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Previously on Lecture 4

Laszlé Gulyas

P Joint policies in repeated games: stationary vs history-dependent strategies

P Expected return: discounted J,(p,q) = pl%Avq and average
J(p.q) =p' Aq

» Minimax Theorem: In zero-sum games, max, min, = min, max, = v
(the value)

P> Security levels: Each player can guarantee a certain payoff regardless of
opponent

>

Key insight: Repeated play with stationary independent mixing reduces to
the stage game value

What happens when the game itself changes over time?




Lecture Overview

VV VvV VvV VY

Real-world motivation: games where context matters (states)
Stochastic games: when payoffs and transitions depend on a changing
state

Solving zero-sum stochastic games: the Shapley equation and value
iteration

General-sum stochastic games and existence of equilibria

Partially Observable Stochastic Games (POSGs): when players don't
see the full state

Communication: how signals, messages, and cheap talk change equilibria
Worked examples and practical insights
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Why Games with States?
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Motivation

Consider these real-world scenarios:

P Cybersecurity patrol: Defender monitors servers. Attacker probes
vulnerabilities. The system state (compromised/secure) changes based on
both players’ actions.

P Drone surveillance: Two drones track a moving target. What they see
depends on where they are (state) and where they move (actions).

P Stock trading: Traders compete, but market conditions (bull/bear) change
the game's payoffs.

What's common? The context (state) matters, and actions affect future
contexts.




From Repeated Games to Stochastic Games
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Motivation

Repeated Matrix Game Stochastic Game

Same payoff matrix every round Payoffs change with state
Independent rounds State transitions couple rounds
History doesn't affect payoffs Current state summarizes

relevant history
Value = stage game value x discount factor Value depends on state




From Repeated Games to Stochastic Games (Cont.)
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Motivation
Repeated Matrix Game Stochastic Game
A et At \@})
t= t=1 t= =4

Payoffs change with state
Transitions depend on actions




Why Games with States? (Cont.)
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Motivation

P Negotiation rounds: In multi-round negotiations, what was offered before
(history /state) affects current leverage.

P Traffic routing: Road congestion state changes as drivers choose routes;
tomorrow's congestion depends on today’s choices.

P Resource allocation: Budget state decreases with spending; future
opportunities depend on current resource levels.

In all cases:

P Payoffs depend on state
P Joint actions determine state transitions




A Real-World Story: The Patrol Game
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Motivation

Setting: A security guard patrols two locations (North, South). An intruder
tries to infiltrate.

States:

P State 1: “Intruder is far away”
P State 2: “Intruder is near”
P State 3: “Intruder has entered”

Actions: Guard chooses where to patrol; intruder chooses where to attack.

Transitions: If guard isn't at the right place, intruder moves closer (state
advances). If guard blocks, state reverts.

Should the guard always patrol the same location? How does the current state
affect strategy?




A Real-World Story: The Patrol Game (Cont.)
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Motivation
The Patrol Game: State Transitions

Intruder advances Intruder enters
(Guard fails) (Guard fails)

State 2 State 3
Near Entered

Guard blocks
(Intruder retreats)
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Stochastic Games




Formal Definition
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Stochastic Games

A finite two-player stochastic game is:

9:<S7A7Bﬂp7r’7>

P State space: S = {1,2,...,|S|} (finite)

P Action sets: Row A = {1,...,m}, Column B ={1,...,n}

P Transition kernel: P(s’ | s,a,b) = probability of next state s’ given
current state s and joint action (a, b)

P Reward function: r(s,a,b) = immediate payoff to row player

P Discount factor: v € (0,1)

In zero-sum games, column receives —r(s,a,b).




How Play Proceeds
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Stochastic Games

At each round t¢:

Observe current state s,

Row chooses action a, € A, Column chooses b, € B (simultaneously)
Players receive rewards: r(s,,a;,b,) to row

State transitions: s,,; ~ P(- | s;,a,,b;)

Repeat from new state s, ;

O




Policies: What's a Strategy Here?
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Stochastic Games

Stationary policy: Choose action based only on current state.

P Row policy: m(a | s) = probability of action a in state s
P Column policy: (b | s) = probability of action b in state s

History-dependent policy: Could condition on entire history
ht — (807 ao, bo, 81, ceey St)

For discounted zero-sum games, it turns out stationary policies are sufficient
for optimality!




