

Game Theory

Lecture 5: Stochastic Games and Communication

László Gulyás

Eötvös Loránd University, Faculty of Informatics, Department of Artificial Intelligence

2025/26/1

Motivation

Stochastic Games

Zero-Sum
Stochastic Games

General-Sum
Stochastic Games

Partial
Observability and
Communication

Practical Insights
and Summary

Summary

- ▶ Bonanno, G. (2024). *Game Theory* (3rd ed.). University of California, Davis. Received from: [GT Book](#)
- ▶ Axelrod, R. (1984). *The Evolution of Cooperation*. Basic Books. Received from: [Axelrod Article](#)
- ▶ Nisan, N., Roughgarden, T., Tardos, É., & Vazirani, V. V. (2007). *Algorithmic Game Theory*. Cambridge University Press. Received from: [AGT Book](#)
- ▶ Myerson, R. B. (1991). *Game Theory: Analysis of Conflict*. Harvard University Press. Received from: [GT Book 2](#)
- ▶ F. Christianos et al., *Multi-Agent Reinforcement Learning: Foundations and Modern Approaches*, 2023. Received from: [MARL Book.pdf](#)
- ▶ Shoham, Y., & Leyton-Brown, K. (2008). *Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations*. Cambridge University Press
Received from: [MARL Book.pdf](#)
- ▶ nashpy documentation (readthedocs) Link: [NashPy Docs](#)

Motivation

Stochastic Games

Zero-Sum

Stochastic Games

General-Sum

Stochastic Games

Partial

Observability and
CommunicationPractical Insights
and Summary

Summary

Previously on Lecture 4

- ▶ **Joint policies** in repeated games: stationary vs history-dependent strategies
- ▶ **Expected return**: discounted $J_\gamma(p, q) = \frac{p^\top Aq}{1-\gamma}$ and average $\bar{J}(p, q) = p^\top Aq$
- ▶ **Minimax Theorem**: In zero-sum games, $\max_p \min_q = \min_q \max_p = v$ (the value)
- ▶ **Security levels**: Each player can guarantee a certain payoff regardless of opponent
- ▶ Key insight: Repeated play with stationary independent mixing reduces to the stage game value

What happens when the game itself changes over time?

Motivation

Stochastic Games

Zero-Sum

Stochastic Games

General-Sum

Stochastic Games

Partial

Observability and
Communication

Practical Insights
and Summary

Summary

- ▶ Real-world motivation: games where **context matters** (states)
- ▶ **Stochastic games**: when payoffs and transitions depend on a changing state
- ▶ Solving zero-sum stochastic games: the **Shapley equation** and value iteration
- ▶ **General-sum** stochastic games and existence of equilibria
- ▶ **Partially Observable Stochastic Games (POSGs)**: when players don't see the full state
- ▶ **Communication**: how signals, messages, and cheap talk change equilibria
- ▶ Worked examples and practical insights

Motivation

Stochastic Games

Zero-Sum
Stochastic Games

General-Sum
Stochastic Games

Partial
Observability and
Communication

Practical Insights
and Summary

Summary

Outline

Motivation

Motivation

Stochastic Games

Stochastic Games

Zero-Sum Stochastic Games

Zero-Sum
Stochastic Games

General-Sum Stochastic Games

General-Sum
Stochastic Games

Partial Observability and Communication

Partial
Observability and
Communication

Practical Insights and Summary

Practical Insights
and Summary

Summary

Summary

[Motivation](#)[Stochastic Games](#)[Zero-Sum](#)[Stochastic Games](#)[General-Sum](#)[Stochastic Games](#)[Partial](#)[Observability and Communication](#)[Practical Insights and Summary](#)[Summary](#)

Why Games with States?

Consider these real-world scenarios:

- ▶ **Cybersecurity patrol:** Defender monitors servers. Attacker probes vulnerabilities. The system state (compromised/secure) changes based on both players' actions.
- ▶ **Drone surveillance:** Two drones track a moving target. What they see depends on where they are (state) and where they move (actions).
- ▶ **Stock trading:** Traders compete, but market conditions (bull/bear) change the game's payoffs.

*What's common? The **context** (state) matters, and actions affect future contexts.*

From Repeated Games to Stochastic Games

Repeated Matrix Game

Same payoff matrix every round
Independent rounds
History doesn't affect payoffs

Value = stage game value \times discount factor

Stochastic Game

Payoffs change with state
State transitions couple rounds
Current state summarizes
relevant history
Value depends on state

Motivation

Stochastic Games

Zero-Sum
Stochastic Games

General-Sum
Stochastic Games

Partial
Observability and
Communication

Practical Insights
and Summary

Summary

From Repeated Games to Stochastic Games (Cont.)

Motivation

Stochastic Games

Zero-Sum

Stochastic Games

General-Sum

Stochastic Games

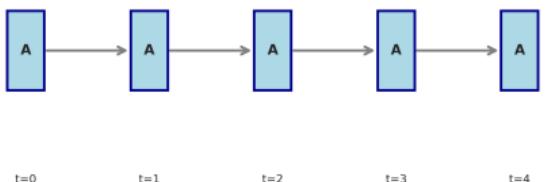
Partial
Observability and
Communication

Practical Insights
and Summary

Summary

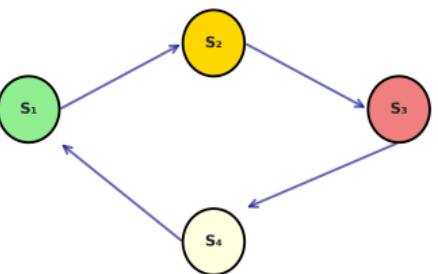
Repeated Matrix Game

Same payoff matrix
every round



Stochastic Game

Payoffs change with state
Transitions depend on actions



[Motivation](#)[Stochastic Games](#)[Zero-Sum](#)[Stochastic Games](#)[General-Sum](#)[Stochastic Games](#)[Partial](#)[Observability and Communication](#)[Practical Insights and Summary](#)[Summary](#)

Why Games with States? (Cont.)

