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Previously on Lecture 3

▶ Efficiency lenses: Pareto frontier, Social Welfare, Price of Anarchy
▶ Beyond NE: CE/CCE (obedience via signals), QRE (noisy best response)
▶ Learning dynamics: FP, BRD, Replicator - how play moves over time
▶ Takeaway: Many ways to improve/interpret outcomes given a stage game
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Lecture Overview

▶ Previous lecture gave selection/improvement tools (CE/QRE) & dynamic
paths.

▶ This lecture zooms into strictly competitive settings:
▶ Which joint policies are guaranteed-safe?
▶ What is the value of play per period/discounted?
▶ How to compute it fast and verify it’s optimal?
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Formal setup: feasible payoffs

▶ Finite normal-form game with payoff functions 𝑢𝑖(𝑎) for 𝑎 ∈ 𝐴 = ∏𝑖 𝐴𝑖.
▶ Let 𝑋 be the set of joint distributions on 𝐴 (mixed/correlated play).
▶ Feasible payoff set:

𝑈 = {(𝔼𝑥[𝑢1(𝑎)], … , 𝔼𝑥[𝑢𝑛(𝑎)]) ∶ 𝑥 ∈ 𝑋} .

▶ 𝑈 is compact; if mixed/correlated are allowed, 𝑈 is the convex hull of the
pure payoff vectors.
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Nash social welfare (convex form)

Given baselines 𝑢̄𝑖 with feasibility 𝑢𝑖 > 𝑢̄𝑖, solve

max
𝑥∈𝑋

𝑛
∑
𝑖=1

log ( ∑
𝑎

𝑥(𝑎)𝑢𝑖(𝑎) − 𝑢̄𝑖)

▶ Concave in 𝑥 (sum of concave log of affine functions).
▶ Yields the Nash bargaining point under standard axioms.
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Aumann’s idea: recommendations you want to obey

▶ A mediator draws a joint action 𝑎 = (𝑖, 𝑗) from a public distribution 𝑥 on
𝐴1 × 𝐴2, and sends private recommendation 𝑖 to Row and 𝑗 to Column.

▶ Each player updates by Bayes:

Pr(𝑗 ∣ 𝑖) = 𝑥𝑖𝑗
∑𝑘∈𝐴2

𝑥𝑖𝑘
.

▶ A Correlated Equilibrium (CE) is any 𝑥 such that obeying the
recommendation is a best response given the posterior they infer from their
own signal.
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CE vs public correlation

▶ Private recommendations are sufficient for CE.
▶ With a public signal only (no private advice), you generally get a public

correlated equilibrium; this can be weaker (players can infer others’ advice
and may want to deviate).

▶ Private messages are key to obedience at the individual level.
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When CE fails to help

▶ Dominance-driven temptations (PD): obedience to “cooperate” is not
credible.

▶ Strictly competitive (zero-sum): value fixed.
▶ Miscoordinated posteriors: your candidate 𝑥 induces posteriors that make

deviation profitable → not a CE.
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CE & learning

▶ Many no-regret learning processes converge to the CCE set; with
smoothness, their worst-case welfare matches PoA bounds.

▶ Adding signal devices (recommendations) can move play from CCE toward
CE and closer to the Pareto frontier.
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Why QRE? (Bounded rationality meets equilibrium)

▶ Empirics: Lab play often deviates from Nash but is payoff-sensitive.
▶ Idea: Players don’t perfectly best-respond; they choose better actions

more often.
▶ QRE (McKelvey–Palfrey): Replace hard best response with a smooth,

stochastic choice rule; fix points of these smooth responses are equilibria.
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Why dynamics?

▶ Equilibria say where play can end up; dynamics say how it might get there.
▶ Useful for prediction, selection (which NE), and algorithmic intuition.
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Fictitious Play (FP): beliefs → BRs

▶ Each player best-responds to the empirical frequency of opponent’s past
actions.