Value of a Policy Pair

Discounted value starting from state s:
V™a(s —[E[Z’yrst,at, )‘sozs]

P Sum of discounted rewards over infinite horizon
P> Expectation over random actions and state transitions
P> Depends on both players’ policies (7, o)

For initial state distribution y:

J, (s, o) Z,u Y V™o (s

seS
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Stochastic Games




Example: Special Case - Repeated Matrix Game
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Stochastic Games

If there's only one state and P(s’ | s,a,b) =1 (always stay in same state):

E[r(s,a,b)]

Vﬂ,ﬂ(‘s) = Z’Yt[E[T(S’ atu bt)] = 1—
=0 v

This recovers Lecture 4: stationary mixing in repeated matrix games!

Stochastic games generalize this by letting the “matrix game” change with
state.
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Zero-Sum Stochastic Games




The Minimax Question
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Zero-Sum
Stochastic Games

In a matrix game (Lecture 4), we asked:

maxmin p' Ag = minmax p' Ag =v
P q a P

In stochastic games, we ask the same question at each state, but now:

P Immediate reward: 7(s,p,q) = Zmbp(a)q(b)r(s,a, b)
P Future value: depends on where we transition to

The trick: turn this into a recursive equation!




The Shapley Equation: Intuition
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At state s, row wants to:

Zero-Sum
Stochastic Games

P Maximize current reward + discounted future value
P Knowing column will minimize it

This gives us the Shapley operator 7"

(TV)(s) = max min ) {r(s,p,q) +yY P(s| s,p,q)V(s’)}

peA(A) qeA(B

where:

<

P 7(s,p,q) = expected immediate reward
» > P(s"|5,p,q)V(s") = expected value of next state
P V(s’) = value function for state s’ (to be determined)




The Shapley Equation: Fixed Point
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Zero-Sum
Stochastic Games

Key insight: The true value function V* must satisfy:

V*(s) = (T'V*)(s) for all states s

This is a fixed point equation!

P If we know V*(s”) for all future states s, we can compute V*(s)
P But all states depend on each other..
P Solution: Iterate until convergence!




Why This Works: Contraction Mapping

Theorem (Banach Fixed Point): If T is a contraction mapping (shrinks
distances), then:

1. T has a unique fixed point V*
2. Starting from any Vj, iterating V,.,; = T'V} converges to V'*
3. Convergence is geometric: |V, — V*| . < |V, — V¥

For the Shapley operator:

ITV =TW]oe <AV =Wl

The discount factor v < 1 is the contraction rate!

Think of it as: “Future uncertainty shrinks by factor v each step”
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Zero-Sum
Stochastic Games




Why This Works: Contraction Mapping (Cont.)

Shapley Equation: Circular Dependencies

[/terate: Vi +1 = TV until convergence]

Each state value depends on others through transitions
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Zero-Sum
Stochastic Games




Value lteration Algorithm
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Zero-Sum

Initialize: Start with any V|, (e.g., all zeros) Sl s
Iterate: For £k =0,1,2,...
Vk-i-l(S) - In;;iXIIlqul {T(Svpa q) + ,-YZ P<S/ | S, P q)Vk(S/)}

Stop: When |V, ; — V.|, < € (convergence tolerance)

Extract policy: The (p, q) that achieve the max-min at each state form
stationary minimax policies




Value Iteration Algorithm (Cont.)

Value Iteration Algorithm

Initialize Vo, =0

|

For eachitate st
Al

J

Build matrix M;\?g Vi

Solve minimax:
rnpaxrnqinp’ M.q

Set Vi1(s) = value

l

V
’( Vi1 = Vil < €2

]

\I, Yes

A\

Extract policies n*,0"

Done!

No
ki=k+1

Zero-Sum
Stochastic Games




Value lteration: What's Actually Happening?
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At iteration k, for each state s: Zero-Sum

Stochastic Games

1. Build a matrix game with payoff:

M,(a,b) = r(s,a,b) + va(s' | s,a,0)V,.(s")

2. Solve the matrix game: Find minimax value and optimal mixes (p,, q,)
3. Update V,_(s) to this minimax value
4. Repeat for all states

Each state’'s game depends on other states’ values from the previous iteration!