- ▶ **Negotiation rounds:** In multi-round negotiations, what was offered before (history/state) affects current leverage.
- ▶ **Traffic routing:** Road congestion state changes as drivers choose routes; tomorrow's congestion depends on today's choices.
- ▶ **Resource allocation:** Budget state decreases with spending; future opportunities depend on current resource levels.

In all cases:

- ▶ **Payoffs depend on state**
- ▶ **Joint actions determine state transitions**

Motivation

Stochastic Games

Zero-Sum

Stochastic Games

General-Sum

Stochastic Games

Partial
Observability and
CommunicationPractical Insights
and Summary

Summary

A Real-World Story: The Patrol Game

Setting: A security guard patrols two locations (North, South). An intruder tries to infiltrate.

States:

- ▶ State 1: “Intruder is far away”
- ▶ State 2: “Intruder is near”
- ▶ State 3: “Intruder has entered”

Actions: Guard chooses where to patrol; intruder chooses where to attack.

Transitions: If guard isn't at the right place, intruder moves closer (state advances). If guard blocks, state reverts.

Should the guard always patrol the same location? How does the current state affect strategy?

A Real-World Story: The Patrol Game (Cont.)

Game Theory

László Gulyás

Motivation

Stochastic Games

Zero-Sum
Stochastic Games

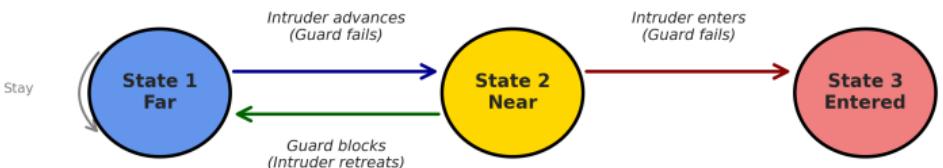
General-Sum
Stochastic Games

Partial
Observability and
Communication

Practical Insights
and Summary

Summary

The Patrol Game: State Transitions



Motivation

Stochastic Games

Zero-Sum
Stochastic Games

General-Sum
Stochastic Games

Partial
Observability and
Communication

Practical Insights
and Summary

Summary

Outline

Motivation

Motivation

Stochastic Games

Stochastic Games

Zero-Sum Stochastic Games

Zero-Sum
Stochastic Games

General-Sum Stochastic Games

General-Sum
Stochastic Games

Partial Observability and Communication

Partial
Observability and
Communication

Practical Insights and Summary

Practical Insights
and Summary

Summary

Summary

Motivation

Stochastic Games

Zero-Sum
Stochastic GamesGeneral-Sum
Stochastic GamesPartial
Observability and
CommunicationPractical Insights
and Summary

Summary

Formal Definition

A finite two-player **stochastic game** is:

$$\mathcal{G} = (S, A, B, P, r, \gamma)$$

- ▶ **State space:** $S = \{1, 2, \dots, |S|\}$ (finite)
- ▶ **Action sets:** Row $A = \{1, \dots, m\}$, Column $B = \{1, \dots, n\}$
- ▶ **Transition kernel:** $P(s' | s, a, b) =$ probability of next state s' given current state s and joint action (a, b)
- ▶ **Reward function:** $r(s, a, b) =$ immediate payoff to row player
- ▶ **Discount factor:** $\gamma \in (0, 1)$

In zero-sum games, column receives $-r(s, a, b)$.

Motivation

Stochastic Games

Zero-Sum

Stochastic Games

General-Sum

Stochastic Games

Partial
Observability and
CommunicationPractical Insights
and Summary

Summary

How Play Proceeds

At each round t :

1. Observe current state s_t
2. Row chooses action $a_t \in A$, Column chooses $b_t \in B$ (simultaneously)
3. Players receive rewards: $r(s_t, a_t, b_t)$ to row
4. State transitions: $s_{t+1} \sim P(\cdot | s_t, a_t, b_t)$
5. Repeat from new state s_{t+1}

Policies: What's a Strategy Here?

Stationary policy: Choose action based only on current state.

