

Short Recap

Mixed Strategies
and the
Indifference
Principle

Mixed Strategy
Examples NashPy

Existence of
Equilibrium Points

ϵ -Nash

Potential and
Supermodular
Games

Support and
Vertex
Enumeration

Game Theory

Lecture 2: Best Response, Nash Equilibrium, and Epsilon-Nash

László Gulyás

Eötvös University, Department of Artificial Intelligence

2025/26/1

Short Recap

Mixed Strategies
and the
Indifference
Principle

Mixed Strategy
Examples NashPy

Existence of
Equilibrium Points

ϵ -Nash

Potential and
Supermodular
Games

Support and
Vertex
Enumeration

Course textbooks

- ▶ Bonanno, G. (2024). *Game Theory (3rd ed.)*. University of California, Davis. Received from: [GT Book](#)
- ▶ Axelrod, R. (1984). *The Evolution of Cooperation*. Basic Books. Received from: [Axelrod Article](#)
- ▶ Nisan, N., Roughgarden, T., Tardos, É., & Vazirani, V. V. (2007). *Algorithmic Game Theory*. Cambridge University Press. Received from: [AGT Book](#)
- ▶ Myerson, R. B. (1991). *Game Theory: Analysis of Conflict*. Harvard University Press. Received from: [GT Book 2](#)
- ▶ F. Christianos et al., *Multi-Agent Reinforcement Learning: Foundations and Modern Approaches*, 2023. Received from: [MARL Book.pdf](#)
- ▶ Shoham, Y., & Leyton-Brown, K. (2008). *Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations*. Cambridge University Press Received from: [MARL Book.pdf](#)
- ▶ nashpy documentation (readthedocs) Link: [NashPy Docs](#)

Game Theory

László Gulyás

Short Recap

Mixed Strategies
and the
Indifference
Principle

Mixed Strategy
Examples NashPy

Existence of
Equilibrium Points

ϵ -Nash

Potential and
Supermodular
Games

Support and
Vertex
Enumeration

Short Recap

Mixed Strategies
and the
Indifference
PrincipleMixed Strategy
Examples NashPyExistence of
Equilibrium Points ϵ -NashPotential and
Supermodular
GamesSupport and
Vertex
Enumeration

Previously on Lecture 1

- ▶ Defined normal-form games, best response, dominance, and iterated elimination.
- ▶ Explored classic 2x2 games and their strategic structure.
- ▶ Introduced repeated games and the role of history in strategies.
- ▶ Discussed the importance of best response correspondences for equilibrium concepts.

Short Recap

Mixed Strategies
and the
Indifference
Principle

Mixed Strategy
Examples NashPy

Existence of
Equilibrium Points

ϵ -Nash

Potential and
Supermodular
Games

Support and
Vertex
Enumeration

- ▶ Mixed Strategies and the Indifference Principle
- ▶ Fixed Point Theorems and Nash's Existence Result
- ▶ Epsilon-Nash Equilibria
- ▶ Computational tools (NashPy)
- ▶ Fixed point theorems: Banach, Brouwer, Kakutani, and their connection to Nash

Short Recap

Mixed Strategies
and the
Indifference
Principle

Mixed Strategy
Examples NashPy

Existence of
Equilibrium Points

ϵ -Nash

Potential and
Supermodular
Games

Support and
Vertex
Enumeration

Outline

Short Recap

Short Recap

Mixed Strategies
and the
Indifference
Principle

Mixed Strategies and the Indifference Principle

Mixed Strategy
Examples NashPy

Mixed Strategy Examples NashPy

Existence of
Equilibrium Points

ε -Nash

Existence of Equilibrium Points

Potential and
Supermodular
Games

ε -Nash

Support and
Vertex
Enumeration

Potential and Supermodular Games

Support and Vertex Enumeration

Normal-Form Game and Payoffs

Short Recap

Mixed Strategies
and the
Indifference
Principle

Mixed Strategy
Examples NashPy

Existence of
Equilibrium Points

ϵ -Nash

Potential and
Supermodular
Games

Support and
Vertex
Enumeration

- ▶ Players: $i \in \{1, \dots, N\}$
- ▶ Actions: A_i finite, strategy $\pi_i \in \Delta(A_i)$
- ▶ Payoff: $R_i(a_i, a_{-i})$ for pure, extended linearly to mixed
- ▶ Joint strategy $\pi = (\pi_1, \dots, \pi_N)$

Short Recap

Mixed Strategies
and the
Indifference
Principle

Mixed Strategy
Examples NashPy

Existence of
Equilibrium Points

ϵ -Nash

Potential and
Supermodular
Games

Support and
Vertex
Enumeration

- ▶ A single-shot normal-form game captures one simultaneous move
- ▶ But many situations are **repeated** over time (e.g. pricing, traffic, negotiations)
- ▶ Iterated game = repeated play of the same stage game
 - ▶ Payoffs may be summed, averaged, or discounted
 - ▶ Allows strategies that condition on history (e.g. “tit-for-tat”)
- ▶ Repetition introduces new equilibria beyond the one-shot case (Folk Theorems)

Axelrod's Tournament (Iterated Prisoner's Dilemma)

- ▶ Organized by Robert Axelrod in the 1980s
- ▶ Participants submitted computer programs to play repeated Prisoner's Dilemma
- ▶ Famous strategies:
 - ▶ **Always Defect** (greedy)
 - ▶ **Always Cooperate** (naïve)
 - ▶ **Tit-for-Tat** (cooperate first, then copy opponent's last move)
- ▶ **Results:** Tit-for-Tat won, showing that cooperation can emerge among self-interested agents
- ▶ In iterated settings, history-dependent strategies matter

[Short Recap](#)[Mixed Strategies and the Indifference Principle](#)[Mixed Strategy Examples NashPy](#)[Existence of Equilibrium Points](#) [\$\epsilon\$ -Nash](#)[Potential and Supermodular Games](#)[Support and Vertex Enumeration](#)

Short Recap

Mixed Strategies
and the
Indifference
PrincipleMixed Strategy
Examples NashPyExistence of
Equilibrium Points ϵ -NashPotential and
Supermodular
GamesSupport and
Vertex
Enumeration

Tournament Scores in Axelrod's Tournament

Prog.	TFT	T&C	NY	GR	SH	S&R	FR	DA	GR	DO	FE	JO	TU	NA	RAN	Mean	Rank Point	No. of Wins	Rank Wins
TFT	600	595	600	600	600	595	600	600	597	597	280	225	279	359	441	504	1	0	15
T&C	600	596	600	601	600	596	600	600	310	601	271	213	291	455	573	500	2	11	2
NY	600	595	600	600	600	595	600	600	433	158	354	374	347	368	464	486	3	1	13.5
GR	600	595	600	600	600	594	600	600	376	309	289	236	305	426	507	482	4	4	6
SH	600	595	600	600	600	595	600	600	348	271	274	272	265	448	543	481	5	3	11.5
S&R	600	596	600	602	600	596	600	600	319	200	252	249	280	480	592	478	6	10	3.5
FR	600	595	600	600	600	595	600	600	307	207	235	213	263	489	598	473	7	6	8
DA	600	595	600	600	600	595	600	600	307	194	238	247	253	450	598	472	8	4	9.5
GR	597	305	462	375	348	314	302	302	588	625	268	238	274	466	548	401	9	5	9.5
DO	597	591	398	289	261	215	202	239	555	202	436	540	243	487	604	391	10	6	6
FE	285	271	426	286	297	255	235	239	274	704	246	236	272	420	467	328	11	12	3.5
JO	230	214	409	237	286	254	213	252	244	634	236	224	273	390	469	304	12	10	1
TU	284	287	415	293	318	271	243	229	278	193	271	260	273	426	478	301	13	6	6
NA	362	231	397	273	230	149	133	173	187	133	317	366	345	413	526	282	14	2	11.5
RAN	442	142	407	313	219	141	108	137	189	102	360	416	419	300	450	276	15	1	13.5

doi:10.1371/journal.pone.0134128.t002

Short Recap

Mixed Strategies
and the
Indifference
PrincipleMixed Strategy
Examples NashPyExistence of
Equilibrium Points ϵ -NashPotential and
Supermodular
GamesSupport and
Vertex
Enumeration