▶ Belief update (row vs column with actions 𝑗 ∈ 𝐴2):

̂𝑞(𝑡)
𝑗 = 1

𝑡
𝑡

∑
𝑠=1

1{𝑎(𝑠)
2 = 𝑗}, 𝑎(𝑡+1)

1 ∈ arg max
𝑖

(𝐴 ̂𝑞(𝑡))𝑖.

▶ Converges in 2p zero-sum, potential, and dominance-solvable games.
▶ May cycle in general-sum (e.g., Shapley’s game), but time-averages can

converge.
▶ Intuition: conservative learning of others’ stationary mix.
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Quick comparison table

Concept Info Randomness Solve Welfare
NE None independent supports/LP baseline
CE private signals correlated LP often ↑
QRE none stochastic choice fixed point behavioral
Learning history induced by play simulation depends
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What is a joint policy? (repeated matrix game, zero-sum)

▶ Stage game: Row payoff matrix 𝐴 ∈ ℝ𝑚×𝑛, Column payoff −𝐴.
▶ Round 𝑡 = 0, 1, 2, …: players choose pure actions 𝑖𝑡 ∈ [𝑚], 𝑗𝑡 ∈ [𝑛].
▶ Instant payoff: 𝑟𝑡 = 𝐴𝑖𝑡𝑗𝑡

to Row (and −𝑟𝑡 to Column).

A joint policy Π = (𝜋1, 𝜋2) specifies, for each round 𝑡, a (possibly
history-dependent) mixed action for each player:

𝜋1(⋅ ∣ ℎ𝑡) ∈ Δ𝑚, 𝜋2(⋅ ∣ ℎ𝑡) ∈ Δ𝑛, ℎ𝑡 = (𝑖0, 𝑗0, … , 𝑖𝑡−1, 𝑗𝑡−1).

▶ Stationary (memoryless) policy: 𝜋1(⋅ ∣ ℎ𝑡) ≡ 𝑝 ∈ Δ𝑚,
𝜋2(⋅ ∣ ℎ𝑡) ≡ 𝑞 ∈ Δ𝑛 for all 𝑡.

▶ Unless stated otherwise, draws are independent across players and
across time under a stationary policy.
Notation. 𝑒𝑖 denotes the 𝑖-th standard basis vector.
1 denotes an all-ones vector.
Δ𝑘 = {𝑥 ∈ ℝ𝑘 ∶ 𝑥 ≥ 0, 1⊤𝑥 = 1} is the probability simplex.
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Discounted return under stationary independent mixing

Fix 𝛾 ∈ (0, 1). Under stationary independent mixing (𝑝, 𝑞) each round,

𝔼[𝑟𝑡] = ∑
𝑖,𝑗

𝑝𝑖 𝐴𝑖𝑗 𝑞𝑗 = 𝑝⊤𝐴𝑞 for all 𝑡,

and, by linearity of expectation with i.i.d. draws,

𝐽𝛾(𝑝, 𝑞) ∶= 𝔼[
∞

∑
𝑡=0

𝛾𝑡𝑟𝑡] =
∞

∑
𝑡=0

𝛾𝑡 𝔼[𝑟𝑡] = 𝑝⊤𝐴𝑞
1 − 𝛾 .

Remarks.
▶ The independence across time is sufficient; no ergodic or martingale

machinery is required here.
▶ If you add a constant 𝑐 to all entries of 𝐴, then 𝐽𝛾 shifts by 𝑐/(1 − 𝛾);

optimal mixes are unchanged.
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Long-run average reward (Cesàro average)

Under stationary independent mixing (𝑝, 𝑞),

̄𝐽 (𝑝, 𝑞) ∶= lim
𝑇 →∞

1
𝑇 𝔼[

𝑇 −1
∑
𝑡=0

𝑟𝑡] = lim
𝑇 →∞

1
𝑇

𝑇 −1
∑
𝑡=0

𝔼[𝑟𝑡] = 𝑝⊤𝐴𝑞.

Interpretation. The one-shot value 𝑝⊤𝐴𝑞 is the per-period expected return of
the stationary joint policy; discounting just rescales it by (1 − 𝛾)−1.