- ▶ Row policy: $\pi(a | s) =$ probability of action a in state s
- ▶ Column policy: $\sigma(b | s) =$ probability of action b in state s

History-dependent policy: Could condition on entire history

$$h_t = (s_0, a_0, b_0, s_1, \dots, s_t)$$

*For discounted zero-sum games, it turns out **stationary policies are sufficient for optimality!***

Motivation

Stochastic Games

Zero-Sum

Stochastic Games

General-Sum

Stochastic Games

Partial
Observability and
CommunicationPractical Insights
and Summary

Summary

Value of a Policy Pair

Discounted value starting from state s :

$$V^{\pi, \sigma}(s) = \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t, b_t) \mid s_0 = s \right]$$

- ▶ Sum of discounted rewards over infinite horizon
- ▶ Expectation over random actions and state transitions
- ▶ Depends on both players' policies (π, σ)

For initial state distribution μ :

$$J_{\gamma}(\mu; \pi, \sigma) = \sum_{s \in S} \mu(s) V^{\pi, \sigma}(s)$$

Motivation

Stochastic Games

Zero-Sum

Stochastic Games

General-Sum

Stochastic Games

Partial
Observability and
CommunicationPractical Insights
and Summary

Summary

Example: Special Case - Repeated Matrix Game

If there's only **one state** and $P(s' | s, a, b) = 1$ (always stay in same state):

$$V^{\pi, \sigma}(s) = \sum_{t=0}^{\infty} \gamma^t \mathbb{E}[r(s, a_t, b_t)] = \frac{\mathbb{E}[r(s, a, b)]}{1 - \gamma}$$

This **recovers Lecture 4**: stationary mixing in repeated matrix games!

Stochastic games **generalize** this by letting the “matrix game” change with state.

Motivation

Stochastic Games

Zero-Sum
Stochastic Games

General-Sum
Stochastic Games

Partial
Observability and
Communication

Practical Insights
and Summary

Summary

Outline

Motivation

Motivation

Stochastic Games

Zero-Sum
Stochastic Games

Zero-Sum Stochastic Games

General-Sum
Stochastic Games

General-Sum Stochastic Games

Partial
Observability and
Communication

Partial Observability and Communication

Practical Insights
and Summary

Practical Insights and Summary

Summary

Summary

Motivation

Stochastic Games

Zero-Sum

Stochastic Games

General-Sum

Stochastic Games

Partial
Observability and
CommunicationPractical Insights
and Summary

Summary

The Minimax Question

In a matrix game (Lecture 4), we asked:

$$\max_p \min_q p^\top A q = \min_q \max_p p^\top A q = v$$

In stochastic games, we ask the same question *at each state*, but now:

- ▶ Immediate reward: $r(s, p, q) = \sum_{a,b} p(a)q(b)r(s, a, b)$
- ▶ Future value: depends on where we transition to

The trick: turn this into a recursive equation!

Motivation

Stochastic Games

Zero-Sum

Stochastic Games

General-Sum

Stochastic Games

Partial
Observability and
CommunicationPractical Insights
and Summary

Summary

The Shapley Equation: Intuition

At state s , row wants to:

- ▶ **Maximize** current reward + discounted future value
- ▶ Knowing column will **minimize** it

This gives us the **Shapley operator** T :

$$(TV)(s) = \max_{p \in \Delta(A)} \min_{q \in \Delta(B)} \left\{ r(s, p, q) + \gamma \sum_{s'} P(s' \mid s, p, q) V(s') \right\}$$

where:

- ▶ $r(s, p, q)$ = expected immediate reward
- ▶ $\sum_{s'} P(s' \mid s, p, q) V(s')$ = expected value of next state
- ▶ $V(s')$ = value function for state s' (to be determined)

Motivation

Stochastic Games

Zero-Sum

Stochastic Games

General-Sum

Stochastic Games

Partial
Observability and
CommunicationPractical Insights
and Summary

Summary

The Shapley Equation: Fixed Point

Key insight: The true value function V^* must satisfy:

$$V^*(s) = (TV^*)(s) \quad \text{for all states } s$$

This is a **fixed point equation!**

- ▶ If we know $V^*(s')$ for all future states s' , we can compute $V^*(s)$
- ▶ But all states depend on each other...
- ▶ **Solution:** Iterate until convergence!

Why This Works: Contraction Mapping

Theorem (Banach Fixed Point): If T is a **contraction mapping** (shrinks distances), then:

1. T has a **unique fixed point** V^*
2. Starting from any V_0 , iterating $V_{k+1} = TV_k$ **converges** to V^*
3. Convergence is **geometric**: $\|V_k - V^*\|_\infty \leq \gamma^k \|V_0 - V^*\|_\infty$

For the Shapley operator:

$$\|TV - TW\|_\infty \leq \gamma \|V - W\|_\infty$$

The discount factor $\gamma < 1$ is the contraction rate!

Think of it as: "Future uncertainty shrinks by factor γ each step"

Motivation

Stochastic Games

Zero-Sum

Stochastic Games

General-Sum

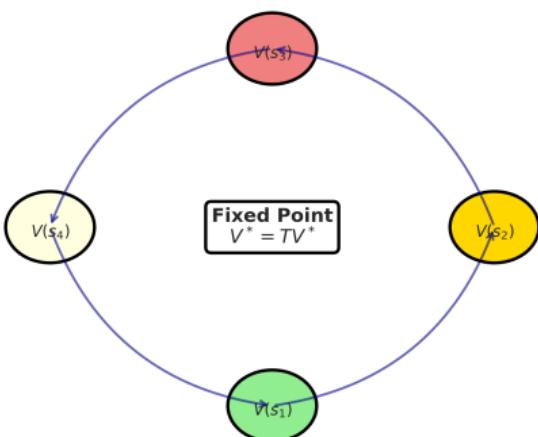
Stochastic Games

Partial
Observability and
CommunicationPractical Insights
and Summary

Summary

Why This Works: Contraction Mapping (Cont.)