Solutions and Solution Concepts

- ▶ **Solution**: Prediction of (equilibrium) outcome
- ▶ A **solution concept** = a rule to predict how rational players will play
- ▶ Desiderata:
 - ▶ Consistency across players
 - ▶ Robustness to deviations
 - ▶ Predictive power in real-world applications
- ▶ Examples:
 - ▶ **Dominant strategies**: strictly best regardless of others
 - ▶ **Best response**: optimal given beliefs about opponents
 - ▶ **Nash equilibrium**: mutual best responses
- ▶ Solution concepts differ in strength and applicability

Short Recap

Mixed Strategies
and the
Indifference
Principle

Mixed Strategy
Examples NashPy

Existence of
Equilibrium Points

ϵ -Nash

Potential and
Supermodular
Games

Support and
Vertex
Enumeration

Outline

Short Recap

Short Recap

Mixed Strategies and the Indifference Principle

Mixed Strategies
and the
Indifference
Principle

Mixed Strategy Examples NashPy

Mixed Strategy
Examples NashPy

Existence of Equilibrium Points

Existence of
Equilibrium Points

ε -Nash

ε -Nash

Potential and Supermodular Games

Potential and
Supermodular
Games

Support and Vertex Enumeration

Support and
Vertex
Enumeration

Short Recap

Mixed Strategies
and the
Indifference
PrincipleMixed Strategy
Examples NashPyExistence of
Equilibrium Points ϵ -NashPotential and
Supermodular
GamesSupport and
Vertex
Enumeration

Pure and Mixed Strategies

- ▶ **Pure strategy:** Choose a single action deterministically.
- ▶ **Mixed strategy:** Probability distribution over available actions.
- ▶ Mixed strategies expand the strategy space to convex sets (simplices).
- ▶ Many games (e.g. Matching Pennies) have **no pure NE**.
- ▶ Mixed strategies guarantee existence of equilibrium [Nash 1950].

Why might randomization be rational in some games?

Short Recap

Mixed Strategies
and the
Indifference
PrincipleMixed Strategy
Examples NashPyExistence of
Equilibrium Points ϵ -NashPotential and
Supermodular
GamesSupport and
Vertex
Enumeration

Example: Pure vs Mixed Strategies

	H	T
H	(1, -1)	(-1, 1)
T	(-1, 1)	(1, -1)

- ▶ No pair of pure strategies is stable (one player always wants to deviate).
- ▶ **Mixed strategy solution:** Each player randomizes: H with 0.5, T with 0.5.

What happens if you try to “outguess” your opponent in this game?

Short Recap

Mixed Strategies
and the
Indifference
PrincipleMixed Strategy
Examples NashPyExistence of
Equilibrium Points ϵ -NashPotential and
Supermodular
GamesSupport and
Vertex
Enumeration

Best Response: Definition

For player i and opponents' mixed strategy π_{-i} ,

$$BR_i(\pi_{-i}) = \arg \max_{\pi_i \in \Delta(A_i)} R_i(\pi_i, \pi_{-i}).$$

- ▶ May be multi-valued
- ▶ Always nonempty for finite games
- ▶ Contains all optimal mixtures against π_{-i}

[Short Recap](#)[Mixed Strategies
and the
Indifference
Principle](#)[Mixed Strategy
Examples NashPy](#)[Existence of
Equilibrium Points](#) [\$\epsilon\$ -Nash](#)[Potential and
Supermodular
Games](#)[Support and
Vertex
Enumeration](#)

Best Response in Pure Strategies

With opponents fixed at a pure action a_{-i} ,

$$BR_i(a_{-i}) = \arg \max_{a_i \in A_i} R_i(a_i, a_{-i}).$$

- ▶ Quick to read off in a payoff matrix
- ▶ Underline the highest entry in each row or column as appropriate

Best Response as a Correspondence

Short Recap

Mixed Strategies
and the
Indifference
Principle

Mixed Strategy
Examples NashPy

Existence of
Equilibrium Points

ϵ -Nash

Potential and
Supermodular
Games

Support and
Vertex
Enumeration

- ▶ Domain: $\Delta(A_{-i})$
- ▶ Range: subsets of $\Delta(A_i)$
- ▶ For finite games: nonempty, convex-valued, upper hemicontinuous
- ▶ These properties are key to existence ideas later

[Short Recap](#)[Mixed Strategies
and the
Indifference
Principle](#)[Mixed Strategy
Examples NashPy](#)[Existence of
Equilibrium Points
 \$\varepsilon\$ -Nash](#)[Potential and
Supermodular
Games](#)[Support and
Vertex
Enumeration](#)

Upper Hemicontinuity: Intuition

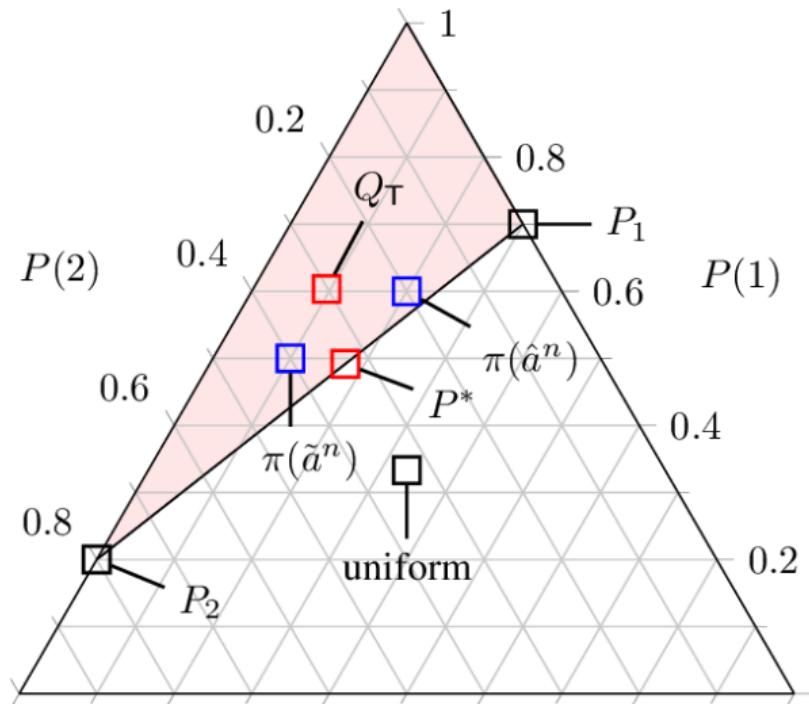
If $\pi_{-i}^k \rightarrow \pi_{-i}$ and $\pi_i^k \in BR_i(\pi_{-i}^k)$ with $\pi_i^k \rightarrow \pi_i$, then $\pi_i \in BR_i(\pi_{-i})$.

Small changes in beliefs do not create discontinuous jumps in optimal responses.

Short Recap

Mixed Strategies
and the
Indifference
PrincipleMixed Strategy
Examples NashPyExistence of
Equilibrium Points ϵ -NashPotential and
Supermodular
GamesSupport and
Vertex
Enumeration

Visualizing BR: Probability Simplex



- ▶ Opponents' mixture on the horizontal axis
- ▶ Your BR as regions or line segments

Short Recap

Mixed Strategies
and the
Indifference
Principle

Mixed Strategy
Examples NashPy

Existence of
Equilibrium Points

ϵ -Nash

Potential and
Supermodular
Games

Support and
Vertex
Enumeration

- ▶ Strictly dominated actions are never best responses.
- ▶ Iterated elimination of strictly dominated strategies simplifies BR maps.
- ▶ Order independence holds for strict dominance.

Example 1: Coordination BRs

	L	R
U	(3,2)	(0,0)
D	(0,0)	(2,3)

- ▶ Mutual BR at (U,L) and at (D,R).
- ▶ Two pure NE arise.