Caution. If players correlate across time (e.g., contingent punishments),
per-period expectation under stationary (𝑝, 𝑞) is still 𝑝⊤𝐴𝑞, but non-
stationary history-dependent strategies can implement different paths. In
matrix zero-sum games, however, these paths cannot raise the secure
average payoff above the minimax value (see Minimax section).
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Security levels: maximin vs minimax
Row’s maximin (security guarantee):

𝑣− ∶= max
𝑝∈Δ𝑚

min
𝑞∈Δ𝑛

𝑝⊤𝐴𝑞.

Column’s minimax (Row’s worst-case given Column’s choice):
𝑣+ ∶= min

𝑞∈Δ𝑛
max
𝑝∈Δ𝑚

𝑝⊤𝐴𝑞.

Weak minimax inequality. For any bilinear form over compact convex sets,
𝑣− ≤ 𝑣+.

Proof sketch: For any 𝑝, 𝑞, min𝑞′ 𝑝⊤𝐴𝑞′ ≤ 𝑝⊤𝐴𝑞 ≤ max𝑝′ 𝑝′⊤𝐴𝑞.
Take max𝑝 on the left inequality and min𝑞 on the right inequality.

Interpretation.
▶ 𝑣−: Row can guarantee at least 𝑣− regardless of Column (⇒ security

level).
▶ 𝑣+: Column can hold Row down to at most 𝑣+ regardless of Row.

In finite zero-sum matrix games, the Minimax Theorem (next section) states
𝑣− = 𝑣+ =∶ 𝑣, the value of the game.
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Side notes & edge cases

▶ Finite horizon 𝑇 : Under stationary independent (𝑝, 𝑞),

𝔼[
𝑇 −1
∑
𝑡=0

𝑟𝑡] = 𝑇 𝑝⊤𝐴𝑞.

▶ Time-varying stationary but independent (piecewise constant 𝑝𝑡, 𝑞𝑡):
the per-period mean is 1

𝑇 ∑𝑇 −1
𝑡=0 𝑝⊤

𝑡 𝐴𝑞𝑡.
▶ History-dependent strategies (threats/punishments): In general-sum,

these matter (Folk theorems). In zero-sum matrix games, they cannot
beat the minimax value 𝑣 in expected average payoff.

▶ Nonzero-sum: Expected returns are bilinear in (𝑝, 𝑞) per player; many
results above carry but security equality (minimax) does not.
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Micro-check (2×2 stationary)

Let
𝐴 = ( 2 −1

−3 4 ) , 𝑝 = (𝑝, 1 − 𝑝), 𝑞 = (𝑞, 1 − 𝑞).

Then

𝑝⊤𝐴𝑞 = 𝑝 [2𝑞 − 1(1 − 𝑞)] + (1 − 𝑝) [−3𝑞 + 4(1 − 𝑞)] = (5𝑝 − 3)𝑞 + (−4𝑝 + 4).

▶ For fixed 𝑞, Row’s best response is arg max𝑝 of a linear function in 𝑝.
▶ For fixed 𝑝, Column’s best response is arg min𝑞 of the same bilinear

expression.
Indifference equalization yields 𝑝∗ = 0.7, 𝑞∗ = 0.5 (derived later), hence

̄𝐽 = 𝑝∗⊤𝐴𝑞∗ = 0.05 and 𝐽𝛾 = 0.05/(1 − 𝛾).
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Questions

1. Show 𝐽𝛾(𝑝, 𝑞) = 𝑝⊤𝐴𝑞
1−𝛾 using only independence and linearity of expectation.

2. Prove 𝑣− ≤ 𝑣+ for any compact convex 𝑃 , 𝑄 and continuous bilinear payoff.
3. (Concept) Give a general-sum 2×2 where non-stationary correlation across

time changes the distribution of outcomes relative to stationary play, even
though the stage expectation formula holds under stationarity.
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Statement & Intuition (finite matrix games)

Theorem (von Neumann). For any finite two-player zero-sum matrix game
with Row payoff 𝐴 ∈ ℝ𝑚×𝑛,

max
𝑝∈Δ𝑚

min
𝑞∈Δ𝑛

𝑝⊤𝐴𝑞 = min
𝑞∈Δ𝑛

max
𝑝∈Δ𝑚

𝑝⊤𝐴𝑞 = 𝑣.