Worked Example 1: Two-State Security Game
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States: S = {1,2} (System Secure, System Vulnerable)
Actions: Defender A = {Monitor, Patch}, Attacker B = {Probe, Wait} e
Discount: v = 0.8

Rewards (to defender):

Transitions:

P> State 1: If attacker probes and defender doesn't monitor — state 2 (prob
0.7), else stay
P State 2: If defender patches — state 1 (prob 0.6), else stay

State 1 is relatively safe, state 2 is dangerous!




Example 1: Iteration 0

Start: V;, = (0,0)
State 1: Build M; = r(1) + 0.8 - (transition X V{))

» (M, P): reward 0, stay — M,(M,P) =0

» (M,W): reward 1, stay — M, (M, W) =1

» (P, P): reward -1, go to state 2 (prob 0.7) —
M,(P,P)=—1+08-0.7-0=—1

» (P,W): reward 0, stay — M,(P,W) =0

0 1
= (o)

Solve: mix uniformly, V;(1) =0
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Zero-Sum
Stochastic Games




Example 1: Iteration 0 (Cont.)
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Zero-Sum
Stochastic Games

State 2: Build M, = r(2) + 0.8 - (transition x V)

—5 -3
= (35

Solve: Row minimizes loss by playing Patch more often, V;(2) ~ —2.5
After one iteration: V; = (0,—2.5)

State 2 is worse! This will affect state 1 strategy in next iteration.




Example 1: Convergence
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Motivation
Value Iteration Convergence: Security Game Hvatier

Stock c Gam
0.0
Zero-Sum
Stochastic Games
-0.5
-1.0
=15

\Vf‘( - Vi(State 1: Secure)
> 2.0 $e=0(;nsetr|c convergenge Vi(State 2: Vulnerable)
g h V*(State 1) = -0.5
T>u V*(State 2) = -4.0 Summar
-2.5
-3.0
-3.5
-4.0

0 5 10 15 20 25
Iteration k




Example 1: Interpretation
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After several iterations: Stochasic Games

P V*(1) ~ —0.5 — even “secure” state has negative value (defender is losing
overall)

P V*(2) ~ —4.0 — vulnerable state is much worse

P Defender strategy at state 1: Mix Monitor/Patch to balance staying
secure vs preventing attacks

P Defender strategy at state 2: Heavily favor Patch to escape back to
state 1

Key insight: State values couple through transitions, creating strategic
interdependence!




Q-Functions: An Alternative View

Laszlé Gulyas

Define the state-action value (Q-function):

Zero-Sum
Stochastic Games

Qu(s,a,b) =r(s,a,b) +v>_ P(s' | s,a,b)V(s)

Then the Shapley operator becomes:

(TV)(s) = maxmanp (0)Qy (s,a,b)

Interpretation: Q-values capture “how good is action pair (a,b) at state s?”

Familiar from reinforcement learning? Q-learning extends this to unknown
games!




Extracting Policies

Once V), converges to V*:
For each state s:

1. Build final matrix game M, using V*

2. Solve for minimax strategies (p?, ¢¥)

3. These form stationary minimax policies:
> 7*(a|s)=pila)
> o (b s) = qi(b)

Properties:

P> These policies are optimal for both players
P> They achieve the value V*(s) at each state
P No player can improve by deviating (Nash equilibrium!)
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Zero-Sum
Stochastic Games




Computational Considerations
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Zero-Sum
Stochastic Games

Solving each matrix game:
P> For 2 x 2 games: Use indifference principle (Lecture 2)
P> For larger games: Linear programming (Lecture 4)
P> For very large games: Approximate methods (beyond scope)

Convergence speed:

P Depends on v: smaller v — faster convergence
P Typical: 10-100 iterations for moderate-sized games
P> Each iteration: O(|S]) matrix game solves
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General-Sum Stochastic Games




Beyond Zero-Sum
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In general-sum stochastic games:

General-Sum

P> Each player i has their own reward function 7;(s, a, b) Stochastic Games
P Not necessarily ro = —r,
P Seek Nash equilibrium instead of minimax

Key result: Stationary Nash equilibria exist under mild conditions (Fink, 1964)
Challenge: Computing them is much harder!