[Short Recap](#)[Mixed Strategies and the Indifference Principle](#)[Mixed Strategy Examples NashPy](#)[Existence of Equilibrium Points](#) [\$\epsilon\$ -Nash](#)[Potential and Supermodular Games](#)[Support and Vertex Enumeration](#)

Example 2: Prisoner's Dilemma BRs

	C	D
C	(3,3)	(0,5)
D	(5,0)	(1,1)

- ▶ D strictly dominates C for both.
- ▶ Unique mutual BR at (D,D).

[Short Recap](#)[Mixed Strategies and the Indifference Principle](#)[Mixed Strategy Examples NashPy](#)[Existence of Equilibrium Points](#) [\$\epsilon\$ -Nash](#)[Potential and Supermodular Games](#)[Support and Vertex Enumeration](#)

[Short Recap](#)[Mixed Strategies
and the
Indifference
Principle](#)[Mixed Strategy
Examples NashPy](#)[Existence of
Equilibrium Points](#) [\$\epsilon\$ -Nash](#)[Potential and
Supermodular
Games](#)[Support and
Vertex
Enumeration](#)

Example 3: Chicken BRs

	Swerve	Straight
Swerve	(0,0)	(-1,1)
Straight	(1,-1)	(-M,-M)

- ▶ Two off-diagonal pure NE when M is large.
- ▶ No dominant strategies.

Example 4: Matching Pennies BRs

	H	T
H	(1, -1)	(-1, 1)
T	(-1, 1)	(1, -1)

- ▶ BRs cycle.
- ▶ No pure NE.
- ▶ Mixed NE required.

[Short Recap](#)[Mixed Strategies and the Indifference Principle](#)[Mixed Strategy Examples NashPy](#)[Existence of Equilibrium Points](#) [\$\epsilon\$ -Nash](#)[Potential and Supermodular Games](#)[Support and Vertex Enumeration](#)

Short Recap

Mixed Strategies
and the
Indifference
PrincipleMixed Strategy
Examples NashPyExistence of
Equilibrium Points ϵ -NashPotential and
Supermodular
GamesSupport and
Vertex
Enumeration

From BR to NE: Core Idea

A strategy profile π^* is a Nash equilibrium if for all i ,

$$\pi_i^* \in BR_i(\pi_{-i}^*).$$

- ▶ No unilateral profitable deviation
- ▶ Mutual best response characterization

Short Recap

Mixed Strategies
and the
Indifference
PrincipleMixed Strategy
Examples NashPyExistence of
Equilibrium Points ϵ -NashPotential and
Supermodular
GamesSupport and
Vertex
Enumeration

Nash Equilibrium: Formal Definition

In finite $(N, \{A_i\}, \{R_i\})$, π^* is a Nash equilibrium if for all i and all π_i ,

$$R_i(\pi_i^*, \pi_{-i}^*) \geq R_i(\pi_i, \pi_{-i}^*).$$

- ▶ Pure NE if each π_i^* is a point mass
- ▶ Mixed NE if some π_i^* is a distribution

Short Recap

Mixed Strategies
and the
Indifference
PrincipleMixed Strategy
Examples NashPyExistence of
Equilibrium Points ϵ -NashPotential and
Supermodular
GamesSupport and
Vertex
Enumeration

NE as Fixed Point of BR

Define $BR(\pi) = \times_i BR_i(\pi_{-i})$ across players.
Nash equilibria are fixed points of BR :

$$\pi^* \in BR(\pi^*).$$

Short Recap

Mixed Strategies
and the
Indifference
PrincipleMixed Strategy
Examples NashPyExistence of
Equilibrium Points ϵ -NashPotential and
Supermodular
GamesSupport and
Vertex
Enumeration

Invariance and Normalization

- ▶ Positive affine transformations of a player's payoff preserve BR and NE.
- ▶ Normalize scales for convenience.
- ▶ Cross-player mixing of scales does not matter for equilibrium structure.

Short Recap

Mixed Strategies
and the
Indifference
PrincipleMixed Strategy
Examples NashPyExistence of
Equilibrium Points ϵ -NashPotential and
Supermodular
GamesSupport and
Vertex
Enumeration

Mixed Strategies: Expected Utility

- ▶ Extend payoffs linearly in mixed strategies.
- ▶ For 2×2 , let row play U with probability p and column play L with q .
- ▶ Compute expected payoffs for each pure action, then use indifference.

	L	R
U	(3,2)	(0,0)
D	(0,0)	(2,3)

[Short Recap](#)[Mixed Strategies
and the
Indifference
Principle](#)[Mixed Strategy
Examples NashPy](#)[Existence of
Equilibrium Points](#) [\$\epsilon\$ -Nash](#)[Potential and
Supermodular
Games](#)[Support and
Vertex
Enumeration](#)

Indifference Principle

At a mixed NE, each action in the support yields the same expected payoff.

- ▶ Equalize payoffs of supported actions.
- ▶ Out-of-support actions do not exceed that payoff.

[Short Recap](#)[Mixed Strategies
and the
Indifference
Principle](#)[Mixed Strategy
Examples NashPy](#)[Existence of
Equilibrium Points](#) [\$\epsilon\$ -Nash](#)[Potential and
Supermodular
Games](#)[Support and
Vertex
Enumeration](#)

Mixed NE: Matching Pennies

Row plays H with p , column plays H with q :

$$u_R(H) = 2q - 1, \quad u_R(T) = 1 - 2q \quad \Rightarrow \quad q = \frac{1}{2}.$$

By symmetry, $p = \frac{1}{2}$.

- ▶ Value: 0 for both players

Short Recap

Mixed Strategies
and the
Indifference
PrincipleMixed Strategy
Examples NashPyExistence of
Equilibrium Points ϵ -NashPotential and
Supermodular
GamesSupport and
Vertex
Enumeration

Mixed NE: Battle of the Sexes

Payoffs:

- ▶ Ballet together: (2, 1)
- ▶ Football together: (1, 2)

Let row pick Ballet with p , column pick Ballet with q :

$$u_R(B) = 2q, \quad u_R(F) = 1(1 - q) \Rightarrow q = \frac{1}{3},$$

$$u_C(B) = 1 \cdot p, \quad u_C(F) = 2(1 - p) \Rightarrow p = \frac{2}{3}.$$

Mixed NE is $(p^*, q^*) = \left(\frac{2}{3}, \frac{1}{3}\right)$.

Short Recap

Mixed Strategies
and the
Indifference
PrincipleMixed Strategy
Examples NashPyExistence of
Equilibrium Points ϵ -NashPotential and
Supermodular
GamesSupport and
Vertex
Enumeration

2x2 Mixed NE: Template

For

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad B = \begin{pmatrix} e & f \\ g & h \end{pmatrix},$$

let the row player play U with probability p , and the column player play L with probability q .

- ▶ Row indifference: $aq + b(1 - q) = cq + d(1 - q) \Rightarrow$ solve for q
- ▶ Column indifference: $ep + g(1 - p) = fp + h(1 - p) \Rightarrow$ solve for p

Short Recap

Mixed Strategies
and the
Indifference
Principle

Mixed Strategy
Examples NashPy

Existence of
Equilibrium Points

ϵ -Nash

Potential and
Supermodular
Games

Support and
Vertex
Enumeration

- ▶ In pure strategies: a cell is an NE if it is a best response for both players
- ▶ In mixed strategies: supports produce equal expected payoffs

Short Recap

Mixed Strategies
and the
Indifference
Principle

Mixed Strategy
Examples NashPy

Existence of
Equilibrium Points

ϵ -Nash

Potential and
Supermodular
Games

Support and
Vertex
Enumeration

Degeneracy and Tie Breaking

- ▶ Degenerate equilibria have multiple BR at the boundary
- ▶ Small perturbations can select a unique equilibrium
- ▶ Good practice for robustness checks

Short Recap

Mixed Strategies
and the
Indifference
Principle

Mixed Strategy
Examples NashPy

Existence of
Equilibrium Points

ϵ -Nash

Potential and
Supermodular
Games

Support and
Vertex
Enumeration

Equilibrium Selection

Game Theory

László Gulyás

Short Recap

Mixed Strategies
and the
Indifference
Principle

Mixed Strategy
Examples NashPy

Existence of
Equilibrium Points

ϵ -Nash

Potential and
Supermodular
Games

Support and
Vertex
Enumeration

	Description	Example
Risk dominance	Largest “basin of attraction”. Risk of others’ mistakes → risk-dominant strategy	Hare in Stag Hunt: lower, but guaranteed payoff
Payoff dominance	Payoffs are as good as in other NEs, but someone is strictly better off	Stag in Stag Hunt: significantly higher reward, if successful

Short Recap

Mixed Strategies
and the
Indifference
PrincipleMixed Strategy
Examples NashPyExistence of
Equilibrium Points ϵ -NashPotential and
Supermodular
GamesSupport and
Vertex
Enumeration

Zero-Sum Preview: Minimax

- ▶ In 2-player zero-sum, NE equals minimax solution.
- ▶ Value of the game is the row player's equilibrium payoff.
- ▶ Solvable by linear programming.
- ▶ Details in a later week.