Iterate: $V_{k+1} = TV_k$ until convergence



Each state value depends on others through transitions

Motivation

Stochastic Games

Zero-Sum

Stochastic Games

General-Sum

Stochastic Games

Partial

Observability and
CommunicationPractical Insights
and Summary

Summary

Value Iteration Algorithm

Initialize: Start with any V_0 (e.g., all zeros)

Iterate: For $k = 0, 1, 2, \dots$

$$V_{k+1}(s) = \max_p \min_q \left\{ r(s, p, q) + \gamma \sum_{s'} P(s' \mid s, p, q) V_k(s') \right\}$$

Stop: When $\|V_{k+1} - V_k\|_\infty < \epsilon$ (convergence tolerance)

Extract policy: The (p, q) that achieve the max-min at each state form
stationary minimax policies

Motivation

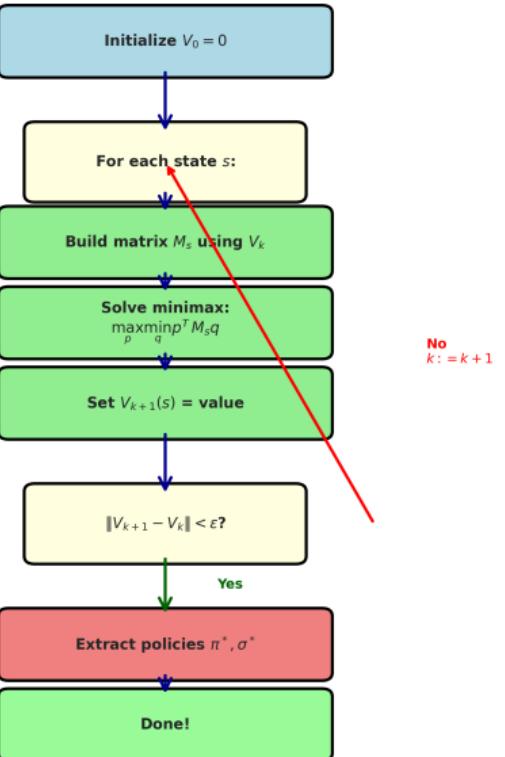
Stochastic Games

Zero-Sum
Stochastic GamesGeneral-Sum
Stochastic GamesPartial
Observability and
CommunicationPractical Insights
and Summary

Summary

Value Iteration Algorithm (Cont.)

Value Iteration Algorithm



Motivation

Stochastic Games

Zero-Sum

Stochastic Games

General-Sum

Stochastic Games

Partial
Observability and
CommunicationPractical Insights
and Summary

Summary

Value Iteration: What's Actually Happening?

At iteration k , for each state s :

1. **Build a matrix game** with payoff:

$$M_s(a, b) = r(s, a, b) + \gamma \sum_{s'} P(s' \mid s, a, b) V_k(s')$$

2. **Solve the matrix game**: Find minimax value and optimal mixes (p_s, q_s)
3. **Update** $V_{k+1}(s)$ to this minimax value
4. **Repeat** for all states

Each state's game depends on other states' values from the previous iteration!

Motivation

Stochastic Games

Zero-Sum
Stochastic GamesGeneral-Sum
Stochastic GamesPartial
Observability and
CommunicationPractical Insights
and Summary

Summary

Worked Example 1: Two-State Security Game

States: $S = \{1, 2\}$ (System Secure, System Vulnerable)

Actions: Defender $A = \{\text{Monitor, Patch}\}$, Attacker $B = \{\text{Probe, Wait}\}$

Discount: $\gamma = 0.8$

Rewards (to defender):

$$r(1) = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad r(2) = \begin{pmatrix} -5 & -3 \\ -2 & -1 \end{pmatrix}$$

Transitions:

- ▶ State 1: If attacker probes and defender doesn't monitor \rightarrow state 2 (prob 0.7), else stay
- ▶ State 2: If defender patches \rightarrow state 1 (prob 0.6), else stay

State 1 is relatively safe, state 2 is dangerous!

Motivation

Stochastic Games

Zero-Sum

Stochastic Games

General-Sum

Stochastic Games

Partial

Observability and
CommunicationPractical Insights
and Summary

Summary

Example 1: Iteration 0

Start: $V_0 = (0, 0)$

State 1: Build $M_1 = r(1) + 0.8 \cdot (\text{transition} \times V_0)$

- ▶ (M, P) : reward 0, stay $\rightarrow M_1(M, P) = 0$
- ▶ (M, W) : reward 1, stay $\rightarrow M_1(M, W) = 1$
- ▶ (P, P) : reward -1, go to state 2 (prob 0.7) \rightarrow
 $M_1(P, P) = -1 + 0.8 \cdot 0.7 \cdot 0 = -1$
- ▶ (P, W) : reward 0, stay $\rightarrow M_1(P, W) = 0$

$$M_1 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

Solve: mix uniformly, $V_1(1) = 0$

Motivation

Stochastic Games

Zero-Sum
Stochastic GamesGeneral-Sum
Stochastic GamesPartial
Observability and
CommunicationPractical Insights
and Summary

Summary

Example 1: Iteration 0 (Cont.)

