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Previously on Lecture 2

Laszlé Gulyas

P Defined and computed Nash equilibrium using fixed point and best response
theory.

P> Proved existence of NE for finite games using Kakutani's theorem.

P Introduced e-Nash equilibria for approximate computation.

P Used NashPy for real game equilibrium finding.

P> Emphasized the role of best response and upper hemicontinuity.




Lecture Overview
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P Welfare & efficiency
P Correlated Equilibrium (CE): definition, LP, examples
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Recap

Recap




Motivation: Why Mixed Strategies Matter
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Recap

P Some games lack pure strategy NE (e.g. Matching Pennies).
P> Mixed strategies guarantee an equilibrium in all finite games.
P Rational randomization: optimal unpredictability in competition.




Best Response as a Correspondence
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Recap

» Domain: A(A_;)

P Range: subsets of A(A,)

P For finite games: nonempty, convex-valued, upper hemicontinuous
P> These properties are key to existence ideas later




Upper Hemicontinuity: Intuition
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Recap

If 78, — 7, and ¥ € BR,;(7*,) with 7% — 7, then 7, € BR,(7_,).

Small changes in beliefs do not create discontinuous jumps in optimal responses.




NE as Fixed Point of BR
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Recap

Define BR(m) = x;BR,(m_,) across players.
Nash equilibria are fixed points of BR:

™ € BR(m*).




2x2 Mixed NE: Template
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Recap

For
_f(a b (e f
=) e
let the row player play U with probability p, and the column player play L with
probability q.

P Row indifference: aq+ b(1 —¢q) = cq+d(1 —q) = solve for ¢
P Column indifference: ep + g(1 —p) = fp+ h(1 —p) = solve for p




Relationship & Hierarchy
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Recap

P Brouwer is a special case of Kakutani (when the correspondence is
single-valued, i.e., a function).

P Banach is fundamentally different, deals with iterative contractions-not
generally present in game theoretic contexts.

P In Nash's context, Kakutani is needed due to set-valuedness of the best
response correspondence.




Epsilon-Nash: Definition

A profile 7 is an e-Nash equilibrium if for all ¢,

R,(m) > maxR,;(m,,m_;) — €.

/

™

P ¢ = 0 gives an exact Nash equilibrium
P> Useful when using numerical solvers or rounding
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Recap




What changes today
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Recap

P From prediction to prescription: efficiency and welfare
P From independent mixing to correlated signals (CE)
P From perfect rationality to bounded rationality (QRE)
P From static solutions to learning dynamics
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Welfare &
Efficiency

Welfare & Efficiency




Formal setup: feasible payoffs
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Welfare &
Efficiency

P Finite normal-form game with payoff functions u;(a) for a € A =[], A;.
P Let X be the set of joint distributions on A (mixed/correlated play).
P Feasible payoff set:

U = {([Ex[ul<a>]77[:p[un(a>]> ; $€X}

P U is compact; if mixed /correlated are allowed, U is the convex hull of the
pure payoff vectors.




Pareto efficiency (weak / strong)
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Welfare &
Efficiency

» v,wel.

P Weak Pareto dominance: v > p w if v; > w; for all 4.

P Strong dominance: v >p w if v = p w and v; > w; for some j.

P Pareto efficient (PE): w € U is PE if there is no v € U with v > p w.
P> The set of PE points = the upper-right boundary (outer frontier) of U.




Existence & geometry of the frontier
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Welfare &
Efficiency

P In finite games with correlated play allowed, U = conv{u(a): a € A} is a
polytope.

P The Pareto frontier is nonempty and closed (upper boundary of a
compact set).

P Extreme efficient points arise from optimizing linear aggregates ZZ AU,
A>0.




Computing the frontier: weighted sums
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Welfare &
Efficiency

For weights A € IRgO, solve

max x(a)(Zi)\iui(a)> st. . a(a) =1, 2(a) > 0.

X
re a€A

P Vary A to trace (outer) frontier.
P If you restrict to product mixes (x independent), you still get a convex
set in payoffs; allowing full correlation can expand U.




Scalarization completeness (convex case)
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Welfare &
Efficiency

P If U is convex, then every PE point can be obtained by some
weighted-sum scalarization with nonnegative weights.

P> If one restricts to pure or product strategies only, U may be nonconvex;
some PE points then require e-constraint or explicit convexification.