There exist optimal mixes 𝑝∗ ∈ Δ𝑚, 𝑞∗ ∈ Δ𝑛 such that

𝑝∗⊤𝐴𝑞 ≥ 𝑣 ∀𝑞, 𝑝⊤𝐴𝑞∗ ≤ 𝑣 ∀𝑝.

Intuition. Row can guarantee at least 𝑣 (security), Column can hold Row
down to at most 𝑣; equality pins down the value and optimal mixed strategies.
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Saddle-Point View (equivalent characterization)

(𝑝∗, 𝑞∗) is minimax ⟺ 𝑝∗⊤𝐴𝑞 ≥ 𝑝∗⊤𝐴𝑞∗ ≥ 𝑝⊤𝐴𝑞∗ ∀𝑝, 𝑞.
At a saddle point, neither player can profitably deviate; the common value is
𝑣 = 𝑝∗⊤𝐴𝑞∗.
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Weak Minimax Inequality (prelude)

For any bilinear payoff over compact convex sets,

max
𝑝

min
𝑞

𝑝⊤𝐴𝑞 ≤ min
𝑞

max
𝑝

𝑝⊤𝐴𝑞.

Proof sketch: For all 𝑝, 𝑞, min𝑞′ 𝑝⊤𝐴𝑞′ ≤ 𝑝⊤𝐴𝑞 ≤ max𝑝′ 𝑝′⊤𝐴𝑞. Take max𝑝 on
the left, min𝑞 on the right.
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LP Formulation (Row / “primal”)

(Optionally shift 𝐴 by a constant so entries are nonnegative; mixes are invariant
to affine shifts.)

max
𝑝,𝑣

𝑣

s.t. 𝐴⊤𝑝 ≥ 𝑣 1,
1⊤𝑝 = 1, 𝑝 ≥ 0.

Meaning. Choose 𝑝 so that every column yields at least 𝑣.



Game Theory

László Gulyás

Recap

Minimax Theorem

Minimax:
Computation,
Stability, and
Generalizations

JP and Minimax
Repeated Play

LP Dual (Column)

min
𝑞,𝑣

𝑣

s.t. 𝐴𝑞 ≤ 𝑣 1,
1⊤𝑞 = 1, 𝑞 ≥ 0.

Meaning. Choose 𝑞 so that every row yields at most 𝑣.

Consequence. LP strong duality ⇒ optimal values match ⇒ minimax equality.
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Complementary Slackness (support equalization)

At an optimal pair (𝑝∗, 𝑞∗, 𝑣):
▶ If 𝑝∗

𝑖 > 0, then the 𝑖-th row payoff equals the value: (𝐴𝑞∗)𝑖 = 𝑣.
▶ If 𝑞∗

𝑗 > 0, then the 𝑗-th column payoff equals the value: (𝐴⊤𝑝∗)𝑗 = 𝑣.

Takeaway. Supported pure actions are equalized at value 𝑣; excluded actions
satisfy the corresponding inequality strictly.
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Computing by Indifference (support method)

Given supports 𝐼 ⊆ [𝑚], 𝐽 ⊆ [𝑛]:
1. Row equalization on 𝐼: (𝐴𝑞)𝑖 = 𝑣 for all 𝑖 ∈ 𝐼 .
2. Column equalization on 𝐽 : (𝐴⊤𝑝)𝑗 = 𝑣 for all 𝑗 ∈ 𝐽 .
3. Normalization: ∑𝑖∈𝐼 𝑝𝑖 = 1, 𝑝𝑖 ≥ 0; ∑𝑗∈𝐽 𝑞𝑗 = 1, 𝑞𝑗 ≥ 0.
4. Verify inequalities: (𝐴𝑞)𝑖 ≤ 𝑣 for 𝑖 ∉ 𝐼 ; (𝐴⊤𝑝)𝑗 ≥ 𝑣 for 𝑗 ∉ 𝐽 .

