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Previously on Lecture 3

Laszlé Gulyas

P> Efficiency lenses: Pareto frontier, Social Welfare, Price of Anarchy

P Beyond NE: CE/CCE (obedience via signals), QRE (noisy best response)
P Learning dynamics: FP, BRD, Replicator - how play moves over time

P> Takeaway: Many ways to improve/interpret outcomes given a stage game




Lecture Overview

P> Previous lecture gave selection/improvement tools (CE/QRE) & dynamic
paths.
P> This lecture zooms into strictly competitive settings:
P Which joint policies are guaranteed-safe?
P What is the value of play per period/discounted?
P How to compute it fast and verify it's optimal?
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Formal setup: feasible payoffs
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Recap

P Finite normal-form game with payoff functions u;(a) for a € A =[], A;.
P Let X be the set of joint distributions on A (mixed/correlated play).
P Feasible payoff set:

U = {([Ex[ul<a>]77[:p[un(a>]> ; xEX}

P U is compact; if mixed /correlated are allowed, U is the convex hull of the
pure payoff vectors.




Nash social welfare (convex form)

Given baselines u; with feasibility u; > u;, solve

max z”: log ( Z z(a)u,;(a) — uy;)

reX
a

P Concave in x (sum of concave log of affine functions).

P Yields the Nash bargaining point under standard axioms.
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Recap




Aumann’s idea: recommendations you want to obey
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Recap

P A mediator draws a joint action a = (7, j) from a public distribution z on
A, x A,, and sends private recommendation 4 to Row and j to Column.
P> Each player updates by Bayes:
€T .

P . N 1] )
CILRS S

P A Correlated Equilibrium (CE) is any x such that obeying the
recommendation is a best response given the posterior they infer from their
own signal.




CE vs public correlation
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Recap

P Private recommendations are sufficient for CE.

P With a public signal only (no private advice), you generally get a public
correlated equilibrium; this can be weaker (players can infer others' advice
and may want to deviate).

P> Private messages are key to obedience at the individual level.




When CE fails to help
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Recap

P Dominance-driven temptations (PD): obedience to “cooperate” is not
credible.

P Strictly competitive (zero-sum): value fixed.

P Miscoordinated posteriors: your candidate x induces posteriors that make
deviation profitable — not a CE.




CE & learning
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Recap

P Many no-regret learning processes converge to the CCE set; with
smoothness, their worst-case welfare matches PoA bounds.
P Adding signal devices (recommendations) can move play from CCE toward

CE and closer to the Pareto frontier.




Why QRE? (Bounded rationality meets equilibrium)
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Recap

P Empirics: Lab play often deviates from Nash but is payoff-sensitive.

P Idea: Players don't perfectly best-respond; they choose better actions
more often.

P QRE (McKelvey—Palfrey): Replace hard best response with a smooth,
stochastic choice rule; fix points of these smooth responses are equilibria.




Why dynamics?
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Recap

P Equilibria say where play can end up; dynamics say how it might get there.
P> Useful for prediction, selection (which NE), and algorithmic intuition.




Fictitious Play (FP): beliefs — BRs

Laszlé Gulyas

Recap

P> Each player best-responds to the empirical frequency of opponent’s past
actions.
P Belief update (row vs column with actions j € A,):

t
q' = 121 {ay) =7}, o™ € arg max(A§");.

Converges in 2p zero-sum, potential, and dominance-solvable games.

May cycle in general-sum (e.g., Shapley's game), but time-averages can

converge.

P Intuition: conservative learning of others’ stationary mix.

\ A 4




Quick comparison table
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Recap

Concept Info Randomness Solve Welfare
NE None independent supports/LP  baseline
CE private signals correlated LP often 1
QRE none stochastic choice fixed point behavioral

Learning history induced by play  simulation depends




What is a joint policy? (repeated matrix game, zero-sum)

Laszlé Gulyas

Recap

P Stage game: Row payoff matrix A € R™*™, Column payoff —A.
P Round ¢t =0,1,2,...: players choose pure actions i, € [m], j, € [n].
P Instant payoff: r, = A; ; to Row (and —r; to Column).

A joint policy II = (7, m,) specifies, for each round ¢, a (possibly
history-dependent) mixed action for each player:

(- | ht) €A™, my(| ht) € A", h, = (i07j0= vit—lajt—l)-

P Stationary (memoryless) policy: 7, (- | h,) =p € A™,
(- | hy) = q € A™ for all t.
P> Unless stated otherwise, draws are independent across players and

across time under a stationary policy.
Notation. e; denotes the i-th standard basis vector.