P No single value function
P Must find mutual best responses at each state
P Multiple equilibria possible




Bellman Equations for General-Sum
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For each player 4, given opponent policies 7_;:

Vi(s)=> wlals) |ri(s,a)+7 Y _P(s'| s,a)V7(s) SereratSum

a

Nash equilibrium: Policies 7 such that no player can improve:

V' (s) > V() Vi, s, )

Solution methods:

P Policy iteration (Pollatschek & Avi-ltzhak, 1969)
P Linear complementarity problems
P Approximate/learning methods




Example 2: Coordination Game with States
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States: S = {1,2} (Market A, Market B)
Actions: Each firm chooses {Invest, Wait}

PayoffS' General-Sum

Stochastic Games

P State 1: Coordination game favoring (Invest, Invest) — (3, 3)
P State 2: Coordination game favoring (Wait, Wait) — (2,2)

Transitions: Joint investment in state 1 — state 2 (new market opens)
Equilibria:

P Always coordinate on high-investment in state 1
P Always coordinate on low-investment in both states
P Mixed strategies possible

Multiple equilibria reflect coordination challenges across time!
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General-Sum
Stochastic Games
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Partial Observability and Communication




Why Partial Observability?

In many real-world scenarios, players don't see the full state:

P Poker: You see your cards, not opponent’s

P Drone teams: Each drone has limited sensor range

P Cybersecurity: Defender doesn't know attacker's capabilities
P Negotiation: Each party has private information

Partially Observable Stochastic Game (POSG): Each player receives a
private observation instead of seeing the true state.

Laszlé Gulyas

Partial
Observability and
Communication




POSG Definition

A two-player POSG adds:

P Observation sets: (,, (), for each player
P Observation kernels: O, (o, | s,a,b,s”) = probability player i observes o,
after transition

Play:

1. True state is s, (hidden)
2. Players choose actions based on their observation histories
i
hy = <0i,17ai,070i,2? a; 1, )
3. Receive private observations 0; ;. ; ~ O;(- | 5, a,,b,,5,.1)

Challenge: Players must infer the state and coordinate without shared
information!

Laszlé Gulyas

Partial
Observability and
Communication




Belief States
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Each player maintains a belief over hidden states:

bi(s) = Pr(s, = s | hi)

Partial
Observability and

Belief update (BayeSIan) Communication

zt+1 ZP | s,a,,b )Oi(Oi,t+1 ‘ Saatabtasl>bi,t(5>

Problem: Each player's belief depends on their own observations only —
asymmetric information

Consequence: Optimal policies can be very complex (history-dependent)




Belief States (Cont.)

Agent 1 Belief
0.0 N E S w

Agent 1 (Drone)

Agent 2 Belief

(Hidden State: Target at NORTH)|

Agent 2 (Drone)

"Same world, different beliefs"

Partial
Observability and
Communication




Example 3: Cooperative Drone Surveillance
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Scenario: Two drones track a target moving between locations.

States: Target is at location {1,2,3,4} (grid)

Observations: Each drone sees “near” or “far” based on its position and target Partial
servability and
pOSItlon (nOISy) Communication

Actions: Move North/South/East/West
Reward: +10 if both drones reach target, -1 per timestep

Without communication: Each drone only knows its own observations — hard
to coordinate

With communication: Can share observations — centralized planning possible




The Role of Communication
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Cheap talk: Costless, non-binding messages between players

Partial

P> Sender has private information (type 0) Observability and
. Communication

P Sends message m to receiver

P> Receiver chooses action a

Equilibrium: Message strategy + action strategy that are mutually optimal

Key insight: Even “cheap” talk can be informative if incentives are aligned!




Sender-Receiver Game
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Setup:
P Sender observes type 6 € {6,,0,} with prior 7
P Sends message m € {m,, my} Parial ey and
P> Receiver updates belief y = Pr(6; | m) and chooses a € {a;,as} Communication

Equilibria:

P Pooling: Sender always sends same message (uninformative)
P> Separating: Each type sends different message (fully revealing)
P Partial pooling: Some types pool, others separate

Incentive constraints: Sender must prefer truth-telling given receiver's response




Example 4: Cheap Talk vs Costly Signaling

Cheap talk (costless messages):

P Worker can claim “I'm great” or “I'm okay” at no cost
P If lying is free — pooling equilibrium (uninformative)
P Only informative when incentives are naturally aligned

Costly signaling (covered in Lecture 3):