Social welfare objectives: three classics
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Welfare &
Efficiency

P Utilitarian: maximize total surplus > u,.
P Egalitarian: maximize min; ;.
P Nash social welfare (NSW): maximize [],(u; — u;) for some baseline u

1
(e.g., disagreement); equivalent to max ) log(u; — ;) when positive.




Utilitarian program (mixed/correlated)
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Welfare &
Efficiency

max z(a) Zui(a) s.t. Z:L"(a) =1, xz(a) > 0.

rxeX
a

P> Linear program over the correlated simplex.
P> Returns a point on the frontier that maximizes total welfare.




Egalitarian (max—min) via epigraph trick
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Welfare &
Efficiency

max t s.t. Zx(a)ui(a) >t Vi, Zx(a) =1, z(a) > 0.

t,xeX
a

P Linear program (if utilities are linear in z).
P Produces a balanced PE point.




Nash social welfare (convex form)
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Welfare &
Efficiency

Given baselines u; with feasibility u; > u;, solve

max z”: log ( Z z(a)u,;(a) — uy;)

reX
a

P Concave in x (sum of concave log of affine functions).
P Yields the Nash bargaining point under standard axioms.




Example: Pareto sets in 2x2 (BoS)
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Welfare &
Efficiency

Ballet Football

Ballet (2,1) (0,0)
Football (0,0) (1,2)

P> Feasible payoffs (with correlation) lie in conv{(2,1),(1,2),(0,0)}.

P Efficient boundary = the segment between (2,1) and (1,2).

P NE: two pure extreme points plus the mixed interior (inefficient vs risk).
P CE can reach any point on that segment (e.g., fair (1.5, 1.5)).




Example: PD - stability vs efficiency
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Welfare &
Efficiency

P (D, D) is the unique NE, but Pareto-dominated by (C,C).

P Frontier includes (3,3) and the upper-right part of
conv{(3,3), (5,0),(0,5)}.

P Proof of inefficiency of NE: Since D strictly dominates C' for both, the
unique NE is (D, D).




Example: Stag Hunt - payoff vs risk dominance
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Welfare &
Efficiency

Stag Hare

Stag (3,3) (0,2)
Hare (2,0) (2,2)

P Efficient point: (3,3) (also PE frontier's top corner).

P NE: (Stag, Stag) and (Hare, Hare).

P Risk-dominance: (Hare, Hare) has larger basin under noise; but it is
inefficient vs (Stag, Stag).




Example: Chicken - avoiding catastrophe
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Welfare &
Efficiency

Swerve Straight

Swerve  (0,0) (-1,1)
Straight (1-1) (-M,-M)

P For M > 1, the lower-right is catastrophic; PE frontier lies along
off-diagonal payoffs.

P Any equilibrium placing mass on (—M,—M) is highly inefficient; CE can
put zero mass there and remain incentive compatible.




Zero-sum games & efficiency
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Welfare &
Efficiency

P If u; = —uy, then for any feasible (uy,us5), uy + uy = 0 (sum welfare is
constant).

P The Pareto frontier is the anti-diagonal; every feasible point is weakly PE
(improving one hurts the other).

P Hence “efficiency” is trivial under utilitarian welfare; the value (minimax) is
the relevant benchmark.




Price of Anarchy (PoA): general
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Welfare &
Efficiency

Let W(s) be welfare (higher is better). For a game with strategy space S:

PoA = M € (0,1].

mingeng W (s)

maXgeNg C(s) > 1

P If cost C' is minimized, use PoA = —
min g C(s)

P Quantifies worst-case efficiency loss due to strategic behavior.




Nonatomic congestion (Wardrop) model

P Continuum of infinitesimal users of total demand 1.
P Parallel links e with latency £, (z,) depending on flow z..

P Wardrop equilibrium: all used routes have equal (minimal) latency. Eficincy
P Social optimum: minimize total latency ) ./, (x,).
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Efficiency under correlation
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Welfare &
Efficiency

P Allowing correlated signals can move play toward the Pareto frontier in
general-sum games.
P In zero-sum, correlation doesn't improve total welfare (value fixed).

P In congestion settings, mechanism tweaks (tolls, signals) can implement
efficient flows.




KKT view of the frontier
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Welfare &
Efficiency

P> Frontier points solve

A, ith X\ eRZ,.
1;165};((1' () wi € RS,

P KKT multipliers A act as social prices on individual utilities.
P The supporting hyperplane with normal )\ touches U at PE points.