If feasible, (𝑝, 𝑞, 𝑣) is a solution. Otherwise try different supports.
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Example 1 (2×2 by indifference)

𝐴 = ( 2 −1
−3 4 ) .

Let 𝑝 = Pr[𝑈], 𝑞 = Pr[𝐿].
▶ Row indiff (equalize Column’s payoffs):

2𝑞 + (−3)(1 − 𝑞) = −1 ⋅ 𝑞 + 4(1 − 𝑞) ⇒ 3𝑞 − 1 = −7𝑞 + 4 ⇒ 𝑞∗ = 0.5.

▶ Column indiff (equalize Row’s payoffs):

2𝑝 + (−1)(1 − 𝑝) = −3𝑝 + 4(1 − 𝑝) ⇒ 3𝑝 − 1 = −7𝑝 + 4 ⇒ 𝑝∗ = 0.7.

▶ Value:

𝑣 = 𝑝∗⊤𝐴𝑞∗ = [0.7 0.3] [ 2 −1
−3 4 ] [0.5

0.5] = 0.05.
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Example 2 (3×3 RPS)

𝐴 = ⎛⎜
⎝

0 −1 1
1 0 −1

−1 1 0
⎞⎟
⎠

.

By symmetry, 𝑝∗ = 𝑞∗ = (1/3, 1/3, 1/3), 𝑣 = 0. Check: 𝐴𝑞∗ = 0 ⋅ 1,
𝐴⊤𝑝∗ = 0 ⋅ 1.
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Example 3 (weighted RPS, full support system)

𝐴 = ⎛⎜
⎝

0 −2 1
2 0 −1

−1 1 0
⎞⎟
⎠

.

Solve
𝐴𝑞 = 𝑣 1, 𝐴⊤𝑝 = 𝑣 1, 1⊤𝑝 = 1⊤𝑞 = 1.

Check 𝑝, 𝑞 ≥ 0; the solution yields full-support mixes and 𝑣.
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Example 4 (dominance pruning)

𝐴 = ⎛⎜
⎝

1 2 0
2 1 0
0 0 0

⎞⎟
⎠

.

Row 3 is dominated by a mixture of Rows 1–2. Remove it, solve 2×2 by
indifference; verify Row 3 remains unprofitable at the solution.
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Geometry & Invariances (quick facts)

▶ Hyperplanes. Equal-payoff sets (𝐴𝑞)𝑖 = (𝐴𝑞)𝑖′ and (𝐴⊤𝑝)𝑗 = (𝐴⊤𝑝)𝑗′ are
linear (hyperplanes in the simplexes).

▶ Polytopes. Best-response regions are intersections of half-spaces ⇒
polytopes; equilibria are at polytope intersections.

▶ Affine transforms. 𝐴 ↦ 𝛼𝐴 + 𝑐11⊤: mixes unchanged; value scales by 𝛼
and shifts by 𝑐.
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Computational Tools

import numpy as np, nashpy as nash

A = np.array([[2,-1],[-3,4]])
G = nash.Game(A) # zero-sum shorthand
list(G.vertex_enumeration()) # returns (p*, q*)
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LP template for Row (code-level concept)

▶ Variables: probabilities on rows 𝑝 ∈ ℝ𝑚 and value 𝑣 ∈ ℝ.
▶ Constraints: 𝐴⊤𝑝 ≥ 𝑣1, 1⊤𝑝 = 1, 𝑝 ≥ 0.
▶ Objective: maximize 𝑣.

The dual is Column’s problem automatically (minimize 𝑣 with 𝐴𝑞 ≤ 𝑣1,
1⊤𝑞 = 1, 𝑞 ≥ 0).

Use any LP solver that handles linear inequalities (cvxopt, PuLP, SciPy
linprog, CVXPy, …).