Short Recap

Mixed Strategies
and the
Indifference
PrincipleMixed Strategy
Examples NashPyExistence of
Equilibrium Points ϵ -NashPotential and
Supermodular
GamesSupport and
Vertex
Enumeration

Linear Programming Formulation (Row Player)

Let A be the row player's payoff matrix. Solve

$$\max_{x,v} v \quad \text{s.t.} \quad A^\top x \geq v\mathbf{1}, \quad x \geq 0, \quad \mathbf{1}^\top x = 1.$$

- ▶ The dual problem gives the column player's formulation
- ▶ The solution returns both the equilibrium strategy and the game value

Short Recap

Mixed Strategies
and the
Indifference
Principle

Mixed Strategy
Examples NashPy

Existence of
Equilibrium Points

ϵ -Nash

Potential and
Supermodular
Games

Support and
Vertex
Enumeration

Outline

Short Recap

Short Recap

Mixed Strategies and the Indifference Principle

Mixed Strategies
and the
Indifference
Principle

Mixed Strategy Examples NashPy

Mixed Strategy
Examples NashPy

Existence of Equilibrium Points

Existence of
Equilibrium Points

ε -Nash

ε -Nash

Potential and Supermodular Games

Potential and
Supermodular
Games

Support and Vertex Enumeration

Support and
Vertex
Enumeration

Battle of the Sexes (2×2 , mixed + 2 pure)

```

import numpy as np, nashpy as nash

A = np.array([[2,0],[0,1]])
B = np.array([[1,0],[0,2]])
G = nash.Game(A,B)

def show(eqs):
    for sa, sb in eqs:
        payA, payB = G[sa, sb]
        print(f"Row: {np.round(sa,3)}, Col: {np.round(sb,3)} -> "
              f"payoffs ({payA:.3f}, {payB:.3f})")
eqs = list(G.support_enumeration())
show(eqs)
# Mixed NE should be (p,q) = (2/3, 1/3)

```

- ▶ Enumerates supports and checks indifference
- ▶ Returns pure and mixed equilibria where they exist

Short Recap

Mixed Strategies
and the
Indifference
PrincipleMixed Strategy
Examples NashPyExistence of
Equilibrium Points ϵ -NashPotential and
Supermodular
GamesSupport and
Vertex
Enumeration

Short Recap

Mixed Strategies
and the
Indifference
PrincipleMixed Strategy
Examples NashPyExistence of
Equilibrium Points ϵ -NashPotential and
Supermodular
GamesSupport and
Vertex
Enumeration

Chicken / Hawk–Dove (2×2, mixed + 2 pure)

```

import numpy as np, nashpy as nash

A = np.array([[ 0,-1],[ 1,-10]])
B = np.array([[ 0, 1],[-1,-10]])

G = nash.Game(A,B)
for sa, sb in G.support_enumeration():
    payA, payB = G[sa, sb]
    print(f"Row: {np.round(sa,3)}, Col: {np.round(sb,3)} -> \\
          ({payA:.3f}, {payB:.3f})")
# Expect two pure off-diagonal + one interior mixed.

```

Matching Pennies (2×2 zero-sum, unique mixed only)

```
import numpy as np, nashpy as nash

A = np.array([[ 1, -1], [-1,  1]])
G = nash.Game(A, -A)

for sa, sb in G.support_enumeration():
    payA, payB = G[sa, sb]
    print(f"(Row,Col) = ({np.round(sa,3)}, {np.round(sb,3)}) -> \\"
          f"\n{payA:.3f}, {payB:.3f}")

# Unique mixed: ([0.5, 0.5], [0.5, 0.5])
```

Short Recap

Mixed Strategies
and the
Indifference
PrincipleMixed Strategy
Examples NashPyExistence of
Equilibrium Points ϵ -NashPotential and
Supermodular
GamesSupport and
Vertex
Enumeration

Rock–Paper–Scissors (3×3 zero-sum, unique mixed only)

```
import numpy as np, nashpy as nash

A = np.array([[ 0,-1, 1],
              [ 1, 0,-1],
              [-1, 1, 0]])

G = nash.Game(A, -A)

for sa, sb in G.vertex_enumeration():
    payA, payB = G[sa, sb]
    print(f"Row: {np.round(sa,3)}, Col: {np.round(sb,3)} -> \\
          ({payA:.3f}, {payB:.3f})")

# Unique mixed: each player (1/3, 1/3, 1/3)
```

Short Recap

Mixed Strategies
and the
Indifference
PrincipleMixed Strategy
Examples NashPyExistence of
Equilibrium Points ϵ -NashPotential and
Supermodular
GamesSupport and
Vertex
Enumeration

Short Recap

Mixed Strategies
and the
Indifference
PrincipleMixed Strategy
Examples NashPyExistence of
Equilibrium Points ϵ -NashPotential and
Supermodular
GamesSupport and
Vertex
Enumeration

Non-uniform mixed in 3×3 zero-sum

```
import numpy as np, nashpy as nash

# Slightly biased RPS; equilibrium stays interior but not uniform.
A = np.array([[ 0, -1, 1.2],
              [ 1.0, 0, -1],
              [-1.2, 1,  0]]))

G = nash.Game(A, -A)

for sa, sb in G.vertex_enumeration():
    payA, payB = G[sa, sb]
    print(f"Row: {np.round(sa,3)}, Col: {np.round(sb,3)} -> \\
          ({payA:.3f}, {payB:.3f})")
# Expect mixed with probabilities != 1/3
```

Short Recap

Mixed Strategies
and the
Indifference
PrincipleMixed Strategy
Examples NashPyExistence of
Equilibrium Points ϵ -NashPotential and
Supermodular
GamesSupport and
Vertex
Enumeration

General-sum 3×3 with a support-size-2 mixed NE

```
import numpy as np, nashpy as nash

A = np.array([[3, 0, 2], [0, 2, 3], [2, 3, 0]], dtype=float)
B = np.array([[2, 3, 0], [3, 0, 2], [0, 2, 3]], dtype=float)
G = nash.Game(A,B)

for sa, sb in G.support_enumeration():
    payA, payB = G[sa, sb]
    support_row = np.flatnonzero(sa > 1e-9)
    support_col = np.flatnonzero(sb > 1e-9)
    print(f"Row: {np.round(sa,3)} (supp {support_row}), "
          f"Col: {np.round(sb,3)} (supp {support_col}) "
          f"--> ({payA:.3f}, {payB:.3f})")
# Typically finds a mixed with support size 2 for each.
```

Validating Returned Equilibria

Given (π_1, π_2) :

1. Compute $u_i = R_i(\pi_1, \pi_2)$.
2. Compute $u_i^{BR} = \max_{\pi'_i} R_i(\pi'_i, \pi_{-i})$.
3. Check that $u_i^{BR} - u_i = 0$ up to tolerance.