State 2: Build $M_2 = r(2) + 0.8 \cdot (\text{transition} \times V_0)$

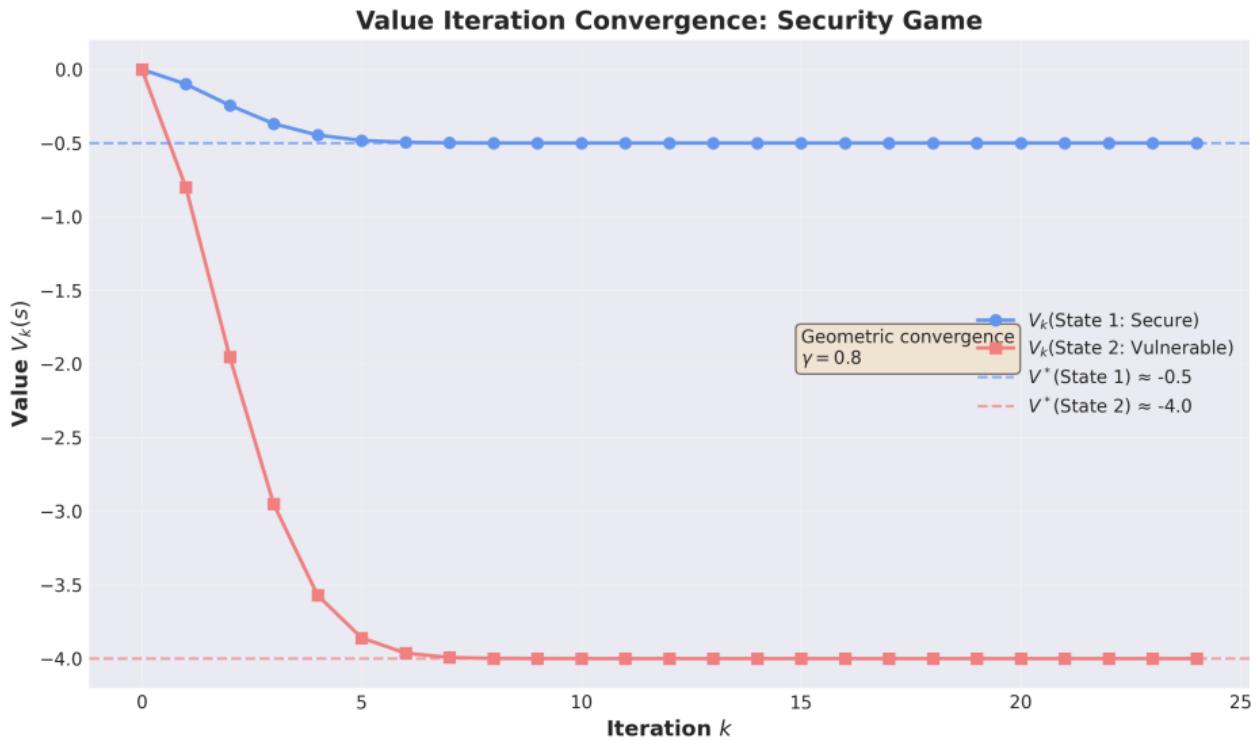
$$M_2 = \begin{pmatrix} -5 & -3 \\ -2 & -1 \end{pmatrix}$$

Solve: Row minimizes loss by playing Patch more often, $V_1(2) \approx -2.5$

After one iteration: $V_1 = (0, -2.5)$

State 2 is worse! This will affect state 1 strategy in next iteration.

Example 1: Convergence



Motivation

Stochastic Games

Zero-Sum

Stochastic Games

General-Sum

Stochastic Games

Partial

Observability and
CommunicationPractical Insights
and Summary

Summary

Example 1: Interpretation

After several iterations:

- ▶ $V^*(1) \approx -0.5$ — even “secure” state has negative value (defender is losing overall)
- ▶ $V^*(2) \approx -4.0$ — vulnerable state is much worse
- ▶ **Defender strategy at state 1:** Mix Monitor/Patch to balance staying secure vs preventing attacks
- ▶ **Defender strategy at state 2:** Heavily favor Patch to escape back to state 1

Key insight: State values couple through transitions, creating strategic interdependence!

Motivation

Stochastic Games

Zero-Sum

Stochastic Games

General-Sum

Stochastic Games

Partial
Observability and
CommunicationPractical Insights
and Summary

Summary

Q-Functions: An Alternative View

Define the **state-action value** (Q-function):

$$Q_V(s, a, b) = r(s, a, b) + \gamma \sum_{s'} P(s' | s, a, b) V(s')$$

Then the Shapley operator becomes:

$$(TV)(s) = \max_p \min_q \sum_{a,b} p(a)q(b) Q_V(s, a, b)$$

Interpretation: Q-values capture “how good is action pair (a, b) at state s ?”

Familiar from reinforcement learning? Q-learning extends this to unknown games!

Motivation

Stochastic Games

Zero-Sum

Stochastic Games

General-Sum

Stochastic Games

Partial

Observability and
CommunicationPractical Insights
and Summary

Summary

Extracting Policies

Once V_k converges to V^* :

For each state s :

1. Build final matrix game M_s using V^*
2. Solve for minimax strategies (p_s^*, q_s^*)
3. These form **stationary minimax policies**:
 - ▶ $\pi^*(a \mid s) = p_s^*(a)$
 - ▶ $\sigma^*(b \mid s) = q_s^*(b)$

Properties:

- ▶ These policies are **optimal** for both players
- ▶ They achieve the **value** $V^*(s)$ at each state
- ▶ No player can improve by deviating (Nash equilibrium!)