Game Theory

László Gulyás

Recap

Minimax Theorem

Minimax:
Computation,
Stability, and
Generalizations

JP and Minimax
Repeated Play

Complementary Slackness (quick check on Example 1)

At (𝑝∗, 𝑞∗, 𝑣) = (0.7, 0.5, 0.05) for

𝐴 = ( 2 −1
−3 4 ) ,

▶ Row supported actions 𝑈, 𝐷 both achieve value exactly 0.05 against 𝑞∗:
(𝐴𝑞∗)𝑈 = (𝐴𝑞∗)𝐷 = 𝑣.

▶ Column supported actions 𝐿, 𝑅 both yield value exactly 0.05 against 𝑝∗:
(𝐴⊤𝑝∗)𝐿 = (𝐴⊤𝑝∗)𝑅 = 𝑣.

▶ In a 2 × 2 there are no excluded pure actions; feasibility is immediate.

Takeaway: supported actions are equalized at 𝑣; any excluded actions (in larger
games) must satisfy strict inequality.
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Invariances: value shifts & scalings

▶ Shift: 𝐴 ↦ 𝐴 + 𝑐 11⊤

mixes 𝑝∗, 𝑞∗ unchanged; value shifts by 𝑐.
▶ Scale: 𝐴 ↦ 𝛼𝐴 with 𝛼 > 0

mixes unchanged; value scales by 𝛼.
Use these to simplify arithmetic (e.g., make entries nonnegative for LP
stability).
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𝜀-security (numerical robustness)

For any 𝜀 > 0, there exists 𝑝𝜀 s.t.

min
𝑞

𝑝⊤
𝜀 𝐴𝑞 ≥ 𝑣 − 𝜀,

and 𝑞𝜀 s.t.
max

𝑝
𝑝⊤𝐴𝑞𝜀 ≤ 𝑣 + 𝜀.

Practice: When you compute ( ̂𝑝, ̂𝑞) numerically, report the deviation
incentives

𝜀row = max
𝑖

(𝐴 ̂𝑞)𝑖 − ̂𝑝⊤𝐴 ̂𝑞, 𝜀col = ̂𝑝⊤𝐴 ̂𝑞 − min
𝑗

( ̂𝑝⊤𝐴)𝑗,

and use max(𝜀row, 𝜀col) as a conservative error bound.
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Relation to Nash Equilibrium (zero-sum)

In two-player zero-sum games, minimax strategies (𝑝∗, 𝑞∗) are exactly Nash
equilibria, and the equilibrium payoff equals the value 𝑣. Conversely, any NE
mixed profile is minimax.
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Sion’s Minimax Theorem (statement)

Let 𝑋 ⊂ ℝ𝑚, 𝑌 ⊂ ℝ𝑛 be nonempty compact convex sets.
If 𝑓 ∶ 𝑋 × 𝑌 → ℝ is quasi-convex and lower semicontinuous in 𝑥 for each 𝑦,
and quasi-concave and upper semicontinuous in 𝑦 for each 𝑥, then

min
𝑦∈𝑌

max
𝑥∈𝑋

𝑓(𝑥, 𝑦) = max
𝑥∈𝑋

min
𝑦∈𝑌

𝑓(𝑥, 𝑦).

This generalizes the matrix-game minimax equality.
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Proof Sketch A: LP strong duality

1. Write Row’s problem as an LP; Column’s is the dual.
2. Feasibility & boundedness ⇒ strong duality: optimal values match.
3. Optimal primal/dual solutions yield (𝑝∗, 𝑞∗, 𝑣).
4. Complementary slackness explains equalization of supported actions.
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Proof Sketch B: Fixed-point route (intuition)

1. Mixed strategy spaces are simplexes (compact, convex).
2. Best-response correspondences are nonempty, convex-valued,

upper-hemicontinuous (Berge).
3. Existence of NE (Kakutani) in zero-sum ⇒ value-attaining equilibrium;

Row’s secured payoff equals Column’s held-down payoff ⇒ minimax
equality.
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Bridge from last section (what changes in repeated play?)