When NE is PE (and when not)
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Welfare &
Efficiency

P NE can be PE (e.g., common-interest games with unique maximizer).
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Welfare &
Efficiency
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Correlated
Equilibrium (CE)

Correlated Equilibrium (CE)




Aumann’s idea: recommendations you want to obey
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Correlated

P A mediator draws a joint action a = (7, j) from a public distribution z on Equilibrium (CE)
A, x A,, and sends private recommendation 4 to Row and j to Column.
P> Each player updates by Bayes:
€T..

P . N 1] )
CILRS S

P A Correlated Equilibrium (CE) is any x such that obeying the
recommendation is a best response given the posterior they infer from their
own signal.




CE obedience constraints
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Let u; = A, uy, = B. For Row, after receiving i, the expected gain from obeying
1 vs deviating to 7’ is

D Pr(j| i) (A — Agy). ST
J
Multiply by Pr(7) = Zj x,;; to avoid division by zero:
J
Similarly for Column:
sz‘j (Bij - Bz‘j’) >0 Vvjj.

Plus z,; > 0 and Zij z;; =1




Sets & inclusions

vv
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Let NE be mixed Nash distributions (independent product mixes over

aCtionS). Correlated
Equilibrium (CE)

Let CE be all obeyable joint distributions = (private signals allowed).
Let CCE (coarse correlated equilibrium) relax to one-shot deviations before
seeing the signal:

P Row: Zij Ty (A — Ayy) >0 Vi

» Column: Zij x5 (B;j — Biy) >0 Vj'
Then:

NE C CE C CCE.

Why strict? CE can correlate actions to avoid miscoordination; CCE is
even larger since players can't condition on the signal when deviating.




Geometry: the CE polytope
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Correlated
Equilibrium (CE)

P Variables z € R™" with simplex constraints > 0, 17z = 1.

P Add linear obedience inequalities — a convex polytope X .

P Extreme points of X need not be product distributions; can be “purely
correlated”.

P For a 2-player m x n game, any extreme CE has support size <m +n —1
(Carathéodory/linear-independence argument).




NE are CE: quick proof
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Correlated
Equilibrium (CE)

If £ =p ® qis a mixed NE, each action in support is a best response to the
independent posterior. Then for any deviation 7’,

Z fEij(Aij - Ai’j) =D; Z qj'(Aij - Ai’j) >0,
J J

since 7 is a best response to g. Same for Column. Hence = € CE.




/Zero-sum invariance
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Correlated
Equilibrium (CE)

If B = —A (two-player zero-sum), all CE yield Row payoff < v and > v, where
v is the minimax value. So every CE attains value v:

P Row's CCE constraint implies 3, x;;A;; > max; 3. @ jA; ;.

P Column’s implies Zij wi A <ming Yoo x; A

P Sandwiching between minmax and maxmin gives equality at v. Conclusion:
CE cannot help in strictly competitive games; it can help a lot in
coordination.




CE via LP
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Correlated
Equilibrium (CE)

Decision vars: z;; >0, 3, x;; = 1.
Incentive constraints: as above.
Objective: choose your scalarization:

P Utilitarian: max 22 %ij(Aij + Bij).
P> Egalitarian: epigraph trick for max min{zij T A, Zij 7By}
P Fairness: max > vij(aAy; + BB;;) with o = 5.

Solvable in polynomial time; returns a CE distribution and induced payoffs.




CE: Battle of the Sexes
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Ballet Football

Correlated

Ballet (2,1) (0,0) B (@)
Football (0,0) (1,2)

Take xgg = xpp = 1/2, others 0.

» Row obedience: comparing B vs

Zj rpi(Ap;— Apj) =2pp(2—0)+25p(0—1) = 1.
P Column obedience: comparing B vs F:

> Tig(Big — Bip) =rpp(1—0) + 2550 —2) = 1.

All other deviation pairs are slack/identical. Thus CE holds, payoffs (1.5,1.5).
Insight: CE removes miscoordination risk, unlike the mixed NE.




CE: Chicken with catastrophe M
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Swerve Straight

Swerve  (0,0) (-1,1) Equiibriam (CE)
Straight (1,-1)  (-M,-M)

_ _ _ _1
Let xgg = 2pp =0, Tgp = Tpg = 5.

P Row: receiving S, Column posterior is T" with prob 1 — obeying S yields 0
vs deviating to T' yields —M — obey.

P Row: receiving T', posterior is S with prob 1 — obeying T yields 1 vs
deviating to S yields —1 — obey.
Symmetric for Column. This CE eliminates (—M, —M) entirely and gives

welfare 0. For large M, this strictly dominates any mixed NE with crash
probability.