Short Recap

Mixed Strategies
and the
Indifference
Principle

Mixed Strategy
Examples NashPy

Existence of
Equilibrium Points

ϵ -Nash

Potential and
Supermodular
Games

Support and
Vertex
Enumeration

Short Recap

Mixed Strategies
and the
Indifference
Principle

Mixed Strategy
Examples NashPy

Existence of
Equilibrium Points

ϵ -Nash

Potential and
Supermodular
Games

Support and
Vertex
Enumeration

Outline

Short Recap

Short Recap

Mixed Strategies and the Indifference Principle

Mixed Strategies
and the
Indifference
Principle

Mixed Strategy Examples NashPy

Mixed Strategy
Examples NashPy

Existence of Equilibrium Points

Existence of
Equilibrium Points

ε -Nash

ε -Nash

Potential and Supermodular Games

Potential and
Supermodular
Games

Support and Vertex Enumeration

Support and
Vertex
Enumeration

Short Recap

Mixed Strategies
and the
Indifference
PrincipleMixed Strategy
Examples NashPyExistence of
Equilibrium Points ϵ -NashPotential and
Supermodular
GamesSupport and
Vertex
Enumeration

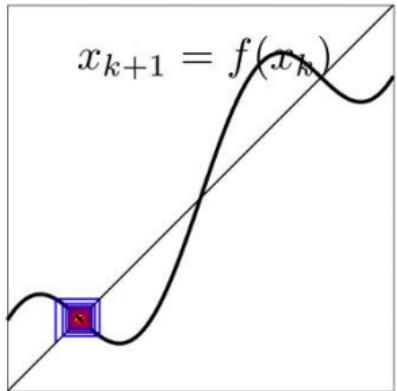
1. Banach Fixed Point Theorem (Contraction Mapping Theorem)

Statement:

Let (X, d) be a nonempty complete metric space and $f : X \rightarrow X$ a contraction (i.e., there exists $0 < c < 1$ such that $d(f(x), f(y)) \leq c \cdot d(x, y)$ for all x, y). Then there exists a unique fixed point x^* in X such that $f(x^*) = x^*$.

- ▶ Fundamental for proving convergence, but *not* generally used for Nash equilibrium existence, because game-theoretic best response correspondences are not contractions or even single-valued.

1. Banach Fixed Point Theorem



Attracting fixed point: $|f'(x^*)| < 1$.

Repulsive fixed point: $|f'(x^*)| > 1$.

Theorem: If (\mathcal{X}, d) is a complete metric space,

$f : \mathcal{X} \mapsto \mathcal{X}$ with $d(f(x), f(y)) \leq \kappa d(x, y)$ and $\kappa < 1$
 then $\exists! x^*$ such that $f(x^*) = x^*$.

$$x_{k+1} \stackrel{\text{def.}}{=} f(x_k) \xrightarrow{k \rightarrow +\infty} x^* \quad d(x_k, x^*) \leq \kappa^k d(x_0, x^*)$$

Short Recap

Mixed Strategies
and the
Indifference
Principle

Mixed Strategy
Examples NashPy

Existence of
Equilibrium Points

ϵ -Nash

Potential and
Supermodular
Games

Support and
Vertex
Enumeration

Short Recap

Mixed Strategies
and the
Indifference
PrincipleMixed Strategy
Examples NashPyExistence of
Equilibrium Points ϵ -NashPotential and
Supermodular
GamesSupport and
Vertex
Enumeration

2. Brouwer Fixed Point Theorem

Statement:

Let $S \subseteq \mathbb{R}^n$ be nonempty, compact, and convex.

If $f : S \rightarrow S$ is continuous, then there exists $x^* \in S$ such that $f(x^*) = x^*$.

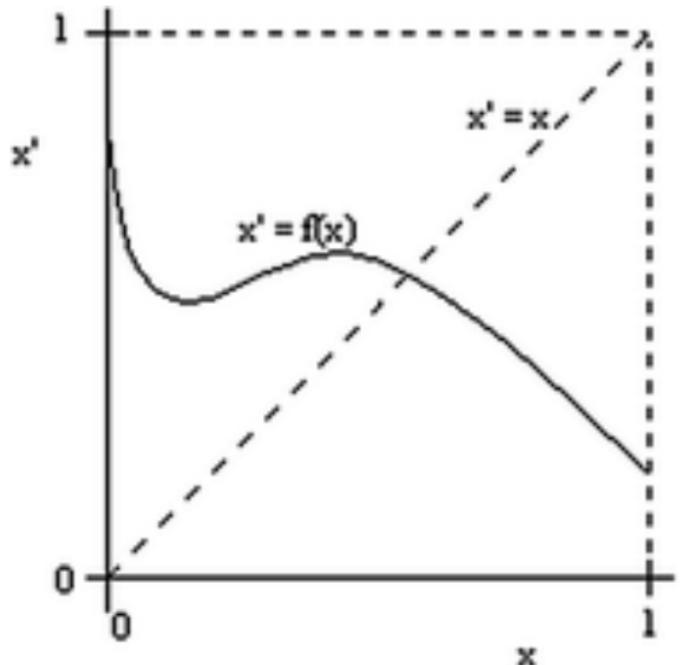
- ▶ Applies to single-valued, continuous functions.
- ▶ Nash's early proofs for continuous strategies (but not for general, set-valued best responses) used Brouwer.

Most best response functions in games are not continuous or are set-valued, so Brouwer does not directly apply in general.

Short Recap

Mixed Strategies
and the
Indifference
PrincipleMixed Strategy
Examples NashPyExistence of
Equilibrium Points ϵ -NashPotential and
Supermodular
GamesSupport and
Vertex
Enumeration

2. Brouwer Fixed Point Theorem Plot



Short Recap

Mixed Strategies
and the
Indifference
PrincipleMixed Strategy
Examples NashPyExistence of
Equilibrium Points ϵ -NashPotential and
Supermodular
GamesSupport and
Vertex
Enumeration

3. Kakutani Fixed Point Theorem

Statement:

Let $S \subseteq \mathbb{R}^n$ be nonempty, compact, and convex.

Let $\Phi : S \rightarrow 2^S$ be an upper hemicontinuous set-valued function (i.e., a correspondence) such that

1. For all $x \in S$: $\Phi(x)$ is nonempty, convex, and closed.
2. The graph of Φ is closed: If $x^k \rightarrow x$, $y^k \rightarrow y$, and $y^k \in \Phi(x^k)$, then $y \in \Phi(x)$.

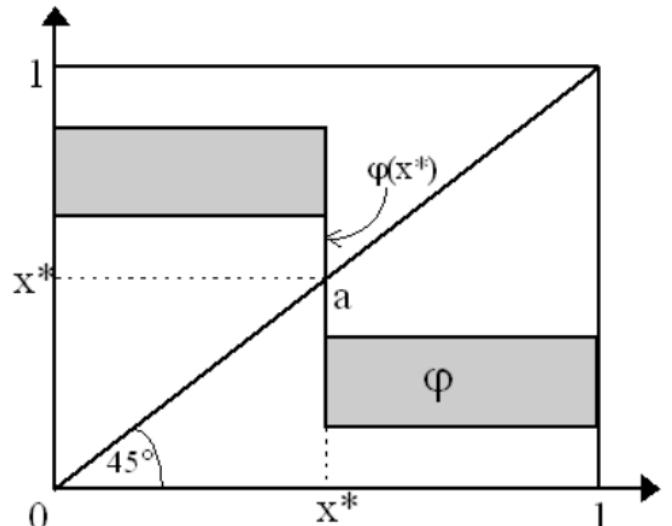
Then: There exists $x^* \in S$ such that $x^* \in \Phi(x^*)$.

► This is the key fixed point theorem for proving Nash equilibrium in games with mixed strategies, because the best response correspondence may be set-valued and upper hemicontinuous.

Short Recap

Mixed Strategies
and the
Indifference
PrincipleMixed Strategy
Examples NashPyExistence of
Equilibrium Points ϵ -NashPotential and
Supermodular
GamesSupport and
Vertex
Enumeration

3. Kakutani Fixed Point Theorem Plot



Relationship & Hierarchy

Game Theory

László Gulyás

Short Recap

Mixed Strategies
and the
Indifference
Principle

Mixed Strategy
Examples NashPy

Existence of
Equilibrium Points

ϵ -Nash

Potential and
Supermodular
Games

Support and
Vertex
Enumeration

- ▶ **Brouwer** is a special case of Kakutani (when the correspondence is single-valued, i.e., a function).
- ▶ **Banach** is fundamentally different, deals with iterative contractions. Not generally present in game theoretic contexts.
- ▶ In Nash's context, *Kakutani* is needed due to set-valuedness of the best response correspondence.