▶ In static zero-sum matrix games you computed (𝑝∗, 𝑞∗, 𝑣) by minimax.
▶ In repeated play (finite/infinite horizon), if each round is the same stage

game and players mix independently each round, then:
▶ Per-period payoff is 𝑝⊤𝐴𝑞.
▶ Discounted return 𝐽𝛾(𝑝, 𝑞) = 𝑝⊤𝐴𝑞

1−𝛾 .
▶ Stationary minimax 𝑝∗, 𝑞∗ secure value 𝑣 each round → the repeated game’s

value is 𝑣 (per period).
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Joint policies in repeated matrix games

▶ Stage game payoffs: Row 𝐴 ∈ ℝ𝑚×𝑛, Column −𝐴 (zero-sum).
▶ Joint policy (possibly history-dependent): mapping from histories ℋ𝑡 to

mixed actions.
▶ Stationary independent policy: fixed 𝑝 ∈ Δ𝑚, 𝑞 ∈ Δ𝑛 each round.

Discounted return (stationary, independent)

𝐽𝛾(𝑝, 𝑞) = 𝔼[
∞

∑
𝑡=0

𝛾𝑡 𝑎𝑖𝑡𝑗𝑡
] = 𝑝⊤𝐴𝑞

1 − 𝛾 .

Average reward (Cesàro)

lim
𝑇 →∞

1
𝑇 𝔼[

𝑇 −1
∑
𝑡=0

𝑎𝑖𝑡𝑗𝑡
] = 𝑝⊤𝐴𝑞.
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Security levels in repeated play (why history doesn’t help in
zero-sum)

Let
𝑣− = max

𝑝
min

𝑞
𝑝⊤𝐴𝑞, 𝑣+ = min

𝑞
max

𝑝
𝑝⊤𝐴𝑞, (𝑣− ≤ 𝑣+).

By the minimax theorem 𝑣− = 𝑣+ = 𝑣.
▶ Against any opponent policy (even history-dependent), Row can play 𝑝∗

i.i.d. each round and guarantee at least 𝑣 per period.
▶ Symmetrically Column can hold Row to at most 𝑣.
▶ Thus the repeated zero-sum game (with the same stage game) has

per-period value 𝑣; using history cannot beat 𝑣 in expectation.
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Example 5: uniform security in a centered symmetric game

𝐴 = ⎛⎜
⎝

1 0 1
0 1 1
1 1 0

⎞⎟
⎠

− 2
311⊤.

▶ Each row/column sum is 0 → uniform 𝑝 = 𝑞 = (1/3, 1/3, 1/3).
▶ Value 𝑣 = 0. Verify 𝐴𝑞 = 0 and 𝐴⊤𝑝 = 0.
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Example 6: 3×3 with support size 2 (support equalization)

𝐴 = ⎛⎜
⎝

3 0 2
1 2 0
0 1 4

⎞⎟
⎠

.

Try supports 𝐼 = {𝑈, 𝐷}, 𝐽 = {𝐿, 𝑅}. Solve the induced 2×2 by equalizing
supported payoffs at value 𝑣.
Check the middle actions are not profitable; if violated, adjust supports.
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Example 7: dominance pruning first

𝐴 = ⎛⎜
⎝

4 3 2
3 2 1
2 1 0

⎞⎟
⎠

.

Row 3 is dominated by a mixture of Rows 1–2. Remove, solve the 2×2, then
reinsert Row 3 to confirm it remains unprofitable at (𝑝∗, 𝑞∗, 𝑣).
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Geometry refresher (why intersections matter)

▶ Equal-payoff hyperplanes: 𝑒⊤
𝑖 𝐴𝑞 = 𝑒⊤

𝑖′𝐴𝑞 are linear constraints in 𝑞.
▶ Best response regions: intersections of halfspaces (polyhedral).
▶ Equilibria: at intersections where both players are indifferent on their

supported actions and inequalities hold for excluded ones.
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Algorithms in practice (what to use when)

▶ 2×2 / some 3×3: support guessing + indifference + inequality checks.
▶ Small/medium: vertex enumeration of BR polytopes (e.g., NashPy for

zero-sum).
▶ Larger: LP (sparse) or first-order primal-dual methods.
▶ Teaching/demo: NashPy is quick and reliable for small sizes.
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Epsilon-security & solver tolerance (diagnostics)

Given numerical ( ̂𝑝, ̂𝑞), define

𝜀row = max
𝑖

(𝐴 ̂𝑞)𝑖 − ̂𝑝⊤𝐴 ̂𝑞, 𝜀col = ̂𝑝⊤𝐴 ̂𝑞 − min
𝑗

( ̂𝑝⊤𝐴)𝑗.