Motivation

Stochastic Games

Zero-Sum

Stochastic Games

General-Sum

Stochastic Games

Partial

Observability and
CommunicationPractical Insights
and Summary

Summary

Computational Considerations

Solving each matrix game:

- ▶ For 2×2 games: Use indifference principle (Lecture 2)
- ▶ For larger games: Linear programming (Lecture 4)
- ▶ For very large games: Approximate methods (beyond scope)

Convergence speed:

- ▶ Depends on γ : smaller $\gamma \rightarrow$ faster convergence
- ▶ Typical: 10-100 iterations for moderate-sized games
- ▶ Each iteration: $O(|S|)$ matrix game solves

Motivation

Stochastic Games

Zero-Sum
Stochastic Games

General-Sum
Stochastic Games

Partial
Observability and
Communication

Practical Insights
and Summary

Summary

Outline

Motivation

Motivation

Stochastic Games

Zero-Sum
Stochastic Games

Zero-Sum Stochastic Games

Partial
Observability and
Communication

General-Sum Stochastic Games

Practical Insights
and Summary
Summary

Partial Observability and Communication

Practical Insights and Summary

Summary

[Motivation](#)[Stochastic Games](#)[Zero-Sum](#)[Stochastic Games](#)[General-Sum](#)[Stochastic Games](#)[Partial](#)[Observability and Communication](#)[Practical Insights](#)[and Summary](#)[Summary](#)

In **general-sum** stochastic games:

- ▶ Each player i has their own reward function $r_i(s, a, b)$
- ▶ Not necessarily $r_2 = -r_1$
- ▶ Seek **Nash equilibrium** instead of minimax

Key result: Stationary Nash equilibria **exist** under mild conditions (Fink, 1964)

Challenge: Computing them is much harder!

- ▶ No single value function
- ▶ Must find mutual best responses at each state
- ▶ Multiple equilibria possible

Motivation

Stochastic Games

Zero-Sum

Stochastic Games

General-Sum

Stochastic Games

Partial
Observability and
CommunicationPractical Insights
and Summary

Summary

Bellman Equations for General-Sum

For each player i , given opponent policies π_{-i} :

$$V_i^\pi(s) = \sum_a \pi(a \mid s) \left[r_i(s, a) + \gamma \sum_{s'} P(s' \mid s, a) V_i^\pi(s') \right]$$

Nash equilibrium: Policies π^* such that no player can improve:

$$V_i^{\pi^*}(s) \geq V_i^{(\pi'_i, \pi^*_{-i})}(s) \quad \forall i, s, \pi'_i$$

Solution methods:

- ▶ Policy iteration (Pollatschek & Avi-Itzhak, 1969)
- ▶ Linear complementarity problems
- ▶ Approximate/learning methods

Example 2: Coordination Game with States

States: $S = \{1, 2\}$ (Market A, Market B)

Actions: Each firm chooses {Invest, Wait}

Payoffs:

- ▶ State 1: Coordination game favoring (Invest, Invest) $\rightarrow (3, 3)$
- ▶ State 2: Coordination game favoring (Wait, Wait) $\rightarrow (2, 2)$

Transitions: Joint investment in state 1 \rightarrow state 2 (new market opens)

Equilibria:

- ▶ Always coordinate on high-investment in state 1
- ▶ Always coordinate on low-investment in both states
- ▶ Mixed strategies possible

Multiple equilibria reflect coordination challenges across time!

Motivation

Stochastic Games

Zero-Sum
Stochastic Games

General-Sum
Stochastic Games

Partial
Observability and
Communication

Practical Insights
and Summary

Summary

Outline

Motivation

Motivation

Stochastic Games

Zero-Sum
Stochastic Games

Zero-Sum Stochastic Games

General-Sum
Stochastic Games

General-Sum Stochastic Games

Partial
Observability and
Communication

Partial Observability and Communication

Practical Insights
and Summary

Summary

Practical Insights and Summary

Summary

Motivation

Stochastic Games

Zero-Sum
Stochastic GamesGeneral-Sum
Stochastic GamesPartial
Observability and
CommunicationPractical Insights
and Summary

Summary

Why Partial Observability?

In many real-world scenarios, players don't see the full state:

- ▶ **Poker:** You see your cards, not opponent's
- ▶ **Drone teams:** Each drone has limited sensor range
- ▶ **Cybersecurity:** Defender doesn't know attacker's capabilities
- ▶ **Negotiation:** Each party has private information

Partially Observable Stochastic Game (POSG): Each player receives a **private observation** instead of seeing the true state.

Motivation

Stochastic Games

Zero-Sum

Stochastic Games

General-Sum

Stochastic Games

Partial
Observability and
CommunicationPractical Insights
and Summary

Summary

POSG Definition

A two-player POSG adds:

- ▶ **Observation sets:** Ω_1, Ω_2 for each player
- ▶ **Observation kernels:** $O_i(o_i | s, a, b, s') = \text{probability player } i \text{ observes } o_i \text{ after transition}$

Play:

1. True state is s_t (hidden)
2. Players choose actions based on their **observation histories**
 $h_t^i = (o_{i,1}, a_{i,0}, o_{i,2}, a_{i,1}, \dots)$
3. Receive private observations $o_{i,t+1} \sim O_i(\cdot | s_t, a_t, b_t, s_{t+1})$

Challenge: Players must **infer** the state and **coordinate** without shared information!