Short Recap

Mixed Strategies
and the
Indifference
PrincipleMixed Strategy
Examples NashPyExistence of
Equilibrium Points ϵ -NashPotential and
Supermodular
GamesSupport and
Vertex
Enumeration

Nash Equilibrium Existence: Proof Sketch

Let $G = (N, (A_i), (R_i))$ be a finite normal-form game.

Strategy space:

- ▶ For each player i , the set of mixed strategies is the probability simplex over A_i , noted $\Delta(A_i)$.
- ▶ Joint strategy space is the product $S = \prod_i \Delta(A_i)$.
- ▶ S is compact and convex.

Best Response Correspondence:

- ▶ Define $\text{BR}_i : S_{-i} \rightarrow 2^{S_i}$ by $\text{BR}_i(\sigma_{-i}) = \arg \max_{\sigma_i \in S_i} R_i(\sigma_i, \sigma_{-i})$, where R_i is extended by linearity to mixed profiles.
- ▶ The best response correspondence for all players is $\text{BR} : S \rightarrow 2^S$, mapping σ to the product set $\prod_i \text{BR}_i(\sigma_{-i})$.

Short Recap

Mixed Strategies
and the
Indifference
PrincipleMixed Strategy
Examples NashPyExistence of
Equilibrium Points ϵ -NashPotential and
Supermodular
GamesSupport and
Vertex
Enumeration

Nash Equilibrium Existence: Proof Sketch (Cont.)

Verification of Kakutani's Conditions:

- ▶ For each player, $\text{BR}_i(\sigma_{-i})$ is nonempty (maximum of a continuous function over a compact simplex exists).
- ▶ Convexity: The set of maximizers of a linear function over a simplex is convex.
- ▶ Upper hemicontinuity (Closed Graph): Follows from Berge's Maximum Theorem because the payoff functions are continuous.
- ▶ Strategy space is a nonempty, compact, convex subset of \mathbb{R}^k .

Applying Kakutani:

- ▶ By Kakutani's Theorem, there exists $\sigma^* \in S$ with $\sigma^* \in \text{BR}(\sigma^*)$.
- ▶ Therefore, every finite game has at least one mixed Nash equilibrium.

Short Recap

Mixed Strategies
and the
Indifference
PrincipleMixed Strategy
Examples NashPyExistence of
Equilibrium Points ϵ -NashPotential and
Supermodular
GamesSupport and
Vertex
Enumeration

Why Is Proving Existence Hard?

- ▶ **Best response** maps are *set-valued* (correspondences), not single-valued functions.
- ▶ **Continuity issues:** Best response is not continuous as a function.
- ▶ **Compactness and convexity** of the strategy space is essential; non-convexity can lead to non-existence.
- ▶ **Upper hemicontinuity** and nonempty convex values are subtle properties, mathematically nontrivial to prove for arbitrary correspondences.
- ▶ Early attempts (pure strategies only) often fail, since no NE need exist in pure strategies.

Short Recap

Mixed Strategies
and the
Indifference
PrincipleMixed Strategy
Examples NashPyExistence of
Equilibrium Points ϵ -NashPotential and
Supermodular
GamesSupport and
Vertex
Enumeration

Upper Hemicontinuity and Graph

- ▶ The graph of a set-valued function $\Phi : S \rightarrow 2^S$ is $\{(x, y) \mid x \in S, y \in \Phi(x)\}$.
- ▶ Φ is *upper hemicontinuous* at x if, whenever $x^k \rightarrow x$ and $y^k \in \Phi(x^k)$ with $y^k \rightarrow y$, it follows that $y \in \Phi(x)$.
- ▶ This ensures “no sudden jumps,” which is crucial for fixed point existence.

Short Recap

Mixed Strategies
and the
Indifference
PrincipleMixed Strategy
Examples NashPyExistence of
Equilibrium Points ϵ -NashPotential and
Supermodular
GamesSupport and
Vertex
Enumeration

Intuition: Why Mixed Strategies?

- ▶ The set of pure strategies is not convex or compact, so fixed-point theorems do not apply.
- ▶ Mixed strategies complete the set, ensuring compactness and convexity of the feasible region.

Table: Summary of Theorems

Theorem	Domain Type	Map Type	Existence	Uniqueness
Banach	Complete metric space	Contraction	Yes	Yes
Brouwer	Compact convex subset, \mathbb{R}^n	Continuous function	Yes	No
Kakutani	Compact convex subset, \mathbb{R}^n	Upper hemicontinuous correspondence	Yes	No

Short Recap

Mixed Strategies
and the
Indifference
PrincipleMixed Strategy
Examples NashPyExistence of
Equilibrium Points ϵ -NashPotential and
Supermodular
GamesSupport and
Vertex
Enumeration

In what games is the best response function not single-valued? Give an example.

Why does convexity of the mixed strategy space matter for the application of Kakutani's theorem?

Can you give a simple set-valued function that violates upper hemicontinuity, and show what goes wrong?

Short Recap

Mixed Strategies
and the
Indifference
Principle

Mixed Strategy
Examples NashPy

Existence of
Equilibrium Points

ϵ -Nash

Potential and
Supermodular
Games

Support and
Vertex
Enumeration

Outline

Short Recap

Short Recap

Mixed Strategies and the Indifference Principle

Mixed Strategies
and the
Indifference
Principle

Mixed Strategy Examples NashPy

Mixed Strategy
Examples NashPy

Existence of Equilibrium Points

Existence of
Equilibrium Points

ε -Nash

ε -Nash

Potential and Supermodular Games

Potential and
Supermodular
Games

Support and Vertex Enumeration

Support and
Vertex
Enumeration

Short Recap

Mixed Strategies
and the
Indifference
PrincipleMixed Strategy
Examples NashPyExistence of
Equilibrium Points ε -NashPotential and
Supermodular
GamesSupport and
Vertex
Enumeration

Epsilon-Nash: Definition

A profile π is an ε -Nash equilibrium if for all i ,

$$R_i(\pi) \geq \max_{\pi'_i} R_i(\pi'_i, \pi_{-i}) - \varepsilon.$$

- ▶ $\varepsilon = 0$ gives an exact Nash equilibrium
- ▶ Useful when using numerical solvers or rounding

Short Recap

Mixed Strategies
and the
Indifference
PrincipleMixed Strategy
Examples NashPyExistence of
Equilibrium Points ϵ -NashPotential and
Supermodular
GamesSupport and
Vertex
Enumeration

Why Epsilon-Nash Matters

- ▶ Rounding effects in computation
- ▶ Approximate rationality in practice
- ▶ Many algorithms converge to epsilon-NE rather than exact NE

Short Recap

Mixed Strategies
and the
Indifference
PrincipleMixed Strategy
Examples NashPyExistence of
Equilibrium Points ε -NashPotential and
Supermodular
GamesSupport and
Vertex
Enumeration

Measuring Epsilon in Finite Games

For each player i :

1. Compute u_i at (π_1, π_2) .
2. Compute the best pure-response payoff u_i^{BR} .
3. Set $\varepsilon_i = u_i^{BR} - u_i$.

Report $\max_i \varepsilon_i$.

[Short Recap](#)[Mixed Strategies
and the
Indifference
Principle](#)[Mixed Strategy
Examples NashPy](#)[Existence of
Equilibrium Points](#) [\$\epsilon\$ -Nash](#)[Potential and
Supermodular
Games](#)[Support and
Vertex
Enumeration](#)

Example: Epsilon for Rounded Matching Pennies

True NE: $(p, q) = (0.5, 0.5)$.

Use $(p, q) = (0.55, 0.45)$ for both players.