Report max(𝜀row, 𝜀col) as a conservative suboptimality bound.
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Exercise 1. - hand computation (2×2)

For
𝐴 = (3 −1

0 2 ) ,

1) Compute (𝑝∗, 𝑞∗, 𝑣) by support equalization.
2) Remove any dominated actions if found and recompute.
3) Verify equalization/inequalities.
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Exercise 2. - 3×3 support search

𝐴 = ⎛⎜
⎝

2 1 0
0 2 1
1 0 2

⎞⎟
⎠

.

Enumerate size-2 supports, keep feasible ones. If none feasible, try full support
and solve the linear system 𝐴𝑞 = 𝑣1, 𝐴⊤𝑝 = 𝑣1, 1⊤𝑝 = 1⊤𝑞 = 1.
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Exercise 3. - robustness under perturbations

Add i.i.d. noise 𝜉𝑖𝑗 ∼ Unif[−0.1, 0.1] to a 3×3 with known (𝑝∗, 𝑞∗, 𝑣).
Recompute ( ̃𝑝, ̃𝑞, ̃𝑣).
Summarize how supports and 𝑣 change.
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Exercise 4. - Exploitability of naive play

Fix Column at a non-equilibrium 𝑞0.
(a) Compute Row’s best response 𝑝𝐵𝑅(𝑞0) and value 𝑣(𝑞0).
(b) Define exploitability 𝐸(𝑞0) = 𝑣(𝑞0) − 𝑣.
(c) Repeat for several 𝑞0 to visualize the exploitability landscape.
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Exercise 5. - Family with a parameter (piecewise supports)

Let
𝐴(𝜃) = ( 2 −1

−3 1 + 𝜃) , 𝜃 ∈ [−1, 2].

Derive (𝑝∗(𝜃), 𝑞∗(𝜃), 𝑣(𝜃)) piecewise in 𝜃; identify breakpoints where supports
change.
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Exercise 6. - Regret minimization � minimax

Run a no-regret algorithm (e.g., Hedge) for both players on a 3×3 zero-sum
game.
Track average plays ̄𝑝𝑇 , ̄𝑞𝑇 and payoffs ̄𝑣𝑇 .
Show ̄𝑣𝑇 → 𝑣 and exploitability → 0.
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Exercise 7. - Correlation doesn’t help in zero-sum

Propose any correlated device 𝑥 for a zero-sum game.
Show Row’s CE payoff ≤ 𝑣 and Column’s ≥ −𝑣.
Conclude CE cannot beat minimax value in zero-sum.
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Exercise 8. - Repeated play with discounting

Prove rigorously that stationary (𝑝∗, 𝑞∗) yields discounted return 𝑣/(1 − 𝛾).
Argue any history-dependent deviation cannot improve the per-period value
above 𝑣.



Game Theory

László Gulyás

Recap

Minimax Theorem

Minimax:
Computation,
Stability, and
Generalizations

JP and Minimax
Repeated Play

Common pitfalls

▶ Equalizing all actions instead of supported ones only.
▶ Forgetting normalization ∑ 𝑝𝑖 = 1, ∑ 𝑞𝑗 = 1.
▶ Mixing Row/Column inequalities’ directions.
▶ Not re-checking excluded actions after solving.
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Summary

▶ In zero-sum matrix games, minimax = Nash and yields value 𝑣.
▶ Repeated play with stationary independent minimax achieves per-period 𝑣;

history dependence cannot beat it in expectation.
▶ Computation: supports + indifference for small games; LP/vertex

enumeration otherwise.
▶ Diagnostics: complementary slackness and 𝜀-security quantify solution

quality.
▶ Design insight: in zero-sum, correlation doesn’t raise value;

learning/no-regret converges to minimax.
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