1 denotes an all-ones vector.
AF ={x € RF:2 >0, 1Tz = 1} is the probability simplex.




Discounted return under stationary independent mixing
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Reca
Fix v € (0,1). Under stationary independent mixing (p, q) each round, ’

[E[Tt] = Zpi Aij a; = pTAq for all t,

,J

and, by linearity of expectation with i.i.d. draws,

[es) 00 T
p' Aq
T (pa) = Elzwt} Sy = 24
t=0 t=0

L—vy

Remarks.

P The independence across time is sufficient; no ergodic or martingale
machinery is required here.

P If you add a constant ¢ to all entries of A, then J, shifts by c¢/(1 —);
optimal mixes are unchanged.




Long-run average reward (Cesaro average)
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Recap

Under stationary independent mixing (p, q),

- 1 T-1 1 T2
t=0 t=0

Interpretation. The one-shot value p' Aq is the per-period expected return of

the stationary joint policy; discounting just rescales it by (1 — ) 1.
Caution. If players correlate across time (e.g., contingent punishments),

per-period expectation under stationary (p,q) is still p" Aq, but non-
stationary history-dependent strategies can implement different paths. In
matrix zero-sum games, however, these paths cannot raise the secure
average payoff above the minimax value (see Minimax section).




Security levels: maximin vs minimax
Row's maximin (security guarantee):
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Recap

v~ := max min p' Aq.
pEAm qun
Column’s minimax (Row's worst-case given Column's choice):

vt := min max p'Aq.

geEA™ peA™

Weak minimax inequality. For any bilinear form over compact convex sets,
vo < o,

Proof sketch: For any p, g, min plAg <pTAq < max,, p'T Agq.

Take max,, on the left inequality and min, on the right inequality.

Interpretation.

P v: Row can guarantee at least v~ regardless of Column (= security
level).
» v*: Column can hold Row down to at most v™ regardless of Row.

In finite zero-sum matrix games, the Minimax Theorem (next section) states

P o I Y T e



Side notes & edge cases
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Recap

P Finite horizon T: Under stationary independent (p, q),
T-1

E [Z T
t=0

P Time-varying stationary but independent (piecewise constant p,, ¢,):

=Tp'Aq.

the per-period mean is - Zz:ol pl Ag,.

P History-dependent strategies (threats/punishments): In general-sum,
these matter (Folk theorems). In zero-sum matrix games, they cannot
beat the minimax value v in expected average payoff.

P Nonzero-sum: Expected returns are bilinear in (p, q) per player; many
results above carry but security equality (minimax) does not.




Micro-check (2x2 stationary)
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Recap

Let
A= y P=1D p), 4= 14, q).

Then

pTAG=p[2¢—1(1—q)]+ (1 —p)[-3¢+4(1—q)] = (bp—3)g + (—4p +4).

P> For fixed g, Row's best response is arg max,, of a linear function in p.
P For fixed p, Column’s best response is arg min, of the same bilinear
expression.
Indifference equalization yields p* = 0.7, ¢* = 0.5 (derived later), hence
J=p"TAg =0.05and J, = 0.05/(1— ).




Questions
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Recap

1. Show Jv(p, q) = ”1%‘4,5 using only independence and linearity of expectation.

2. Prove v~ < v" for any compact convex P, @ and continuous bilinear payoff.

3. (Concept) Give a general-sum 2x2 where non-stationary correlation across
time changes the distribution of outcomes relative to stationary play, even

though the stage expectation formula holds under stationarity.
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Minimax Theorem

Minimax Theorem




Statement & Intuition (finite matrix games)
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Minimax Theorem

Theorem (von Neumann). For any finite two-player zero-sum matrix game
with Row payoff A € R™*",

max min p' Ag = min max p' Ag = v.
pEA™ geEAn gEAT peA™

There exist optimal mixes p* € A™, ¢* € A" such that
p*TAg>v Vg, pl Ag* <v Vp.

Intuition. Row can guarantee at least v (security), Column can hold Row
down to at most v; equality pins down the value and optimal mixed strategies.




Saddle-Point View (equivalent characterization)
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Minimax Theorem

(p*,q*) is minimax <= p*T Aq > p*T A¢* > p" A¢* Vp,q.

At a saddle point, neither player can profitably deviate; the common value is
v=rpTAg".




Weak Minimax Inequality (prelude)
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Minimax Theorem

For any bilinear payoff over compact convex sets,
maxminp' Ag < minmaxp' Ag.
P a a P

Proof sketch: For all p,q, min, plAq <pTAq < max,, p'T Aq. Take max,, on
the left, minq on the right.