For the row player:

► If Row plays H :

$$u_R(H) = 0.45 \cdot 1 + 0.55 \cdot (-1) = -0.1.$$

► If Row plays T :

$$u_R(T) = 0.55 \cdot 1 + 0.45 \cdot (-1) = 0.1.$$

► If Row mixes with $p = 0.55$:

$$u_R = 0.55 \cdot (-0.1) + 0.45 \cdot (0.1) = -0.01.$$

[Short Recap](#)[Mixed Strategies
and the
Indifference
Principle](#)[Mixed Strategy
Examples NashPy](#)[Existence of
Equilibrium Points](#) [\$\epsilon\$ -Nash](#)[Potential and
Supermodular
Games](#)[Support and
Vertex
Enumeration](#)

Example: Epsilon for Rounded Matching Pennies (Cont.)

Best-response payoff is 0.1 (by playing T).

Gap is $0.1 - (-0.01) = 0.11$.

By symmetry, the same holds for the column player.

[Short Recap](#)[Mixed Strategies and the Indifference Principle](#)[Mixed Strategy Examples NashPy](#)[Existence of Equilibrium Points](#) [\$\epsilon\$ -Nash](#)[Potential and Supermodular Games](#)[Support and Vertex Enumeration](#)

NashPy: Compute Epsilon

```
import numpy as np

A = np.array([[1,-1],[-1,1]])
pi_row = np.array([0.55, 0.45])
pi_col = np.array([0.45, 0.55])

row_pure_payoffs = A @ pi_col
col_pure_payoffs = (-A).T @ pi_row

row_gap = row_pure_payoffs.max() \\
 - row_pure_payoffs @ pi_row
col_gap = col_pure_payoffs.max() \\
 - col_pure_payoffs @ pi_col
print("eps_row=", row_gap, "eps_col=", col_gap)
```

[Short Recap](#)[Mixed Strategies
and the
Indifference
Principle](#)[Mixed Strategy
Examples NashPy](#)[Existence of
Equilibrium Points](#) [\$\epsilon\$ -Nash](#)[Potential and
Supermodular
Games](#)[Support and
Vertex
Enumeration](#)

- ▶ Vary a parameter in payoffs and track how the NE moves
- ▶ Useful for comparative statics
- ▶ Example: scale a penalty in Chicken and observe the mixed NE threshold

Parametric Example: Battle of the Sexes

Short Recap

Mixed Strategies
and the
Indifference
Principle

Mixed Strategy
Examples NashPy

Existence of
Equilibrium Points

ϵ -Nash

Potential and
Supermodular
Games

Support and
Vertex
Enumeration

Let Ballet payoffs be $(2, 1)$ and Football payoffs be $(\alpha, 2)$.

- ▶ Row indifference fixes $q(\alpha)$
- ▶ Column indifference fixes $p(\alpha)$
- ▶ Plot $p(\alpha)$ and $q(\alpha)$ to visualize shifts in mixing

Short Recap

Mixed Strategies
and the
Indifference
PrincipleMixed Strategy
Examples NashPyExistence of
Equilibrium Points ϵ -NashPotential and
Supermodular
GamesSupport and
Vertex
Enumeration

Parametric Example: Solution

1. Row Indifference ($q(\alpha)$):

Set Row's expected payoff from Ballet and Football equal

$$2q = \alpha(1 - q)$$

$$2q + \alpha q = \alpha$$

$$q(2 + \alpha) = \alpha$$

$$q(\alpha) = \frac{\alpha}{2 + \alpha}$$

2. Column Indifference ($p(\alpha)$):

Set Column's expected payoff from Ballet and Football equal

$$p = 2(1 - p)$$

$$p + 2p = 2$$

$$3p = 2$$

$$p(\alpha) = \frac{2}{3}$$

Short Recap

Mixed Strategies
and the
Indifference
PrincipleMixed Strategy
Examples NashPyExistence of
Equilibrium Points ϵ -NashPotential and
Supermodular
GamesSupport and
Vertex
Enumeration

Parametric Example: Solution (Cont.)

- ▶ Row's mixing probability: $q(\alpha) = \frac{\alpha}{2+\alpha}$
- ▶ Column's mixing probability: $p(\alpha) = \frac{2}{3}$

As α increases, $q(\alpha)$ increases from 0 toward 1.

$p(\alpha)$ remains fixed at 2/3.

Short Recap

Mixed Strategies
and the
Indifference
PrincipleMixed Strategy
Examples NashPyExistence of
Equilibrium Points ϵ -NashPotential and
Supermodular
GamesSupport and
Vertex
Enumeration

Practice 1

Identify all mutual BR cells in:

	L	R
U	(3,2)	(0,1)
D	(2,0)	(1,3)

1. Does a pure NE exist?
2. If not, solve for mixed NE.
3. Normalize payoffs and confirm NE unchanged.

Short Recap

Mixed Strategies
and the
Indifference
PrincipleMixed Strategy
Examples NashPyExistence of
Equilibrium Points ϵ -NashPotential and
Supermodular
GamesSupport and
Vertex
Enumeration

Practice 2

1. Construct a 2×2 general-sum game with exactly one mixed Nash equilibrium.
2. For the zero-sum game with payoff matrix $\begin{bmatrix} 2 & -1 \\ -3 & 4 \end{bmatrix}$, compute the value and the equilibrium mixing.
3. In Chicken, replace $(-10, -10)$ with $(-M, -M)$. Find the threshold M that yields a mixed Nash equilibrium.

Practice 3

Game Theory

László Gulyás

Short Recap

Mixed Strategies
and the
Indifference
Principle

Mixed Strategy
Examples NashPy

Existence of
Equilibrium Points

ε -Nash

Potential and
Supermodular
Games

Support and
Vertex
Enumeration

1. Use NashPy to compute all equilibria for three random 2×2 general-sum games.
2. For each equilibrium, round the probabilities to two decimals and compute ε .
3. Create a PNG of best-response (BR) lines and mark the intersection for one game.

True or False?

Game Theory

László Gulyás

Short Recap

Mixed Strategies
and the
Indifference
Principle

Mixed Strategy
Examples NashPy

Existence of
Equilibrium Points

ϵ -Nash

Potential and
Supermodular
Games

Support and
Vertex
Enumeration

1. Every 2×2 game has a pure NE.
2. A strictly dominated action can be part of a mixed NE support.
3. In zero-sum games, NE equals minimax.
4. Mixed NE always make players indifferent across all actions.

Short Recap

Mixed Strategies
and the
Indifference
PrincipleMixed Strategy
Examples NashPyExistence of
Equilibrium Points ε -NashPotential and
Supermodular
GamesSupport and
Vertex
Enumeration

Answers

1. False. Matching Pennies is a counterexample.
2. False. Dominated actions never belong to the support.
3. True. By minimax duality.
4. False. Only across supported actions.

Short Recap

Mixed Strategies
and the
Indifference
Principle

Mixed Strategy
Examples NashPy

Existence of
Equilibrium Points

ϵ -Nash

Potential and
Supermodular
Games

Support and
Vertex
Enumeration

Outline

Short Recap

Short Recap

Mixed Strategies and the Indifference Principle

Mixed Strategies
and the
Indifference
Principle

Mixed Strategy Examples NashPy

Mixed Strategy
Examples NashPy

Existence of Equilibrium Points

Existence of
Equilibrium Points

ε -Nash

ε -Nash

Potential and Supermodular Games

Potential and
Supermodular
Games

Support and Vertex Enumeration

Support and
Vertex
Enumeration

Proof: Best Response Upper Hemicontinuity

- ▶ The strategy space (product of mixed strategy simplices) is compact and convex.
- ▶ Each player's payoff is continuous and linear in their own mixed strategy.
- ▶ For any fixed profile of opponents' strategies, the set of best responses is the set of maximizers of a continuous linear function over a simplex, which is a nonempty convex set.
- ▶ **Berge's Maximum Theorem:** If $f(x, y)$ is continuous and the constraint correspondence $C(x)$ is continuous (upper hemicontinuous, compact-valued), then the value function $M(x) = \max_{y \in C(x)} f(x, y)$ is continuous, and the maximizer correspondence is upper hemicontinuous and compact-valued.
- ▶ Therefore, the best response correspondence in finite games is upper hemicontinuous, convex-valued, and nonempty-valued, satisfying Kakutani's conditions for a fixed point.

