maximum).
P> Best response dynamics converge to a pure NE.




Supermodular Games: Monotone Best Response

Laszlé Gulyas

A game is supermodular if each player's payoff has increasing differences in
their own strategy and others’ strategies.

P> The best response correspondence is monotone (increasing in others’
Strategies). Potential and
.y . . . Supermodular

P Tarski’'s Fixed Point Theorem: Any monotone function on a complete Games
lattice has a smallest and largest fixed point.

P Supermodular games have smallest and largest pure strategy Nash equilibria.
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Support Enumeration

Laszlé Gulyas

P For 2 x 2 games, enumerate all possible supports (sets of actions played
with positive probability) for each player (size 1 or 2).

P> For each support pair, solve the indifference equations (equalize expected
payoffs for actions in support).

P> Check feasibility (probabilities in [0, 1]) and that out-of-support actions do
not yield higher payoffs.

Support and
P This is implemented in NashPy and other solvers. Vertex

Enumeration




Vertex Enumeration

Laszlé Gulyas

P Nash equilibria correspond to vertices of best response polytopes (sets
defined by best response inequalities).

P Enumerate candidate vertices and test equilibrium conditions.

P> Efficient for small games and certain classes (e.g., zero-sum, symmetric).

Support and
Vertex
Enumeration




Example: General-Sum 2 x 2

Laszlé Gulyas

L R

U (41) (02)
D (1,00 (2,3

Let p = Pr[U], ¢ = Pr[L].
Row indifference:
2
4q+0<1—q>:1q+2(1—Q):>4q:2_q:>q:g Support and

Vertex
Enumeration

Column indifference:

3
Ip+0(1—-p)=2p+3(1—p) = p=3(1—-p) = p=y

Compute expected payoffs for each action and verify that out-of-support actions
do not yield higher payoffs.




Example: Mixed and Pure Check

Laszlé Gulyas

P> Check if any pure cell is a mutual best response (i.e., both payoffs are

maximal in their row/column).
P If none, use (p,q) = (%, %) as above.

P> Verify that all equilibrium conditions are satisfied.
Support and

Vertex
Enumeration




Example: Zero-Sum 3 x 3 Rock Paper Scissors e

0o -1 1
A=11 0 -1
-1 1 0

P By symmetry, the unique NE is (%, %, %) for both players.

Support and

P Value of the game is 0. Vertex

Enumeration

P> Vertex enumeration recovers this efficiently.




Board Problem: Compute Mixed NE

Laszlé Gulyas

L R

U (34) (01)
D (10) (23)

1. Write indifference equations for p, q.
2. Solve for p*, q* f/:ftizrt and

3. Verify out-of-support inequalities. Enumeration
4. Compute expected payoffs for each action.




Extra Questions

Laszlé Gulyas

1. In a 2x2 game, if both players put positive probability on both actions at an
equilibrium, what must be true about the expected payoffs of their actions
in support

2. Define g; = ubf —
with € = 0.087

u;. If ¢, = 0.08 for each player, is the profile an e-NE

Support and
Vertex
Enumeration




Extra Answers

Laszlé Gulyas

1. They must be equal (indifference principle).
2. Yes

Support and
Vertex
Enumeration




Summary

Laszlé Gulyas

P> Best response correspondences define Nash equilibrium.

P> Every finite game has a mixed Nash equilibrium.

P In 2 x 2 games, solve for mixed NE using indifference and feasibility.
P =-Nash equilibrium measures how close a profile is to equilibrium.

P NashPy helps compute and check equilibria in practice.

Support and
Vertex
Enumeration




Support and
Vertex
Enumeration
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