LP Formulation (Row / “primal”)
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Minimax Theorem

(Optionally shift A by a constant so entries are nonnegative; mixes are invariant
to affine shifts.)

max v
p7v

st. A'p > o1,
1'p=1, p>0.

Meaning. Choose p so that every column yields at least v.




LP Dual (Column)
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Minimax Theorem

min v
qiv

st. Aqg < vl,
17g=1, ¢>0.
Meaning. Choose ¢ so that every row yields at most v.

Consequence. LP strong duality = optimal values match = minimax equality.




Complementary Slackness (support equalization)
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Minimax Theorem

At an optimal pair (p*, ¢*,v):

P If p; > 0, then the i-th row payoff equals the value: (Ag*), = v.
> If q; > 0, then the j-th column payoff equals the value: (ATp*)j = .

Takeaway. Supported pure actions are equalized at value v; excluded actions
satisfy the corresponding inequality strictly.




Computing by Indifference (support method)
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Minimax Theorem

Given supports I C [m], J C [n]:

1. Row equalization on I: (Aq), = v forall i € I.

2. Column equalization on J: (A"p); = v for all j € J.

3. Normalization: }_._,p;, =1, p; > 0; Zje] q;=1, ¢; > 0.

4. Verify inequalities: (Aq); <vfori ¢ I, (Ap); >wvforj¢ J.

If feasible, (p, ¢, v) is a solution. Otherwise try different supports.




Example 1 (2x2 by indifference)
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2 -1
A - <_3 4 ) ) Minimax Theorem

» Row indiff (equalize Column’s payoffs):

Let p = Pr[U], ¢ = Pr[L].

2+ (-3)(1—q)=—1-q+4(1—¢q) = 3q—1=—-7¢+4 = ¢ =0.5.

P Column indiff (equalize Row’s payoffs):

2p+ (1)1 —p)=—-3p+4(1—p) = 3p—1=—-Tp+4 = p*=0.7.

P Value:

0.5

v=p"TA¢" =[0.7 0.3] { 23 _41] [0'5} = 0.05.



Example 2 (3x3 RPS)
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Minimax Theorem

0 -1 1
A=|1 0 -—-1].
-1 1 0

By symmetry, p* = ¢* = (1/3,1/3,1/3), v =0. Check: A¢* =0-1,
Alp*=0-1.




Example 3 (weighted RPS, full support system)
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Minimax Theorem

0 -2 1
A=12 0 -—-1].
-1 1 0

Ag=vl1l, A'p=vl, 1'p=1Tg=1.

Solve

Check p, g > 0; the solution yields full-support mixes and v.




Example 4 (dominance pruning)
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Minimax Theorem

1 2 0
A=|(2 1 0.
0 00

Row 3 is dominated by a mixture of Rows 1-2. Remove it, solve 2x2 by
indifference; verify Row 3 remains unprofitable at the solution.




Geometry & Invariances (quick facts)
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Minimax Theorem

» Hyperplanes. Equal-payoff sets (Aq); = (Ag);s and (Ap); = (ATp); are
linear (hyperplanes in the simplexes).

P Polytopes. Best-response regions are intersections of half-spaces =
polytopes; equilibria are at polytope intersections.

P Affine transforms. A — aA + c11": mixes unchanged; value scales by «
and shifts by c.




Computational Tools
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Minimax Theorem

import numpy as np, nashpy as nash

A = np.array([[2,-1],[-3,4]11)
G = nash.Game(A) # zero-sum shorthand
list(G.vertex_enumeration()) # returns (p*, g*)
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Minimax:
Computation,
Stability, and
Generalizations

Minimax: Computation, Stability, and Generalizations




LP template for Row (code-level concept)
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Minimax:

Computation,

Stabilit}{, ar?d
P> Variables: probabilities on rows p € R™ and value v € R. Generalizations
P Constraints: ATp>vl,1"'p=1,p>0.

P Objective: maximize v.

The dual is Column’s problem automatically (minimize v with Aq < v1,
17g=1,q>0).
Use any LP solver that handles linear inequalities (cvxopt, PulLP, SciPy
linprog, CVXPy, ..).




Complementary Slackness (quick check on Example 1) .

At (p*,q*,v) = (0.7, 0.5, 0.05) for T
- Seaniy and
— Generalizations

(5 5)

P Row supported actions U, D both achieve value exactly 0.05 against ¢*:
(Aq")y = (Aq")p = v.
P Column supported actions L, R both yield value exactly 0.05 against p*:
(ATp*), = (ATp*)p =v.
P In a 2 x 2 there are no excluded pure actions; feasibility is immediate.
Takeaway: supported actions are equalized at v; any excluded actions (in larger
games) must satisfy strict inequality.