P Education acts as costly signal (higher cost for low ability)
P Cost differential enables separating equilibrium
P> See Spence's job market model in Lecture 3 for full treatment

Key difference: Costly signals can be credible even with misaligned incentives
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Communication in Stochastic Games
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Public signals: A shared random variable observed by both players

P Can coordinate actions through correlated equilibrium b
. . . . . artia
P Example: Traffic light as public signal for drivers Observability and

Communication

Private messages: Each player sends/receives private information

P Can improve coordination in POSGs
P Can enable information sharing about hidden state

Correlated equilibrium: A distribution over joint actions that players want to
follow given the public signal




Correlated Equilibrium Intuition

Laszlé Gulyas

Preview (covered in Lecture 7): A mediator recommends actions; players
obey if it's a best response.

Partial

. . . ) Observability and

In stochastic games: Mediator can recommend state-dependent action profiles — FEZLIUENE
P> At each state s, draw joint action from ¢, (a,b)
P Send private recommendations
P> Players obey if no profitable deviation exists

Benefit: Can achieve payoffs beyond Nash equilibrium (better coordination)




Correlated Equilibrium Intuition (Cont.)
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Correlated Equilibrium: Private Recommendations

(Joint Action Distribution ¢(a,b))

Mediator

Partial
Observability and
Communication

Player 1 Player 2




Example 5: Correlated Patrol Strategy

Recall patrol game: Guard and intruder in states 1, 2, 3
Mediator device:

P At state 1: Recommend (N, S) or (S, N) with equal probability (guard and
intruder separate)
P> At state 2: Recommend mixed strategy to guard

Benefit: Coordination avoids worst outcomes, improves average payoff

Implementability: Players must prefer to obey recommendations
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Partial
Observability and
Communication




Laszlé Gulyas

Partial
Observability and
Communication




Outline

Laszlé Gulyas

Practical Insights

and Summary

Practical Insights and Summary




When to Use Stochastic Games?
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Use stochastic games when:

P> Context/state significantly affects payoffs

P> Actions influence future states (not just immediate rewards)
P You need to model dynamic strategic interactions

P Long-term thinking matters (discounting) Practical Insights

and Summary

Examples:

P> Cybersecurity (system states: secure/compromised)
P Resource management (budget/inventory states)
P Multi-round negotiations (reputation states)

P Robotics (position/environment states)




Computational Challenges
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and Summary

Game Type Difficulty Solution Method

Small zero-sum Easy Value iteration by hand

Medium zero-sum  Moderate Value iteration + LP solver

Large zero-sum Hard Approximate methods Practical Insights
Small general-sum Moderate Policy iteration

Large general-sum  Very hard Learning algorithms

POSGs

Extremely hard Approximations, communication




Key Takeaways
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1. Stochastic games generalize repeated games by adding state-dependent
payoffs and transitions

2. Shapley equation provides dynamic programming for zero-sum games:
value = immediate reward + discounted future

3. Value iteration converges geometrically due to contraction mapping

4. Stationary policies are sufficient for optimality in zero-sum discounted Practical Insights
games

5. General-sum games have equilibria but are harder to compute

6. Partial observability makes coordination much harder; communication
helps

7. Cheap talk and correlated equilibrium can improve outcomes even
without changing payoffs

and Summary




Questions
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1. How does the discount factor ~y affect optimal strategies?

2. When would history-dependent policies be necessary despite stationarity
results?

3. How does partial observability change the nature of equilibrium? e

4. Can you think of a real-world stochastic game? What are its states and
transitions?

5. When would communication be most valuable in a strategic setting?




Practical Exercise

Design your own two-state stochastic game:

Nooak~wbh =

Laszlé Gulyas

Choose a real-world scenario (cybersecurity, traffic, negotiation, etc.)
Define two states and their interpretations

Specify actions for both players Practical Insights
Design rewards that reflect the scenario

Define transition probabilities

Set v = 0.9 and run 3-5 iterations of value iteration by hand
Interpret the resulting optimal strategies

and Summary




Practical Insights

and Summary
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Summary

Summary




Summary
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Today we covered:

P> Stochastic games: states, transitions, policies

P> Shapley equation and value iteration for zero-sum games
P General-sum equilibria

P Partial observability and the role of communication

Summary




Thank You
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Thank You!

Summary
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