PD: CE doesn’t magically give (C,C)
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Correlated
Equilibrium (CE)

P Any CE must satisfy obedience: if Row recommended C, deviating to D
against Column’s posterior must not help.

P With mass on (C,C) and (D, D) only, Row's deviation from C' to D
against the posterior (prob 1 on C) gains 5 — 3 > 0 — violates obedience.

P Thus (C,C) cannot be sustained by CE without transfers or
repeated-game incentives. (CE helps in coordination, not in
dominant-strategy temptations like PD.)




Hand-check template (2x2)
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Suppose x has support on cells {(iy, j;), (i, 72)}- Comted
quilibrium

Row obedience for each received i € {i,,i5} vs deviating to i’:

J

With two supported j's, this is two inequalities per 7’.

1) Column obedience symmetric.
2) Normalization and nonnegativity.
3) Compute expected payoffs; compare to NE and to PE frontier.




CE vs CCE on risk and welfare
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Correlated
Equilibrium (CE)

P NE mixes can put mass on miscoordination with bad outcomes (e.g.
Chicken crash).

P CE can correlate to avoid jointly bad states while keeping incentives.

P CCE is larger; many no-regret dynamics converge to CCE, yielding robust
PoA guarantees via smoothness.




Designing CE in the wild
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Correlated
Equilibrium (CE)

P Private prompts: “If your friend chooses Ballet, we'll recommend Ballet to
you," shown as a personalized nudge.
P Public tie-breakers: randomized “coin flips” everyone trusts, then private

route recommendations.
P CE requires credibility that the mediator draws from the announced x and

that messages are private.




CE and welfare: frontier positioning
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Correlated
Equilibrium (CE)

P> CE feasibility region is convex, often strictly containing NE.

P By maximizing a welfare functional over the CE polytope, you can hit the
Pareto frontier in many coordination games (e.g., BoS midpoint).

P In zero-sum: no improvement in value; in general-sum: CE can strictly
improve fairness.




Micro-LP (symbolic 2x2) .

Let payoffs be
— a b J— € f — xll x12 Correlated

A= (C d) , B= <g h) y I = <$21 Toy) Equilibrium (CE)

Row obedience:

zy(a—c)+x(b—d) >0
To1(c—a) + Toe(d —b) >0

(obey 1 vs dev 2 when rec 1),
(obey 2 vs dev 1 when rec 2).

Column obedience:

zy1(e—g) + T91(9 —€)
T15(f —h) + 295(h — f)

>0 (obey 1 vsdev 2 when rec 1),
>0 (obey 2 vs dev 1 when rec 2).

Pick objective (e.g., maximize Eij x,;(A;; + B;;)) and solve.




CE vs public correlation
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Correlated
Equilibrium (CE)

P Private recommendations are sufficient for CE.

P With a public signal only (no private advice), you generally get a public
correlated equilibrium; this can be weaker (players can infer others' advice
and may want to deviate).

P> Private messages are key to obedience at the individual level.




When CE fails to help
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Correlated
Equilibrium (CE)

P Dominance-driven temptations (PD): obedience to “cooperate” is not
credible.

P Strictly competitive (zero-sum): value fixed.

P Miscoordinated posteriors: your candidate x induces posteriors that make
deviation profitable — not a CE.




CE & learning
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Correlated
Equilibrium (CE)

P Many no-regret learning processes converge to the CCE set; with
smoothness, their worst-case welfare matches PoA bounds.
P Adding signal devices (recommendations) can move play from CCE toward

CE and closer to the Pareto frontier.
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Correlated
Equilibrium (CE)
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Exercises

Exercises




Correlated Equilibrium in BoS (coin on diagonal)
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Verify and analyze a CE that fairly coordinates play.

Given. Battle of the Sexes payoffs:

— 2 0 I ]‘ O Exercises
GG

Proposed joint distribution z: gp = Tpp = % others 0.

1. Write the CE inequalities explicitly for row (B vs F, F vs B) and column (B
vs F, F vs B).

2. Plug the proposed x into all CE inequalities and show they hold with slack
(or equality).

3. Compute E[ug], E[us] under this CE.

4. Compare to (i) the two pure NE, and (ii) the mixed NE payoffs.

You should get (Eup, Eun) = (1.5,1.5). Mixed NE payoffs equal the same
welfare but with miscoordination risk.




Summary
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Exercises

P> Efficiency lenses: Pareto frontier, Social Welfare, Price of Anarchy
P Beyond NE: CE/CCE (obedience via signals)
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