Invariances: value shifts & scalings

» Shift: A~ A+c11'
mixes p*, ¢* unchanged; value shifts by c.
P Scale: A+ aA with a >0
mixes unchanged; value scales by a.
Use these to simplify arithmetic (e.g., make entries nonnegative for LP
stability).
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Minimax:
Computation,
Stability, and
Generalizations




e-security (numerical robustness)
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For any € > 0, there exists p, s.t.

Minimax:
Computation,

. T Stability, and
mqln De Aq 2 v—E&, Generalizations

and g, s.t.
maxp' Ag. < v+e.
2

Practice: When you compute (p, @) numerically, report the deviation
incentives

6#’0

w mZaX(Aq\)z - f)TAqy €col = ﬁTA(:]\ - Injin<f)TA)ja

and use max(g,,,,E.,) as a conservative error bound.




Relation to Nash Equilibrium (zero-sum)

In two-player zero-sum games, minimax strategies (p*, ¢*) are exactly Nash
equilibria, and the equilibrium payoff equals the value v. Conversely, any NE

mixed profile is minimax.
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Minimax:
Computation,
Stability, and
Generalizations




Sion’s Minimax Theorem (statement)

Let X C R™, Y C R" be nonempty compact convex sets.
If f: X XY — Ris quasi-convex and lower semicontinuous in x for each y,

and quasi-concave and upper semicontinuous in y for each x, then

iy max flz,y) = max min f(x,y).

This generalizes the matrix-game minimax equality.
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Minimax:
Computation,
Stability, and

Generalizations




Proof Sketch A: LP strong duality

B~ W N =

. Write Row's problem as an LP; Column'’s is the dual.

. Feasibility & boundedness = strong duality: optimal values match.

. Optimal primal/dual solutions yield (p*, ¢*,v).

. Complementary slackness explains equalization of supported actions.
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Minimax:
Computation,
Stability, and

Generalizations




Proof Sketch B: Fixed-point route (intuition)

1. Mixed strategy spaces are simplexes (compact, convex).

2. Best-response correspondences are nonempty, convex-valued,
upper-hemicontinuous (Berge).

3. Existence of NE (Kakutani) in zero-sum = value-attaining equilibrium;
Row’s secured payoff equals Column’s held-down payoff = minimax
equality.
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Minimax:
Computation,
Stability, and
Generalizations




Minimax:
Computation,
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JP and Minimax
Repeated Play

JP and Minimax Repeated Play




Bridge from last section (what changes in repeated play?) .

P> In static zero-sum matrix games you computed (p*, ¢*,v) by minimax. 1P and Minimax
Repeated Play

P In repeated play (finite/infinite horizon), if each round is the same stage
game and players mix independently each round, then:
P> Per-period payoff is p' Agq.
P Discounted return J,(p,q) = plT_’:q.
P> Stationary minimax p*, ¢* secure value v each round — the repeated game's

value is v (per period).




Joint policies in repeated matrix games
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P> Stage game payoffs: Row A € R"™*™, Column —A (zero-sum).

P Joint policy (possibly history-dependent): mapping from histories (', to
mixed actions.

P Stationary independent policy: fixed p € A™, g € A™ each round.

JP and Minimax
Repeated Play

Discounted return (stationary, independent)

']'y(pvq> = E[;q/taitjt] = ];_,3

Average reward (Cesaro)

S

1 —1

: ol
TlgnooT[E[ “itﬂ‘t] = p Ag
t

Il
o




Security levels in repeated play (why history doesn't help in
zero-sum)
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Let

_ . . _ JP and Minimax
v~ =maxminp' Aq, vT =minmaxp'Aq, (v <v"). Repeated Play
P q a p

By the minimax theorem v~ = vt = v.

P> Against any opponent policy (even history-dependent), Row can play p*
i.i.d. each round and guarantee at least v per period.

P Symmetrically Column can hold Row to at most v.

P> Thus the repeated zero-sum game (with the same stage game) has
per-period value v; using history cannot beat v in expectation.




Example 5: uniform security in a centered symmetric game

Laszlé Gulyas

JP and Minimax

1 0 1 2 Repeated Play
A=10 11 —511T.

1 10

P Each row/column sum is 0 — uniform p = ¢ = (1/3,1/3,1/3).
» Value v = 0. Verify Ag=0and A'p =0.