Short Recap

Mixed Strategies
and the
Indifference
PrincipleMixed Strategy
Examples NashPyExistence of
Equilibrium Points ϵ -NashPotential and
Supermodular
GamesSupport and
Vertex
Enumeration

Short Recap

Mixed Strategies
and the
Indifference
PrincipleMixed Strategy
Examples NashPyExistence of
Equilibrium Points ϵ -NashPotential and
Supermodular
GamesSupport and
Vertex
Enumeration

Existence in Concave Games

If u_i is continuous in all arguments and concave in i 's own strategy on a compact convex set, then a Nash equilibrium exists.

- ▶ The best response correspondence is upper hemicontinuous and convex-valued.
- ▶ Kakutani's theorem applies, so an equilibrium exists.

Short Recap

Mixed Strategies
and the
Indifference
PrincipleMixed Strategy
Examples NashPyExistence of
Equilibrium Points ϵ -NashPotential and
Supermodular
GamesSupport and
Vertex
Enumeration

Potential Games: Existence and Structure

A game is a **potential game** if there exists a function Φ such that for any unilateral deviation by player i :

$$R_i(a'_i, a_{-i}) - R_i(a_i, a_{-i}) = \Phi(a'_i, a_{-i}) - \Phi(a_i, a_{-i})$$

- ▶ Every finite potential game has at least one pure strategy Nash equilibrium (since Φ attains a maximum).
- ▶ Best response dynamics converge to a pure NE.

Short Recap

Mixed Strategies
and the
Indifference
PrincipleMixed Strategy
Examples NashPyExistence of
Equilibrium Points ϵ -NashPotential and
Supermodular
GamesSupport and
Vertex
Enumeration

Supermodular Games: Monotone Best Response

A game is **supermodular** if each player's payoff has increasing differences in their own strategy and others' strategies.

- ▶ The best response correspondence is monotone (increasing in others' strategies).
- ▶ **Tarski's Fixed Point Theorem:** Any monotone function on a complete lattice has a smallest and largest fixed point.
- ▶ Supermodular games have smallest and largest pure strategy Nash equilibria.

Outline

Short Recap

Short Recap

Mixed Strategies and the Indifference Principle

Mixed Strategies
and the
Indifference
Principle

Mixed Strategy Examples NashPy

Mixed Strategy
Examples NashPy

Existence of Equilibrium Points

Existence of
Equilibrium Points

ε -Nash

ε -Nash

Potential and Supermodular Games

Potential and
Supermodular
Games

Support and Vertex Enumeration

Support and
Vertex
Enumeration

Short Recap

Mixed Strategies
and the
Indifference
PrincipleMixed Strategy
Examples NashPyExistence of
Equilibrium Points ϵ -NashPotential and
Supermodular
GamesSupport and
Vertex
Enumeration

Support Enumeration

- ▶ For 2×2 games, enumerate all possible supports (sets of actions played with positive probability) for each player (size 1 or 2).
- ▶ For each support pair, solve the indifference equations (equalize expected payoffs for actions in support).
- ▶ Check feasibility (probabilities in $[0, 1]$) and that out-of-support actions do not yield higher payoffs.
- ▶ This is implemented in NashPy and other solvers.

Short Recap

Mixed Strategies
and the
Indifference
PrincipleMixed Strategy
Examples NashPyExistence of
Equilibrium Points ϵ -NashPotential and
Supermodular
GamesSupport and
Vertex
Enumeration

Vertex Enumeration

- ▶ Nash equilibria correspond to vertices of best response polytopes (sets defined by best response inequalities).
- ▶ Enumerate candidate vertices and test equilibrium conditions.
- ▶ Efficient for small games and certain classes (e.g., zero-sum, symmetric).

Short Recap

Mixed Strategies
and the
Indifference
PrincipleMixed Strategy
Examples NashPyExistence of
Equilibrium Points ϵ -NashPotential and
Supermodular
GamesSupport and
Vertex
EnumerationExample: General-Sum 2×2

	L	R
U	(4,1)	(0,2)
D	(1,0)	(2,3)

Let $p = \Pr[U]$, $q = \Pr[L]$.**Row indifference:**

$$4q + 0(1 - q) = 1q + 2(1 - q) \implies 4q = 2 - q \implies q = \frac{2}{5}$$

Column indifference:

$$1p + 0(1 - p) = 2p + 3(1 - p) \implies p = 3(1 - p) \implies p = \frac{3}{4}$$

Compute expected payoffs for each action and verify that out-of-support actions do not yield higher payoffs.

Short Recap

Mixed Strategies
and the
Indifference
PrincipleMixed Strategy
Examples NashPyExistence of
Equilibrium Points ϵ -NashPotential and
Supermodular
GamesSupport and
Vertex
Enumeration

Example: Mixed and Pure Check

- ▶ Check if any pure cell is a mutual best response (i.e., both payoffs are maximal in their row/column).
- ▶ If none, use $(p, q) = (\frac{3}{4}, \frac{2}{5})$ as above.
- ▶ Verify that all equilibrium conditions are satisfied.

Example: Zero-Sum 3×3 Rock Paper Scissors

$$A = \begin{pmatrix} 0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{pmatrix}$$

- ▶ By symmetry, the unique NE is $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$ for both players.
- ▶ Value of the game is 0.
- ▶ Vertex enumeration recovers this efficiently.

[Short Recap](#)[Mixed Strategies and the Indifference Principle](#)[Mixed Strategy Examples NashPy](#)[Existence of Equilibrium Points](#) [\$\epsilon\$ -Nash](#)[Potential and Supermodular Games](#)[Support and Vertex Enumeration](#)

Board Problem: Compute Mixed NE

	L	R
U	(3,4)	(0,1)
D	(1,0)	(2,3)

1. Write indifference equations for p , q .
2. Solve for p^* , q^* .
3. Verify out-of-support inequalities.
4. Compute expected payoffs for each action.

[Short Recap](#)[Mixed Strategies and the Indifference Principle](#)[Mixed Strategy Examples NashPy](#)[Existence of Equilibrium Points](#) [\$\epsilon\$ -Nash](#)[Potential and Supermodular Games](#)[Support and Vertex Enumeration](#)

Short Recap

Mixed Strategies
and the
Indifference
PrincipleMixed Strategy
Examples NashPyExistence of
Equilibrium Points ε -NashPotential and
Supermodular
GamesSupport and
Vertex
Enumeration

Extra Questions

1. In a 2x2 game, if both players put positive probability on both actions at an equilibrium, what must be true about the expected payoffs of their actions in support
2. Define $\varepsilon_i = u_i^{BR} - u_i$. If $\varepsilon_i = 0.08$ for each player, is the profile an ε -NE with $\varepsilon = 0.08$?

1. They must be equal (indifference principle).	Short Recap
2. Yes	Mixed Strategies and the Indifference Principle
	Mixed Strategy Examples NashPy
	Existence of Equilibrium Points
	ϵ -Nash
	Potential and Supermodular Games
	Support and Vertex Enumeration

Short Recap

Mixed Strategies
and the
Indifference
PrincipleMixed Strategy
Examples NashPyExistence of
Equilibrium Points ε -NashPotential and
Supermodular
GamesSupport and
Vertex
Enumeration

Summary

- ▶ Best response correspondences define Nash equilibrium.
- ▶ Every finite game has a mixed Nash equilibrium.
- ▶ In 2×2 games, solve for mixed NE using indifference and feasibility.
- ▶ ε -Nash equilibrium measures how close a profile is to equilibrium.
- ▶ NashPy helps compute and check equilibria in practice.

Short Recap

Mixed Strategies
and the
Indifference
Principle

Mixed Strategy
Examples NashPy

Existence of
Equilibrium Points

ϵ -Nash

Potential and
Supermodular
Games

Support and
Vertex
Enumeration