Each player maintains a **belief** over hidden states:

$$b_i(s) = \Pr(s_t = s \mid h_t^i)$$

Belief update (Bayesian):

$$b_{i,t+1}(s') \propto \sum_s P(s' \mid s, a_t, b_t) O_i(o_{i,t+1} \mid s, a_t, b_t, s') b_{i,t}(s)$$

Problem: Each player's belief depends on their own observations only → **asymmetric information**

Consequence: Optimal policies can be very complex (history-dependent)

Motivation

Stochastic Games

Zero-Sum

Stochastic Games

General-Sum

Stochastic Games

Partial
Observability and
CommunicationPractical Insights
and Summary

Summary

Belief States (Cont.)

Agent 1 (Drone)

Hidden State: Target at NORTH

Agent 2 (Drone)

"Same world, different beliefs"

Example 3: Cooperative Drone Surveillance

Scenario: Two drones track a target moving between locations.

States: Target is at location $\{1, 2, 3, 4\}$ (grid)

Observations: Each drone sees “near” or “far” based on its position and target position (noisy)

Actions: Move North/South/East/West

Reward: +10 if both drones reach target, -1 per timestep

Without communication: Each drone only knows its own observations \rightarrow hard to coordinate

With communication: Can share observations \rightarrow centralized planning possible

Motivation

Stochastic Games

Zero-Sum
Stochastic GamesGeneral-Sum
Stochastic GamesPartial
Observability and
CommunicationPractical Insights
and Summary

Summary

The Role of Communication

Cheap talk: Costless, non-binding messages between players

- ▶ Sender has private information (type θ)
- ▶ Sends message m to receiver
- ▶ Receiver chooses action a

Equilibrium: Message strategy + action strategy that are mutually optimal

Key insight: Even “cheap” talk can be informative if incentives are aligned!

Motivation

Stochastic Games

Zero-Sum

Stochastic Games

General-Sum

Stochastic Games

Partial

Observability and
CommunicationPractical Insights
and Summary

Summary

Sender-Receiver Game

Setup:

- ▶ Sender observes type $\theta \in \{\theta_1, \theta_2\}$ with prior π
- ▶ Sends message $m \in \{m_1, m_2\}$
- ▶ Receiver updates belief $\mu = \Pr(\theta_1 \mid m)$ and chooses $a \in \{a_1, a_2\}$

Equilibria:

- ▶ **Pooling**: Sender always sends same message (uninformative)
- ▶ **Separating**: Each type sends different message (fully revealing)
- ▶ **Partial pooling**: Some types pool, others separate

Incentive constraints: Sender must prefer truth-telling given receiver's response

Example 4: Cheap Talk vs Costly Signaling

Cheap talk (costless messages):

- ▶ Worker can claim “I’m great” or “I’m okay” at no cost
- ▶ If lying is free → pooling equilibrium (uninformative)
- ▶ Only informative when incentives are naturally aligned

Costly signaling (covered in Lecture 3):

- ▶ Education acts as costly signal (higher cost for low ability)
- ▶ Cost differential enables separating equilibrium
- ▶ See Spence’s job market model in Lecture 3 for full treatment

Key difference: Costly signals can be credible even with misaligned incentives

Communication in Stochastic Games

Public signals: A shared random variable observed by both players

- ▶ Can coordinate actions through **correlated equilibrium**
- ▶ Example: Traffic light as public signal for drivers

Private messages: Each player sends/receives private information

- ▶ Can improve coordination in POSGs
- ▶ Can enable information sharing about hidden state

Correlated equilibrium: A distribution over joint actions that players want to follow given the public signal

Motivation

Stochastic Games

Zero-Sum

Stochastic Games

General-Sum

Stochastic Games

Partial

Observability and
CommunicationPractical Insights
and Summary

Summary

Correlated Equilibrium Intuition

Preview (covered in Lecture 7): A mediator recommends actions; players obey if it's a best response.

In stochastic games: Mediator can recommend state-dependent action profiles

- ▶ At each state s , draw joint action from $\phi_s(a, b)$
- ▶ Send private recommendations
- ▶ Players obey if no profitable deviation exists

Benefit: Can achieve payoffs beyond Nash equilibrium (better coordination)

Correlated Equilibrium Intuition (Cont.)

Game Theory

László Gulyás

Motivation

Stochastic Games

Zero-Sum
Stochastic Games

General-Sum
Stochastic Games

Partial
Observability and
Communication

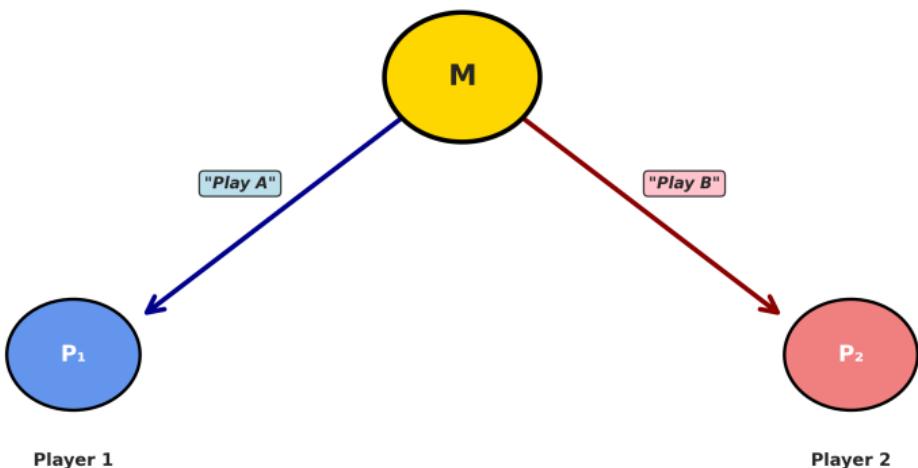
Practical Insights
and Summary

Summary

Correlated Equilibrium: Private Recommendations

Joint Action Distribution $\varphi(a,b)$

Mediator



Motivation

Stochastic Games

Zero-Sum
Stochastic GamesGeneral-Sum
Stochastic GamesPartial
Observability and
CommunicationPractical Insights
and Summary