Example 6: 3x3 with support size 2 (support equalization)
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30 2 e
A=11 2 0].
01 4

Try supports I = {U, D}, J = {L, R}. Solve the induced 2x2 by equalizing
supported payoffs at value v.
Check the middle actions are not profitable; if violated, adjust supports.




Example 7: dominance pruning first
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JP and Minimax

4 3 2 Repeated Play
A=13 2 1].
2 10

Row 3 is dominated by a mixture of Rows 1-2. Remove, solve the 2x2, then
reinsert Row 3 to confirm it remains unprofitable at (p*, ¢*, v).




Geometry refresher (why intersections matter)
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JP and Minimax
Repeated Play

e T Ay — T ; e
P Equal-payoff hyperplanes: ¢/ Ag = e, Aq are linear constraints in q.
P> Best response regions: intersections of halfspaces (polyhedral).
P Equilibria: at intersections where both players are indifferent on their
supported actions and inequalities hold for excluded ones.




Algorithms in practice (what to use when)
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JP and Minimax

P 2x2 / some 3x3: support guessing + indifference + inequality checks. Repeated Play

P Small/medium: vertex enumeration of BR polytopes (e.g., NashPy for
zero-sum).

P Larger: LP (sparse) or first-order primal-dual methods.

P Teaching/demo: NashPy is quick and reliable for small sizes.




Epsilon-security & solver tolerance (diagnostics)

Laszlé Gulyas

. . A A . JP and Minimax
Given numerical (p, ¢), define R aned Pl

€

row col —

= max(Aq); —p'Aq, e =D AJ—min(p'A);
% J

as a conservative suboptimality bound.

Report maX<8row? 8CO| )




Exercise 1. - hand computation (2x2)

For
3 —1
(5 2);
1) Compute (p*, ¢*,v) by support equalization.

2) Remove any dominated actions if found and recompute.
3) Verify equalization /inequalities.
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JP and Minimax
Repeated Play




Exercise 2. - 3x3 support search
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JP and Minimax
2 1 O Repeated Play

A=10 2 1
1 0 2

Enumerate size-2 supports, keep feasible ones. If none feasible, try full support
and solve the linear system Ag=vl, A'Tp=v1, 1Tp=1T¢g=1.




Exercise 3. - robustness under perturbations
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JP and Minimax
Repeated Play

Add i.i.d. noise £;; ~ Unif[—0.1,0.1] to a 3x3 with known (p*, ¢*,v).
Recompute (P, §,0).
Summarize how supports and v change.




Exercise 4. - Exploitability of naive play
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JP and Minimax
Repeated Play

Fix Column at a non-equilibrium ¢.

(a) Compute Row's best response pB(q,) and value v(qy).

(b) Define exploitability F(q,) = v(q) — v.

(c) Repeat for several g to visualize the exploitability landscape.




Exercise 5. - Family with a parameter (piecewise supports)
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JP and Minimax
Let Repeated Play

A(@):(_??) 1_+19>’ 61,2

Derive (p*(0),q*(0),v(0)) piecewise in 0; identify breakpoints where supports
change.




Exercise 6. - Regret minimization minimax
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JP and Minimax
Repeated Play

Run a no-regret algorithm (e.g., Hedge) for both players on a 3x3 zero-sum
game.

Track average plays pp, g and payoffs 0.

Show v — v and exploitability — 0.




Exercise 7. - Correlation doesn't help in zero-sum
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JP and Minimax
Repeated Play

Propose any correlated device x for a zero-sum game.
Show Row's CE payoff < v and Column’s > —uv.
Conclude CE cannot beat minimax value in zero-sum.




Exercise 8. - Repeated play with discounting
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JP and Minimax
Repeated Play

Prove rigorously that stationary (p*, ¢*) yields discounted return v/(1 — 7).
Argue any history-dependent deviation cannot improve the per-period value
above v.




Common pitfalls
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JP and Minimax
Repeated Play

P Equalizing all actions instead of supported ones only.
P Forgetting normalization } p; =1, > q; = 1.

P Mixing Row/Column inequalities’ directions.

P Not re-checking excluded actions after solving.




Summary

vV vV v VY
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In zero-sum matrix games, minimax = Nash and yields value v.

Repeated play with stationary independent minimax achieves per-period v; P o] s
Repeated Play

history dependence cannot beat it in expectation.

Computation: supports + indifference for small games; LP /vertex
enumeration otherwise.

Diagnostics: complementary slackness and e-security quantify solution
quality.

Design insight: in zero-sum, correlation doesn't raise value;

learning /no-regret converges to minimax.
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