Summary

Example 5: Correlated Patrol Strategy

Recall patrol game: Guard and intruder in states 1, 2, 3

Mediator device:

- ▶ At state 1: Recommend (N, S) or (S, N) with equal probability (guard and intruder separate)
- ▶ At state 2: Recommend mixed strategy to guard

Benefit: Coordination avoids worst outcomes, improves average payoff

Implementability: Players must prefer to obey recommendations

Motivation

Stochastic Games

Zero-Sum
Stochastic Games

General-Sum
Stochastic Games

Partial
Observability and
Communication

Practical Insights
and Summary

Summary

Outline

Motivation

Motivation

Stochastic Games

Zero-Sum
Stochastic Games

Zero-Sum Stochastic Games

General-Sum
Stochastic Games

General-Sum Stochastic Games

Partial
Observability and
Communication

Partial Observability and Communication

Practical Insights
and Summary

Practical Insights and Summary

Summary

Summary

Motivation

Stochastic Games

Zero-Sum
Stochastic GamesGeneral-Sum
Stochastic GamesPartial
Observability and
CommunicationPractical Insights
and Summary

Summary

When to Use Stochastic Games?

Use stochastic games when:

- ▶ Context/state significantly affects payoffs
- ▶ Actions influence future states (not just immediate rewards)
- ▶ You need to model dynamic strategic interactions
- ▶ Long-term thinking matters (discounting)

Examples:

- ▶ Cybersecurity (system states: secure/compromised)
- ▶ Resource management (budget/inventory states)
- ▶ Multi-round negotiations (reputation states)
- ▶ Robotics (position/environment states)

Motivation

Stochastic Games

Zero-Sum

Stochastic Games

General-Sum

Stochastic Games

Partial
Observability and
CommunicationPractical Insights
and Summary

Summary

Game Type	Difficulty	Solution Method
Small zero-sum	Easy	Value iteration by hand
Medium zero-sum	Moderate	Value iteration + LP solver
Large zero-sum	Hard	Approximate methods
Small general-sum	Moderate	Policy iteration
Large general-sum	Very hard	Learning algorithms
POSGs	Extremely hard	Approximations, communication

Motivation

Stochastic Games

Zero-Sum
Stochastic GamesGeneral-Sum
Stochastic GamesPartial
Observability and
CommunicationPractical Insights
and Summary

Summary

Key Takeaways

1. **Stochastic games** generalize repeated games by adding state-dependent payoffs and transitions
2. **Shapley equation** provides dynamic programming for zero-sum games:
value = immediate reward + discounted future
3. **Value iteration** converges geometrically due to contraction mapping
4. **Stationary policies** are sufficient for optimality in zero-sum discounted games
5. **General-sum** games have equilibria but are harder to compute
6. **Partial observability** makes coordination much harder; **communication** helps
7. **Cheap talk** and **correlated equilibrium** can improve outcomes even without changing payoffs

Motivation

Stochastic Games

Zero-Sum

Stochastic Games

General-Sum

Stochastic Games

Partial
Observability and
CommunicationPractical Insights
and Summary

Summary

Questions

1. How does the discount factor γ affect optimal strategies?
2. When would history-dependent policies be necessary despite stationarity results?
3. How does partial observability change the nature of equilibrium?
4. Can you think of a real-world stochastic game? What are its states and transitions?
5. When would communication be most valuable in a strategic setting?

Motivation

Stochastic Games

Zero-Sum

Stochastic Games

General-Sum

Stochastic Games

Partial
Observability and
Communication

Practical Insights
and Summary

Summary

Design your own two-state stochastic game:

1. Choose a real-world scenario (cybersecurity, traffic, negotiation, etc.)
2. Define two states and their interpretations
3. Specify actions for both players
4. Design rewards that reflect the scenario
5. Define transition probabilities
6. Set $\gamma = 0.9$ and run 3-5 iterations of value iteration by hand
7. Interpret the resulting optimal strategies

Motivation

Stochastic Games

Zero-Sum
Stochastic Games

General-Sum
Stochastic Games

Partial
Observability and
Communication

Practical Insights
and Summary

Summary

Outline

Motivation

Motivation

Stochastic Games

Zero-Sum
Stochastic Games

Zero-Sum Stochastic Games

General-Sum
Stochastic Games

General-Sum Stochastic Games

Partial
Observability and
Communication

Partial Observability and Communication

Practical Insights

and Summary

Summary

Practical Insights and Summary

Summary

Motivation

Stochastic Games

Zero-Sum

Stochastic Games

General-Sum

Stochastic Games

Partial
Observability and
CommunicationPractical Insights
and Summary

Summary

Summary

Today we covered:

- ▶ Stochastic games: states, transitions, policies
- ▶ Shapley equation and value iteration for zero-sum games
- ▶ General-sum equilibria
- ▶ Partial observability and the role of communication

Motivation

Stochastic Games

Zero-Sum
Stochastic Games

General-Sum
Stochastic Games

Partial
Observability and
Communication

Practical Insights
and Summary

Summary

Thank You!